5 El SEVIED

Bioresource Technology

journal homepage: www.elsevier.com/locate/biortech

Uncertainty estimation approach in catalytic fast pyrolysis of rice husk: Thermal degradation, kinetic and thermodynamic parameters study

BIORESOURCE

Adrian Chun Minh Loy^a, Suzana Yusup^{a,*}, Bing Shen How^b, Chung Loong Yiin^b, Bridgid Lai Fui Chin^c, Mustakimah Muhammad^a, Yong Ling Gwee^a

^a National HiCoE Thermochemical Conversion of Biomass, Centre for Biofuel and Biochemical Research, Institute of Sustainable Building, Chemical Engineering

Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia

^b Department of Chemical Engineering, Faculty of Engineering, Computing and Science, Swinburne University of Technology, Jalan Simpang Tiga, 93350 Kuching, Sarawak,

Malaysia

^c Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri Sarawak, Malaysia

G R A P H I C A L A B S T R A C T

Multiple non-linear regression and kinetic modelling on catalytic fast pyrolysis

ARTICLE INFO

Keywords: Rice husk Catalytic fast pyrolysis Kinetic study Multi non-linear regression Monte Carlo simulation Uncertainty analysis

ABSTRACT

The aim of this study was to understand the influence of catalyst in thermal degradation behavior of rice husk (RH) in catalytic fast pyrolysis (CFP) process. An iso-conversional Kissinger kinetic model was introduced into this study to understand the activation energy (E_A), pre-exponential value (A), Enthalpy (ΔH), Entropy (ΔS) and Gibb's energy (ΔG) of non-catalytic fast pyrolysis (NCFP) and CFP of RH. The study revealed that the addition of natural zeolite catalyst enhanced the rate of devolatilization and decomposition of RH associated with lowest E_A value (153.10 kJ/mol) compared to other NCFP and CFP using nickel catalyst. Lastly, an uncertainty estimation was applied on the best fit non-linear regression model (MNLR) to identify the explanatory variables. The finding showed that it had the highest probability to obtain 73.8–74.0% mass loss in CFP of rice husk using natural zeolite catalyst.

• Corresponding author.

E-mail address: drsuzana_yusuf@edu.utp.my (S. Yusup).

https://doi.org/10.1016/j.biortech.2019.122089

Received 15 June 2019; Received in revised form 27 August 2019; Accepted 29 August 2019 Available online 31 August 2019

0960-8524/ © 2019 Elsevier Ltd. All rights reserved.

Abbreviations: RH, Rice husk; IEA, International Energy Agency; NCFP, non-catalytic fast pyrolysis; CFP, catalytic fast pyrolysis; TGA, Thermogravimetric analysis; DTG, difference thermogravimetry; E_A , activation energy; A, pre-exponential value; ΔH , Enthalpy; ΔS , Entropy; ΔG , Gibb's energy; MNLR, non-linear regression model; IEA, International Energy Agency; MC, moisture content; VM, volatile matter; FC, fixed carbon; AC, ash content; LHV, lower heating value; RH/N, thermal degradation of rice husk in catalytic fast pyrolysis using nickel as catalyst; RH/Z, thermal degradation of rice husk in catalytic fast pyrolysis using nature zeolite as catalyst; VIF, variation inflation factor; D-W, Durbin Watson factor; MC, Monte Carlo