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ABSTRACT 
 

 

This thesis aims to develop a suitable model to describe the transmission dynamics of 

hand, foot and mouth disease (HFMD) specifically in addressing the insight on the ability 

of the virus to survive in the respiratory secretion and stool of a patient for a period of time 

in order to predict the periodic cycle of HFMD infectious cases more accurately. This was 

found necessary since a basic SIR (Susceptible-Infectious-Fully recovered) model only 

provide a basic framework to discuss the characteristic of HFMD. Biological 

characteristics, which are incubation period, infectious period and post-infectious virus 

shedding period are known to be the factors for the virus spreading. Thus, to provide a 

complete study framework based on the biological factors of HFMD, basic SIR model was 

extended to become SEIPR (Susceptible-Incubation period-Infectious-Post infectious virus 

shedding-Fully recovered) model whereby the incubation period and post-infectious period 

together with the existing infectious period to act as infected compartments were 

incorporated. The numerical results of the model were compared with the actual 2006 

HFMD infectious data. There is no significance difference between the numerical 

simulation and the actual data by using the SEIPR during the first wave of the outbreak for 

ten weeks. Then, SEIPR model is being verified by analyzing the HFMD outbreaks from 

year 2010 to 2014 and the results during the first wave of the outbreaks are well matched 

with the actual cases. Hence, with the inclusion of the transmission coefficient gained from 

incubation period patients, which is  and post-infectious patients, which is together 

with the transmission coefficient from infectious individual, which is  to susceptible in 

the improvement SEIPR model, the numerical simulation results reached a consensus that 
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the incorporated infected compartments are able to predict the HFMD cases during the first 

wave of the outbreaks for ten weeks. Furthermore, SEIPR model provides two main 

parameters that have been evaluated include basic reproductive number,  and the 

threshold value. The values of   R0  calculated are between 1.13 to 1.54, indicating the 

outbreaks of the disease occurred from year 2010 to 2014. Meanwhile, the threshold value 

as minimum proportion of the population to create the liability of the disease spreading for 

each case was found to be in the range 6500 to 9000 people. It is observed that with higher 

, the transmission coefficient is higher and the threshold value is smaller, which means 

more people can be infected. Hence, to reduce the number of infected cases, the 

transmission coefficients need to be reduced, thus, the number of any contact person within 

the infected region needs to be controlled, so that the impacts of the outbreaks can be 

reduced. 

 

 

Keywords: Hand, foot and mouth disease, SIR model, SEIPR model, incubation period,   

                    post-infectious virus shedding period. 
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Model SEIPR bagi Pemodelan Pengiraan untuk Jangkitan Dinamik Tehadap Penyakit 
Tangan, Kaki dan Mulut di Sarawak 

 
ABSTRAK 

 
Tesis ini menumpu kepada penghasilan satu model yang sesuai untuk menerangkan 

tentang jangkitan dinamik yang disebabkan oleh penyakit tangan, kaki dan mulut 

terutamanya melihat kepada keupayaan virus kekal hidup dalam rembesan pernafasan dan 

najis pesakit dalam tempoh tertentu dan membuat jangkaan keputusan yang lebih tepat 

dalam pengiraan kitaran berkala jangkitan kes-kes penyakit tangan, kaki dan mulut. Ini 

adalah diperlukan kerana penggunaan model asas iaitu model SIR (Orang yang belum 

dijangkiti-orang yang dijangkiti-orang yang sembuh selepas jangkitan) hanya 

menyediakan rangka kerja yang asas dalam penerangan sifat-sifat penyakit tangan, kaki 

dan mulut. Sifat-sifat faktor biologi iaitu tempoh pengeraman, tempoh semasa jangkitan 

dan tempoh selepas jangkitan adalah faktor-faktor penyebaran jangkitan. Dengan itu, 

model asas SIR telah dikembangkan kepada model SEIPR (Orang yang belum dijangkiti-

orang yang dijangkiti tanpa gejala-orang yang dijangkiti dengan gejala-orang selepas 

dijangkiti tetapi gejala telah hilang-orang yang sembuh selepas jangkitan) supaya satu 

rangka kerja yang lengkap berdasarkan sifat-sifat faktor biologi penyakit tangan, kaki dan 

mulut di mana model SEIPR yang baharu dibina ini telah menggabungkan tempoh 

pengeraman dan tempoh selepas jangkitan bersama dengan tempoh semasa jangkitan 

untuk bertindak sebagai komponen-komponen jangkitan. Perbandingan di antara 

keputusan jangkaan dan keputusan sebenar data 2006 penyakit tangan, kaki dan mulut 

telah dilakukan. Keputusan berangka simulasi dengan data sebenar didapati tiada 

perbezaan yang ketara semasa gelombang pertama penyebaran wabak penyakit dalam 

tempoh sepuluh minggu. Kemudian, model SEIPR telah disahkan penggunaannya dengan 



	 	vii	

menganalisiskan penyebaran penyakit tangan, kaki dan mulut dari tahun 2010 hingga 

tahun 2014 dan keputusan semasa gelombang pertama penyebaran wabak penyakit adalah 

sepadan dengan data sebenar. Oleh itu, dengan penambahan pekali penyebaran dari 

orang yang dijangkiti tanpa gejala iaitu  dan orang selepas dijangkiti tetapi gejala 

telah hilang iaitu  bersama dengan pekali penyebaran dari orang yang dijangkiti iaitu 

 kepada orang yang belum dijangkiti dalam model SEIPR, keputusan simulasi berangka 

mencapai persetujuan di mana penggabungan komponen-komponen jangkitan berupaya 

membuat jangkaan keputusan kes-kes penyakit tangan, kaki dan mulut dalam tempoh 

sepuluh minggu semasa gelombang pertama penyebaran wabak penyakit. Dua parameter 

yang telah dinilai termasuk nombor penyebaran asas,  dan nilai ambang.  yang 

terhasil didapati berada dalam lingkungan 1.13 hingga 1.54 menunjukkan wabak penyakit 

tersebar dari tahun 2010 hingga tahun 2014. Pada masa yang sama, nilai ambang setiap 

kes yang didapati adalah dalam lingkungan 6500 hingga 9000 orang yang diperlukan 

supaya wabak boleh tersebar. Keputusan menunjukkan dengan  yang tinggi, pekali 

penyebaran adalah tinggi dan nilai ambang adalah kecil, ini  bermakna, lebih ramai 

orang akan dijangkiti. Bagi mengurangkan kes-kes jangkitan, pekali penyebaran 

hendaklah dikurangkan, jadi, jumlah keupayaan orang berjumpa di kalangan ramai 

dengan yang dijangkiti hendaklah dikawal supaya impak yang diterima oleh penyebaran 

wabak boleh dikurangkan. 

 

Kata kunci: Penyakit tangan, kaki dan mulut, model SIR, model SEIPR, tempoh   

pengeraman, tempoh selepas jangkitan. 

  

	β1

	β6

	β5

		R0 		R0

		R0



	 	viii	

TABLE OF CONTENTS 
 

                 Page 
 
DECLARATION……………………………………………………………...……………i	

ACKNOWLEDGEMENT………………………………………………………...………ii	

ABSTRACT………………………………………………………………………….……iv	

ABSTRAK……………………………………………………………………….…………vi	

TABLE OF CONTENTS………………………………………………………………..viii  

LIST OF TABLES……………………………………………………………………….xii 

LIST OF FIGURES……………………………………………………………………..xiv 

LIST OF ABBREVIATIONS…………………………………………………….……...xx 

CHAPTER 1:    INTRODUCTION…………………………………….…………...……1 

1.1    Motivation………………………………………………………………....……….…1 

1.2    Problem statement……………….…….……………………………………………...1 

1.3    Objectives ………………………………………………………………………….....4  

1.4    History of mathematical modeling…….………………………………..…….……....5 

1.5    Related works…………………..……...………………………………….…………..6 

1.6    Effectiveness of control measures………….…………………………….………….11 

1.7    Significant of the study ……………………………………..……...……………….11 

1.8    Summary…………………..……...………..………………………….…………….12 

CHAPTER 2:    LITERATURE REVIEW…………………………………………..…13 

2.1    Introduction………...………………………………………………………..………13 

2.2    Overview of hand, foot and mouth disease..………………...……………………...13 



	 	ix	

2.3    Methodology…………………………………...……………………………………18 

    2.3.1  Equilibrium point………………………………………………………………...20 

2.3.1.1 Stability of equilibria……………………….………………………………21 

2.3.1.2 Routh Hurwitz Criterion……………………………………………………22 

2.3.1.3 Lyapunov Second Theorem on stability………………………..………..…23 

2.3.2  Basic reproductive number………………………………...…………………..…24 

2.3.3  Threshold value………………………………………...……..……..………...…26 

2.3.4  Model fitting test…………………………………...……………….…...….……26 

2.3.4.1 Simple linear regression…………..…………………...………………..…..27 

2.3.4.2 Linear regression equation……………………...………….………….……27 

2.3.4.3 Correlation coefficient…………..…..………………...………………..…..29 

2.3.4.4 Residuals plot……………………...……………………….………….……30 

2.3.4.5 Root square mean error (RMSE)……...……...…………….………….……31 

2.4    Thesis outline……………………………………..………………..…………..……31 

CHAPTER 3:    FORMULATION AND ANALYSIS OF THE BASIC SIR  

                            MODEL ………………..…………………………...………….………32 

3.1    Introduction…………………………………...……………………………..………32 

3.2    Basic SIR model formulation…………………..........…………….……………..….32 

3.3    Theoretical analysis of the basic SIR model……………………….…..……………38 

    3.3.1  Disease-free equilibrium point………………………………...……..…..……....39 

    3.3.2  Basic reproductive number for basic SIR model…………………………...…....40 

    3.3.3  Threshold value analysis of the basic SIR model………………………..……....41 

    3.3.4  Stability of disease-free equilibrium point of basic SIR model…….…………....42 

     3.3.5  Endemic equilibrium points for basic SIR model……..….……….…………….43 



	 	x	

3.4    Numerical results for basic SIR model…...……..………..…….…………………...47 

3.5    Summary……….………………………………………………………………..…..56 

CHAPTER 4:    FORMULATION AND ANALYSIS OF THE SEIPR MODEL…...58 

4.1    Introduction……….………………………………………………………...……….58 

4.2    SEIPR model formulation……….………………...………………………..……….58 

4.3    Theoretical analysis of the SEIPR model……….………………….……….…….....68 

    4.3.1  Disease-free equilibrium point……….……………..……….……………..…….69 

4.3.2 Basic reproductive number for SEIPR model………….……….…………....70 

4.3.3 Threshold value analysis of the SEIPR model……..….……………………..74 

4.3.4 Stability of disease-free equilibrium point of SEIPR model……….…….......76 

4.3.5 Endemic equilibrium points for SEIPR model……..………………..…..…...81 

4.4    Numerical results for SEIPR model…………………………………….….………..86 

    4.4.1  Sensitivity analysis for SEIPR model's parameters………..…….………..……..90 
	
    4.4.2  Numerical results for SEIPR model, year 2006……….………….….…………102 

    4.4.3  Numerical results for SEIPR model, year 2010…………..………………….…113 

    4.4.4  Numerical results for SEIPR model, year 2011……….……….………..……...119 

    4.4.5  Numerical results for SEIPR model, year 2012………...……….…………..….127 

    4.4.6  Numerical results for SEIPR model, year 2013……...………….…………..….133 

    4.4.7  Numerical results for SEIPR model, year 2014………...……….…………..….138 

4.5    Comparison of theoretical analysis and numerical results for the year 2006,    

         2010, 2011, 2012, 2013 and 2014……..………………...…………………………144 

4.6    Summary……….…….……….……………………………………………………149 

CHAPTER 5:    CONCLUSION AND RECOMMENDATIONS……………...……151 

5.1    Introduction……….……………….……………………………………………….151 



	 	xi	

5.2    Contribution……….……………….………………………………………………151 

5.3    Limitation……….……………………………………………….………..………..153 

5.4    Future work……….…………….………………….………………………………154 

REFERENCES……….………………………………………...……….………………156 

APPENDIX……….………………….……………………...……………………………...……….……………162	
	
	
	
	

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	 	xii	

LIST OF TABLES 

 

                 Page 
 
Table 1.1    Summary of mathematical models of HFMD.....................................................9 

Table 3.1    Parameters values of SIR model for sensitivity analysis..................................51 

Table 3.2    Results of the actual infectious cases in 2006, predicted infectious  

    cases of sensitivity analysis and RMSE values by using SIR model  

    for first until third trial test...............................................................................54 

Table 4.1    Parameters values of SEIPR model description................................................86 

Table 4.2    Parameters values of SEIPR model for sensitivity analysis..............................90 

Table 4.3    Results of the actual infectious cases in 2006 and predicted  

    infectious cases of sensitivity analysis by using SEIPR model  

    for first until sixth trial......................................................................................98 

Table 4.4    Total population of children under age 9 and number of  

    HFMD cases, year 2006, 2010, 2011, 2012, 2013 and 2014..........................100 

Table 4.5    Results of the observed values and predicted values by  

    using SEIPR model, year 2006.......................................................................110 

Table 4.6    Results of the observed values and predicted values, year 2010....................117 

Table 4.7    Results of the observed values and predicted values, year 2011....................125 

Table 4.8    Results of the observed values and predicted values, year 2012....................131 

Table 4.9    Results of the observed values and predicted values, year 2013....................137 

Table 4.10  Results of the observed values and predicted values, year 2014....................142 

Table 4.11  The initial and parameters values....................................................................144 

 



	 	xiii	

Table 4.12  Threshold values, basic reproductive numbers ( ) and  

    correlation coefficient ( ).............................................................................145 

 
	

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

		R0

		r2



	 	xiv	

LIST OF FIGURES 

	

                 Page 
 
Figure 2.1    World map of HFMD outbreaks throughout the years....................................14 

Figure 2.2    Transmission cycle of HFMD..........................................................................16 

Figure 2.3    Research flow chart.........................................................................................19 

Figure 3.1    A compartmental diagram of SIR basic model (Susceptible- 

     Infectious-Fully recovered). (Tiing & Labadin, 2008) ...................................34 

Figure 3.2    Susceptible compartmental diagram, S............................................................34 

Figure 3.3    Infectious compartmental diagram, ..............................................................35 

Figure 3.4    Fully recovered compartmental diagram, ....................................................35 

Figure 3.5    The combined compartmental diagram of SIR model. ...................................36 

Figure 3.6    The predicted cases of the basic SIR model for susceptible, 

     infectious and fully recovered over the time...................................................49 

Figure 3.7    Comparison of the actual infectious cases and predicted  

    infectious cases ...............................................................................................50 

Figure 3.8    Comparison of the actual infectious cases and predicted  

     infectious cases, second trial............................................................................52 

Figure 3.9    Comparison of the actual infectious cases and predicted  

     infectious cases, third trial...............................................................................53 

Figure 3.10  Susceptible, predicted infectious cases and actual infectious  

     cases of second trial sensitivity analysis. Dashed line indicated  

     threshold value................................................ ................................................56 

 

	I

	R



	 	xv	

Figure 4.1    A schematic diagram of SEIPR basic model (Susceptible-Incubation  

     period-Infectious-Post infectious virus shedding-Fully recovered)................59 

Figure 4.2    Susceptible compartmental diagram, S............................................................60 

Figure 4.3    Incubation period compartmental diagram, .................................................61  

Figure 4.4    Infectious compartmental diagram, ..............................................................62 

Figure 4.5    Clinically recovered compartmental diagram, ............................................63 

Figure 4.6    Fully recovered compartmental diagram, ....................................................64 

Figure 4.7    The combined compartmental diagram of SEIPR model................................65 

Figure 4.8    Comparison of the actual infectious cases and predicted  

     infectious cases, first trial................................................................................92 

Figure 4.9    Comparison of the actual infectious cases and predicted  

     infectious cases, second trial............................................................................93  

Figure 4.10  Comparison of the actual infectious cases and predicted  

     infectious cases, third trial. .............................................................................94 

Figure 4.11  Comparison of the actual infectious cases and predicted 

     infectious cases, fourth trial.............................................................................95 

Figure 4.12  Comparison of the actual infectious cases and predicted  

     infectious cases, fifth trial................................................................................96 

Figure 4.13  Comparison of the actual infectious cases and predicted  

     infectious cases, sixth trial...............................................................................97 

Figure 4.14  Plot of RMSE values for first trial until sixth trial..........................................99  

Figure 4.15  Comparison between the total population of children under  

         age 9 and number of HFMD cases................................................................100 

 

	E

	I

	P

	R



	 	xvi	

Figure 4.16  The predicted cases of the SEIPR model for susceptible,  

     incubation period, infectious, post-infectious virus shedding and  

     fully recovered over time, year 2006.............................................................103 

Figure 4.17  Comparison of the best fit between SEIPR and SIR models.  

    Parameters for SEIPR model are    

                  

             β6 = 0.00006  and       

         Parameters for SIR model are   S = 9000,         

           α1 = 0.0001771,  and    

        ....................................................................................................104 

Figure 4.18  Comparison of the best fit between SEIPR and SIR models with 

                     value of initial S is 10000. Parameters for SEIPR model are  

                          

                        

                         β6 = 0.00006  and   

                     Parameters for SIR model are                

                       

                      and ............................................................................106 

Figure 4.19  Susceptible, predicted infectious cases and actual infectious  

     cases based on SEIPR model, year 2006. Dashed line indicated  

     threshold value ..............................................................................................108 

		S =10000, 		E = 4, 		I = 4, 		P = 4, 		R =0,

		k1 =0.0002923, 		k2 =0.0001077, 		k3 =0.00001731, 	β1 =0.00003,

	β2 =5.5, 	β3 =1, 	β4 =1, 	β5 =0.00015, 	β7 =0.07.

		I = 4, 		R =0, 		k1 =0.0002923,

		k2 =0.0001077, 		k3 =0.00001731, 	α2 =0.07

	α3 =0.8325

		S =10000, 		E = 4, 		I = 4, 		P = 4, 		R =0, 		k1 =0.0002923,

		k2 =0.0001077, 		k3 =0.00001731, 	β1 =0.00003, 	β2 =5.5,

	β3 =1, 	β4 =1, 	β5 =0.00015, 	β7 =0.07.

		S =10000, 		I = 4, 		R =0,

		k1 =0.0002923, 		k2 =0.0001077, 		k3 =0.00001731, 	α1 =0.00015,

	α2 =0.07 	α3 =0.8325



	 	xvii	

Figure 4.20  Simple linear regressions plot, year 2006......................................................111 

Figure 4.21  Residuals plot, year 2006...............................................................................111 

Figure 4.22  The predicted cases of the SEIPR model for susceptible,  

     incubation period, infectious, post-infectious virus shedding  

     and fully recovered over the time, year 2010................................................114 

Figure 4.23  Comparison of the actual infectious cases and predicted  

     infectious cases, year 2010............................................................................115 

Figure 4.24  Susceptible, predicted infectious cases and actual infectious  

     cases based on SEIPR model, year 2010. Dashed line indicated  

     threshold value...............................................................................................116 

Figure 4.25  Simple linear regressions plot, year 2010......................................................118 

Figure 4.26  Residuals plot, year 2010...............................................................................118 

Figure 4.27  The predicted cases of the SEIPR model for susceptible,  

     incubation period, infectious, post-infectious virus shedding  

     and fully recovered over the time, year 2011. Dashed line  

     separated the dynamic waves to two parts, first 21 weeks and  

     after 21 weeks................................................................................................121  

Figure 4.28  Comparison of the actual infectious cases an d predicted  

     infectious cases, year 2011. Dashed line separated the dynamic  

     waves to two parts, first 21 weeks and after 21 weeks..................................122 

 

 

 

 



	 	xviii	

Figure 4.29  Susceptible, predicted infectious cases and actual  

     infectious cases based on SEIPR model, year 2011. Dashed  

     line indicated threshold value of predicted data. Dotted line  

     indicated threshold value of real data. Dashed-dotted line  

     separated the dynamic waves to two parts, first 21 weeks and  

     after 21 weeks................................................................................................124 

Figure 4.30  Enlarge figure for predicted infectious cases and actual  

     infectious cases from Figure 4.29..................................................................124 

Figure 4.31  Simple linear regressions plot, year 2011......................................................126 

Figure 4.32  Residuals plot, year 2011...............................................................................127 

Figure 4.33  The predicted cases of the SEIPR model for susceptible,  

     incubation period, infectious, post-infectious virus shedding  

     and fully recovered over the time, year 2012................................................128 

Figure 4.34  Comparison of the actual infectious cases and predicted  

     infectious cases, year 2012............................................................................129 

Figure 4.35  Susceptible, predicted infectious cases and actual infectious  

     cases based on SEIPR model, year 2012. Dashed line indicated  

     threshold value...............................................................................................130 

Figure 4.36  Simple linear regressions plot, year 2012......................................................131 

Figure 4.37  Residuals plot, year 2012........................... ...................................................132  

Figure 4.38  The predicted cases of the SEIPR model for susceptible,  

     incubation period, infectious, post-infectious virus shedding  

     and fully recovered over the time, year 2013……………………………....133 

 



	 	xix	

Figure 4.39  Comparison of the actual infectious cases and predicted  

     infectious cases, year 2013............................................................................135 

Figure 4.40  Susceptible, predicted infectious cases and actual infectious  

     cases based on SEIPR model, year 2013. Dashed line indicated  

     threshold value...............................................................................................136 

Figure 4.41  Simple linear regressions plot, year 2013......................................................137 

Figure 4.42  Residuals plot, year 2013...............................................................................138  

Figure 4.43  The predicted cases of the SEIPR model for susceptible,  

     incubation period, infectious, post-infectious virus shedding  

     and fully recovered over the time, year 2014................................................139 

Figure 4.44  Comparison of the actual infectious cases and predicted  

     infectious cases, year 2014............................................................................140 

Figure 4.45  Susceptible, predicted infectious cases and actual infectious  

     cases based on SEIPR model, year 2014. Dashed line indicated  

     threshold value...............................................................................................141 

Figure 4.46  Simple linear regression plot, year 2014.......................................................143 

Figure 4.47  Residuals plot, year 2014...............................................................................143  

Figure 4.48  Comparison between the transmission coefficients and  

     basic reproductive numbers...........................................................................146 

Figure 4.49  Comparison between the threshold values and basic  

     reproductive numbers ...................................................................................148 

 

 

 



	 	xx	

LIST OF ABBREVIATIONS 

 

 transmission coefficient of susceptible individuals getting infected 

for SIR model (per time) 

 the rate at which a recovered individual loses its immunity for SIR 

model (per time) 

 the rate at which an infectious individual fully recovered for SIR 

model (per time) 

 transmission coefficient of susceptible individuals getting infected 

by incubation period individual for SEIPR model (per time) 

 the rate at which an asymptomatic patient developing symptoms for 

SEIPR model (per time) 

 the rate at which an infectious individual clinically recovered for 

SEIPR model (per time) 

 the rate at which a clinically recovered individual fully recovered for 

SEIPR model (per time) 

 transmission coefficient of susceptible individuals getting infected 

by infectious individual for SEIPR model (per time) 

 transmission coefficient of susceptible individuals getting infected 

by clinically recovered individual for SEIPR model (per time) 

	α1

	α2

	α3

	β1

	β2

	β3

	β4

	β5

	β6



	 	xxi	

 the rate at which a recovered individual loses its immunity for 

SEIPR model (per time) 

   natural birth rate (per time) 

   natural death rate (per time) 

   death rate which is caused by disease (per time) 

   number of infected individual during incubation period at time  

   number of infectious individual at time  

   total population 

 number of clinically recovered individual (post-infectious virus 

shedding period) at time  

   number of fully recovered individual at time   

   number of susceptible at time  

 

	β7

		k1

		k2

		k3

	E 	t

	I 	t

	N

	P

	t

	R 	t

	S 	t



	
1	

CHAPTER 1 

INTRODUCTION 

 

 

1.1 Motivation 

 

Hand, foot and mouth disease (HFMD) is a common viral illness and mostly caused by 

viruses that belong to the enteroviruses group. The major causative agents of HFMD are 

coxsackievirus and human enterovirus 71 (EV-71) (Podin et al., 2006). The viruses are 

transmitted via fecal-oral route and can also spread through close contact with the patients, 

virus-contaminated surfaces, fomites and in respiratory droplets (Solomon et al., 2010). 

HFMD primarily affects infants and young children under age of 10 (Podin et al., 2006; 

SHD, 2018). Since 1997, the large outbreaks of human enteroviruses associated with hand, 

foot and mouth disease (HFMD) across the Asia-Pacific started to catch the public 

attention (McMinn, 2002; Podin et al., 2006). Countries such as Taiwan, China, Singapore, 

Malaysia, Vietnam, Mongolia and Brunei have created high number of infected cases and 

complicated death cases (Roy & Halder, 2010). Enterovirus 71 (EV 71) was first identified 

in California, USA, in 1969, which causes the HFMD with neurological and systemic 

complications (Solomon et al., 2010). 

In Sarawak, series of HFMD outbreaks have occurred since 1997, affecting mostly 

children. This has raised the awareness of the public due to the fatalities cases reported. 

HFMD is endemic in Sarawak (SHD, 2018).  
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Among the HFMD effects, patients may suffer from rapidly progressive 

cardiorespiratory failure and lead to fatalities (Chan et al., 2000). In 1997, the major 

HFMD outbreak in Sarawak has raised the alarm as 29 unusual pediatric deaths due to 

encephalitis and cardiac failure (Chan et al., 2000; Podin et al., 2006). Since then, there 

were outbreaks reported again in the state in 2000, 2003 (Podin et al., 2006), 2006 (SHD, 

2006a), 2010, 2011, 2012, 2013, 2014 and 2015 (SHD, 2006b, 2015). In 2006, 13 deaths 

were recorded in the state during the HFMD outbreaks (Tiing & Labadin, 2008).   

When a cohort of children that have not been exposed to the disease of which these 

children are then susceptible encounter the viruses when an ill child is introduced into the 

group, then the viruses can be easily spread among the children (Podin et al., 2006). With 

this, to control the widespread of the HFMD viruses, childcare centers or kindergartens 

that have the HFMD cases will be ordered to close temporary. Working parents involved 

are affected, as they need to take care of their children. Besides, the challenges 

encountered include the public health interventions to alarm the public to avoid crowded 

places when there are HFMD outbreaks (Tiing & Labadin, 2008).  

Currently, it was reported that vaccine EV71 has started being used for infants and 

children in China. However, the vaccinated individuals still can be infected by other 

HFMD viruses besides virus EV71 (Shi et al., 2018; Tan & Cao, 2018). Besides, the 

vaccinated individuals do not have life long immunity against the virus EV 71. In other 

countries, there is no vaccine and specific treatment applied to protect against the virus 

(Ministry of Health, 2014; SHD, 2018). To relieve the symptoms, patients are advised to 

be aware of hygiene and avoid dehydration. Supportive therapy and the use of medications 

recommended by health care provider may help to control the fever and pain (X. Li et al., 

2014; Lu et al., 2013). Clinical studies where the patients were being monitored and 
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behaviors of the disease were recorded in order to combat with the HFMD are further 

discussed in Section 2.2. 

 

 

1.2 Problem statement  

 

HFMD is transmitted rapidly via fecal-oral route. The exposure to the viruses 

affects the patients’ risk of infection especially children as they do not have immunity to 

the virus. Comprehensive biological insights regards to the HFMD viruses during 

incubation period, infectious period and post-infectious virus shedding period have been 

studied thoroughly. Once a susceptible individual is infected by the HFMD virus, the 

patient at first is called asymptomatic patient as no symptoms has been shown yet. 

Asymptomatic patient, which is grouped into the incubation period group contributes as 

infectious source and start to transmit the disease. Incubation period is reported within a 

range from 1 day to 2 weeks (CDC, 2015; Ministry of Health, 2014). HFMD is most 

contagious during the first week of the infectious period when the symptoms are shown. 

The symptoms of the illness may subside within one week, which the patient then is 

grouped into post-infectious virus shedding period group. The post-infection virus 

shedding may serve as reservoirs of the virus and contribute to the epidemic of the HFMD. 

The post-infectious virus shedding can persist in the stools for up to few weeks (Mandal, 

2017; Ministry of Health, 2014; Podin et al., 2006; Teng et al., 2013; Thomas & Weber, 

2001). There is a short immunity against HFMD but not a permanent immunity after fully 

recovery. The patients return to being susceptible to HFMD once they lost their immunity. 
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Besides, the patient also can get the disease again from different viruses (CDC, 2015; 

Chuo, 2008; Mandal, 2017).  

Many mathematical models aimed to describe the dynamics of the HFMD were 

developed since the occurrence of the outbreaks. SIR model was first used to predict the 

real dynamic infectious behaviors in Sarawak but the prediction was only provided a basic 

framework while discussing the characteristics of HFMD which is merely based on 

infectious period (Tiing & Labadin, 2008). To date, there have been some other 

mathematical models being developed to study the characteristics of HFMD. This will be 

discussed more in Section 1.5. However, the models did not carry out more comprehensive 

biological factors in order to study the characteristics of HFMD. With this, we aim to 

formulate a mathematical model, which incorporate all the biological factors above to 

better comprehend the characteristic of HFMD. 

 

   

1.3 Objectives 

 

The aims of the study are as follows: 

i. To formulate a simple deterministic new model, SEIPR model, by incorporating the 

virus biological factors namely the incubation, infectious and post-infectious 

periods. 

ii. To analyze the numerical and analytical solutions of the SEIPR model. 
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1.4 History of mathematical modeling 

 

Mathematical modeling for infectious diseases is a system description by using 

mathematical concepts and language to provide an insight into a complex interacting 

process by studying the behaviors of the diseases and to predict the future epidemics, 

hence help to control the future outbreaks (Giesecke, 2017; Johnston et al., 2007). 

Daniel Bernoulli initiated the first mathematical study of diseases in 1760. He 

created a mathematical method to evaluate the effectiveness of the variolation techniques 

against smallpox, aiming to influence the public health policy intervention. In 1906, 

Harmer introduced ‘mass action principle’ contributed to the estimation of the rate of 

contact of the infectious individual and susceptible in discrete-time framework. Later, in 

1908, Ronald Ros translated the problem to continuous-time framework. Kermack and 

McKendrick, in 1927, established the threshold theory which suggested epidemic outbreak 

occur only when the density of the number of susceptible exceed certain critical value. In 

1929, Soper who deduced the hidden mechanisms responsible to the often-observed 

periodic epidemics extended the ideas above (Anderson & May, 1992).  

SIR model, the basic epidemic model was initiated in depth studied by Kermack & 

McKendrick, 1927. The formalism categorizes hosts as susceptible (S), individual that has 

not been exposed to the disease, infected person (I) is the individuals at the infectious stage 

and recovered (R) refers to patient that has successfully cleared the infection. From the 

modeling perspective, the individual is moving from one compartment to another 

compartment (Keeling & Rohani, 2008). 

  



	
6	

1.5  Related works 

 

Over the years, HFMD is a worldwide concern disease as the disease can spread rapidly. In 

Sarawak, it was reported from year 1997 to 2006, the major outbreaks were occurred with 

every three years cycle (Podin et al., 2006). However, from year 2010 to 2017, HFMD 

outbreaks have been occurring every year (SHD, 2018). With this, mathematical can be a 

powerful tool to help to study more comprehensively the behaviors of the HFMD in order 

to identify the causes, interrupting the spread and help public health personnel in 

developing possible interventions. 

SIR model was first used to predict the real dynamic infectious behaviors in 

Sarawak and the study suggested that the number of susceptible is the parameter that may 

control the disease (Tiing & Labadin, 2008). SEIR model in the other hand is a refinement 

to SIR model which consider the exposed (E) as one of the compartments is introduced. 

SEIR model had been used to study the characteristic of HFMD theoretically by using the 

numerical simulation. The study showed that the disease transmission depends on the 

number of actively infected people at the initial time and the disease incidence 

transmission rate at a given time (Roy & Halder, 2010). 

In (Hii et al., 2011), the authors suggested the weather parameters can be used as 

risk indicator for the potential HFMD outbreaks. The study showed that a maximum daily 

temperature above  and rainfall up to 75mm increase the HFMD incidence in the 

subsequent 1 to 2 weeks. Whereas, in 2012, (Roy, 2012) studied the HFMD model 

theoretically by using the basic SIR model, SLIR and SLIQR model. SLIR model included 

the latent period (L) which the susceptible individual after contacts with the infected 

individual do not get the disease immediately and will become infectious after certain time. 

		32°C
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On the other hand, SLIQR model added the quarantine compartment (Q) and show that if 

the probability of the infected individual being quarantine is increased, then the basic 

reproductive number could be maintained as less than one.  

Another  SEIAISQR  model, which had been formulated by putting pulse 

vaccination into some fraction of susceptible and being analyzed theoretically with 

numerical simulation, the result showed that a large pulse vaccination rate will lead to 

eradicate the disease (Samanta, 2014). Another study, SEIQR model, consists of 

susceptible (S), exposed (E), infectious and non-hospitalized (I), infectious and 

hospitalized (Q), and recovered (R) individual is used to investigate the preventive measure 

in order to control HFMD. It was shown that by reducing the transmission rate and 

increasing the recovery rate of non-hospitalized infectious individual, the spread of HFMD 

can be controlled effectively. However, changing the hospitalized infectious individual rate 

played a small effect in controlling the disease spreading (Y. Li et al., 2014). In another 

study, periodic transmission rate and ‘psychological’ effect which being interpreted as 

people deter from risky behavior or taking precaution once HFMD appears and spreads 

were considered into the study of the behavior of HFMD by using SEIQR model. Here, by 

putting the quarantine as a control measurement as part of the compartments (Q) as well, 

the SEIQR model showed that the quarantine rate together with the infected rate are 

important elements in controlling the spread of the HFMD (Zhu et al., 2014).  

In 2015, effects on hand washing campaign had been added into SEI IA R	model.	

The model was studied theoretically. Compartments were included infected human 

population (I) and severe human population ( I A ).	 The effectiveness of hand washing 

parameter was added to reduce the rate of disease transmission and hence concluded that 

by increasing the effectiveness of hand washing campaign, the infected cases will decrease 
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(Phutthichayanon & Naowarat, 2015).	On another other study, (Lai et al., 2016) studied a 

dynamic model of HFMD which included a few compartments namely susceptible (S), 

infectious cases before developing disease (I), asymptomatic disease with infectiousness 

(AS-I), immunity after infected (AS-I (R)), infectious cases after developing symptoms 

(EV-I) and symptomatic cases with immunity after recovery (EV-R). The study suggested 

that the isolation strategy against HFMD delayed the epidemic peak. Meanwhile, in 2017, 

SEIR model again was being studied to predict the infectious cases in Singapore for the 

year 2015 and 2016 (Wu, 2017).  

Another study in 2018, (Chadsuthi & Wichapeng, 2018) extended the existing 

SEIR model to  SEIIeHRW  by adding the indirect transmission via free-living virus 

obtained from infectious individual into mathematical model. Here, S is susceptible, E is 

exposed individual, I is symptomatic infectious individual, Ie  is asymptomatic infectious 

individual, H is hospitalized, R recovered and W is density of pathogens contain free-living 

virus in contaminated environment. From their study, the transmission dynamic was 

contributed by direct transmission from asymptomatic infected individuals, symptomatic 

infected individual and indirect transmission via free-living virus. In 2018, (Shi et al., 

2018) proposed a model named SVEI  Ie QRW, where vaccinated (V), quarantine (Q) and 

density of pathogen of the contaminated environment from infectious individuals (W) had 

been included to study the behavior of HFMD. It was noticed that by increasing the rate of 

virus clearance, vaccinated young children and quarantine infectious individuals, the 

HFMD could effectively be controlled. Another other theoretically study done by (Tan & 

Cao, 2018) in which vaccination compartment (V) had been added into the mathematical 

model, called SEIVT. The simulation results showed that the number of infectious is 

minimal if the vaccination is implemented. 
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The existing models explained above did not take into account all the biological 

insights specifically for Sarawak HFMD cases. Therefore, we create a new model, SEIPR 

model that incorporates the virus biological factors of incubation, infectious and post-

infectious periods to provide a better prediction for the occurrence of the HFMD outbreak. 

 

Table 1.1: Summary of mathematical models of HFMD. 

No Source Study Area Model 
Approached 

Finding 

1 Ting & Labadin, 2008 Sarawak, 
Malaysia 

SIR  
 

Susceptible is 
parameter that 
may control the 
disease. 

2 Roy & Halder, 2010 Bangladesh 
(theoretically 
study) 

SEIR 
 

Transmission 
depends on 
number of 
infectious 
individuals and 
transmission 
rate.  

3 Hii	et	al.,	2011 Singapore Time series 
Poisson 
regression 
models  
 

Daily 
temperature 
above   32°C  and 
rainfall up to 
75mm increase 
the HFMD 
incidence. 

4 Roy, 2012 Bangladesh 
(theoretically 
study) 

SLIR, SLIQR 
 

Quarantine 
period reduces 
the transmission 
cases. 

5 Samanta, 2014 United 
Kingdom 
(theoretically 
study) 

 SEIAISQR 	
• Pulse 

vaccination is 
vaccinated to 
some fraction 
of susceptible. 

Large pulse 
vaccination rate 
leads to 
eradicate the 
disease. 
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Table 1.1 continued 
	
6 
 
 

Y. Li et al., 2014 China SEIQR 
 

Reduce 
transmission 
rate and 
increasing the 
recovery rate of 
non-hospitalized 
infectious 
individual 
control the 
disease 
spreading. 

7 Zhu et al., 2014 China SEIQR 
• Psychological 

effect was put 
into 
susceptible 
compartment. 

Quarantine rate 
and infected rate 
control the 
disease spread. 

8 Phutthichayanon & 
Naowarat, 2015 

Thailand 
(theoretically 
study) 

SEI IA R	
• Hand	

washing	
parameter	
was	 put	 to	
reduce	 the	
transmission	
rate.	

Effectiveness of 
hand washing 
campaign 
controls the 
disease spread. 

9 Lai et al., 2016 Taiwan Compartmental 
models of S,I,AS-
I, AS-I(R), EV-I 
and EV-R 

Isolation 
strategy delays 
the epidemic 
peak. 

10 Wu, 2017 Singapore SEIR Basic 
reproductive 
number obtained 
can realize real 
time estimation.  

11 Chadsuthi & Wichapeng, 
2018 

Thailand SVEI  Ie QRW 
• Indirect 

transmission 
via free-living 
virus from 
infectious 
individual is 
added into the 
model. 

Direct 
transmission and 
indirect 
transmission 
(free-living 
virus) gained 
from infectious 
individual 
contributed the 
disease 
transmission. 
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Table 1.1 continued 
	
12 Shi et al., 2018 China SVEI  Ie QRW 

• Vaccination 
had been 
added into 
model. 

Increasing the 
rate of virus 
clearance, 
vaccinated event 
and quarantine 
infectious 
individuals can 
effectively 
control HFMD. 

13 Tan & Cao, 2018 China 
(theoretically 
study) 

SEIVT 
• Vaccination 

had been 
added into 
model. 

Vaccination 
minimizes the 
number of 
infectious cases. 

	

1.6 Effectiveness of control measures 

 

The effectiveness of controlling the spread of HFMD is distancing measures. This is to 

interrupt the virus transmission from person to person through close contact. Besides, 

personal hygiene, good sanitation and disinfection of soiled surface with chlorinated 

disinfectants can lessen the spread of the virus. This is to reduce the risk of virus infection 

through contact with contaminated surfaces, toys and fomites. Infection control programs 

such as the closure of child-care centers and public awareness contribute to preventing the 

rapid spreading of the viruses (Solomon et al., 2010).  

 

 

1.7 Significant of the study 

 

The study of mathematical modeling provides an insight into the characteristics of the 

HFMD. The study’s goal is aimed to incorporate the behaviors of the HFMD viruses 



	
12	

spreading during the incubation period, infectious period and post-infectious virus 

shedding period to make a more reliable prediction of the spreading cases. With this, the 

new formulating simple deterministic SEIPR model is to enhance the predicting of the 

disease cases based on the behaviors of the HFMD biological factors. SEIPR model shares 

a comprehensive description of the HFMD transmission dynamics in which, it can help the 

public heath practitioners to take a more effective control interventions to reduce the effect 

of the outbreaks.  

 

 

1.8 Summary 

 

Models incorporated with the epidemiology of the HFMD and assumptions about the 

disease can help well in interpreting the disease. Next, in Chapter 2, overview of HFMD 

and methodology are discussed. Whereas, basic SIR model and our new SEIPR model will 

be analyzed theoretically and numerically in Chapter 3 and in Chapter 4 to comprehend the 

behaviors of HFMD.  
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CHAPTER 2 

LITERATURE REVIEW 

 

 

2.1 Introduction 

 

An overall of clinical review will be discussed in this chapter. A more comprehensive 

study towards the motivation of model formulation and other mathematical models 

incorporated with the different perspectives to study the behavior of the disease has been 

done. 

 

 

2.2 Overview of hand, foot and mouth disease 

 

HFMD is an acute viral illness, mainly affects infants and children under the age of 10, 

however, older children and adults can also be infected. Viruses is predominantly 

transmitted via fecal-oral route and mainly caused by coxsackievirus A 16 (CV-A16), 

human enterovirus (EV-71) or other enteroviruses including coxsackievirus A (CV-A2, 

CV-A4, CV-A5, CV-A6, CV-A7, CV-A10 and CV-A12) or coxsackievirus B (CV-B1, 

CV-B2, CV-B3 and CV-B5) (Podin et al., 2006). Viruses can be detected from a patient 

from nose and throat secretion, blister fluid and stools. Unlike other enteroviruses which 

usually cause mild HFMD cases, EV-71 is reported to cause neurological and systematic 

complications (Solomon et al., 2010). 
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Figure 2.1: World map of HFMD outbreaks throughout the years. 

 
From Figure 2.1, HFMD was first identified in New Zealand  in 1957 (Zhu et al., 

2014). EV-71 which was firstly isolated in California, USA, 1969, during an outbreak 

causes neurological disease complication (Han et al., 2010). In Asia-Pacific, early reports 

of EV-71 associated HFMD outbreaks were reported to be identified in Japan in 1973, 

Hong Kong, in 1985, Hubei Province, China in 1987, Singapore in 1987, Melbourne, 

Australia in 1973, eastern Australia in 1972, and Taiwan in 1986 (Huang et al., 2009; 

McMinn, 2002). In 1997, during an outbreak of HFMD in Sarawak, fatalities in the 29 

patients were reported. There were four out of five deceased patients who showed 

brainstem encephalitis with EV-71 isolated through rectal and throat swabs, serum, 

pancreatic and lung tissue and spinal cord specimens. In addition to EV-71, other possible 

factors such as toxins, medicines, environment exposures or other infectious agents have 
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also been considered in contributing to the fatal outcome of these patients including co-

infection of EV-71 and adenovirus (Cardosa et al., 1999; Chan et al., 2000). Meanwhile, 

(Podin et al., 2006) reported that EV-71 was isolated in Sarawak as the dominant 

enterovirus serotype during 2000 and 2003 HFMD outbreaks. The HFMD cases began 

early in the year 2000 and 2003 where the EV-71 cases dropped sharply in June 2000 and 

April 2003. For the rest of the months until the end of the years (2000 and 2003), the EV-

71 cases were replaced by CV-A16 cases. The sentinel surveillance suggested the EV-71 

has the ability to spread rapidly within a susceptible community before becoming 

quiescent during the outbreaks. Whereas, in 2006, another 13 deaths were recorded during 

HFMD outbreaks (Tiing & Labadin, 2008). It was reported in the study from year 1997 to 

2006, major HFMD outbreaks occurred every three years cycle in Sarawak (Podin et al., 

2006), and in another other study, Sarawak was reported to have HFMD outbreaks every 

year (SHD, 2006b, 2015). 

 From Figure 2.2, when a cohort of children who have not been exposed to the 

HFMD viruses encounter the viruses, outbreaks will occur (Thomas & Weber, 2001). Once 

the HFMD virus infects a susceptible individual, after few days of incubation periods 

(Mandal, 2017; Podin et al., 2006), the patient may start to present symptoms, which start 

with fever, and sore throat. In a few days, rashes, red spots and blister may develop in the 

mouth, on the palms, soles of feet, buttocks, knees or other areas and usually accompanied 

by poor appetite. Anyhow, not all of the infected patients will develop symptoms. Cases 

may vary between different individuals and different stages of the disease. HFMD is most 

contagious during the first week of illness. The symptoms of the illness will subside in 7 to 

10 days. (CDC, 2015; Mandal, 2017; Ministry of Health, 2014; Podin et al., 2006; Roy & 

Halder, 2010; SHD, 2018). During the post-infectious periods, the patients can still 
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transmit the disease even after the symptoms are gone as the persistent viruses can 

continue to be shed in the throat and stool for up to several weeks (Han et al., 2010; Li et 

al., 2013; Podin et al., 2006; Teng et al., 2013).  

 

 

Figure 2.2: Transmission cycle of HFMD. 

 
In a study (Teng et al., 2013), 100% of the patients observed with mild EV-71 

cases, severe EV-71 cases and severe CV-A16 cases still had the viruses isolated in the 

feces after one week of infection. While for mild CV-A16 cases, 94.6% of the patients 

observed had the virus isolated after one week, followed by the second week, 90.5% of the 

mild EV-71 cases, 97.1% of the severe EV-71 cases, 87.5% of the mild CV-A16 and 100% 
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of the severe CV-A16 had the viruses persisted in the stool samples. The maximum 

duration observed for EV-71 and CV-A16 persisting in stool was 10 weeks and 6 weeks.  

Another study showed that 100% of the cases had EV-71 isolated from the patients 

observed through throat swabs 8 days after case onset. Only half of the patients showed 

EV-71 negative after two weeks. It is suggested that during the first two weeks of the 

illness, the patients have high risk to spread the disease. The longest duration for EV-71 

persisted in respiratory secretion was 24 days while in stools was 42 days. Although the 

post-infection virus shedding can still transmit the disease, but it is reported to be less 

contagious when the illness resolves (Han et al., 2010).  

On the other hand, asymptomatic patients contribute as infectious source as well 

during the incubation period. Incubation period is reported within a range from 1 day to 2 

weeks (CDC, 2015; Ministry of Health, 2014). A study done by (Li et al., 2013) showed 

that the close contact adult group had EV-71 isolated even without showing symptoms and 

that the virus can persist for one week . Another two close contacts had EV-71 excreted 

and symptoms were shown only after two days.  

There is a short immunity against HFMD but not a permanent immunity after fully 

recovery. The patients return to being susceptible to HFMD once they lost their immunity. 

Besides, the patient also can get the disease again from different viruses (CDC, 2015; 

Chuo, 2008; Mandal, 2017).  

 As mentioned in Section 1.1, although China has started apply the vaccine EV-71 

to against the EV-71 virus, however, the vaccinated individuals do not have life-long 

immunity and still can be infected by other HFMD viruses besides virus EV71 (Shi et al., 

2018; Tan & Cao, 2018). In other countries, there is no vaccine and specific treatment 

applied to protect against the virus (Ministry of Health, 2014; SHD, 2018).  



	
18	

2.3 Methodology 

 

In order to fulfill the first research objectives, the relevant clinical research done were 

thoroughly studied. The biological factors of the virus were carefully studied through 

systematic literature review and oral discussion with domain experts.  

 Then, the domain problem is characterized whereby the variables that were 

considered significant were identified and the assumptions made were defined. Hence, the 

formulation of the model can be done by first abstracting the problem via the drawing of 

the compartmental diagrams and then the governing equations are constructed. As part of 

the analysis of this new model, comparison between the basic SIR model with the new 

model is pertinent in building the first research objective. 

 Analysis of the new model is done analytically and numerically in fitting the 

second research objective. Analytical solving method had started with finding equilibrium 

points, basic reproductive number and threshold value. Analysis of the stability of the 

equilibrium points used include Jacobian matrix, Routh Hurwitz Criterion and Lyapunov 

Second Theorem as mentioned in Sections 2.3.1, 2.3.1.1, 2.3.1.2 and 2.3.1.3. Whereas, 

basic reproductive number and threshold value as mentioned in Sections 2.3.2 and 2.3.3 

are used as benchmark in order to analysis the liability of the disease spreading.  

 Next, numerical solving method allowed us to capture the primary matching results 

using the visual inspection by comparing the graphs plot between the real and predicted 

data. Ensuring the well matched between the real and predicted data is then done by model 

fitting test in Section 2.3.4. The research methodology discussed afore is summarized in 

the form of a flow chart depicted in Figure 2.3. 
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Figure 2.3: Research flow chart. 
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2.3.1 Equilibrium point 

 

An equilibrium point is a constant solution to a differential equation. It can be referred as a 

fixed point or a steady state. Given an ordinary differential equation, say, y’ = f(x), x ∈ ,	

let f(x) = 0 in order to gain the equilibrium point, when f(x) = 0 is solved, say, the solution 

is k, then f(k) = 0, where k is known as equilibrium point or equilibrium solution (Hirsch, 

Smale, & Devaney, 2012). 

 In this thesis, we analyzed disease-free equilibrium and endemic equilibrium. 

Disease-free equilibrium points are steady states when the HFMD cannot invade the 

population. This means all human is in the susceptible state. Whereas endemic equilibrium 

is a situation when a disease is constantly present in a population. The stability of 

equilibria study helps us to have better understanding about the disease prevalence. If 

disease-free equilibrium point is stable, then the outbreak will not occur, and in other 

words, the endemic state is not globally asymptotically stable. Meanwhile, if disease-free 

equilibrium point is unstable, the endemic equilibrium exists, which means the endemic 

steady state is globally asymptotically stable and hence, there is the existence of the 

disease and cause the outbreak (Heffernan et al., 2005; Ugwa & Agwu, 2013). Thus, it is 

necessary to study the stability of equilibrium points toward a better understanding when 

dealing with the disease controlling. Next we will discuss the methods used to study the 

stability of the disease-free equilibrium in Section 2.3.1.1 and Section 2.3.1.2. In Section 

2.3.1.3, we will discuss the method used to study the stability of the endemic equilibrium. 

 

 

	Rn
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2.3.1.1 Stability of equilibria 

 

Consider a set of equations,  , with =1,2,3, ..., n and =1, 2, 3, …, n being 

written as follows: 

 

                   ( 2.1 ) 

then the Jacobian matrix is defined as  

           ( 2.2 ) 

Hence, the Jacobian’s eigenvalues can be determined. The stability of a system of ordinary 

differential equations is determined by the real parts of the Jacobian’s eigenvalues. The 

equilibria is asymptomatically stable if all the real parts of the Jacobian’s eigenvalues are 

negative values and unstable if there is at least one positive eigenvalue. 
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2.3.1.2 Routh Hurwitz Criterion 

 

Routh Hurwitz criterion is used to find the number of positive roots and negative roots of a 

characteristic equation without solving the equation and hence, it can be used to determine 

the stability of a system. Characteristic equation or polynomial can be written as 
 

 p λ( ) 	 =	  det A− λ I( )  

=  

=  ,       ( 2.3 ) 

 where  and the coefficients  are to be computed by evaluating the determinant 

(Mondaini, 2002). 

In order for a system to be stable, all the roots of the polynomial should have 

negative real parts and for this to happen, all the coefficients of the polynomial should 

have positive sign at first. Next, by using Routh Array, the number of the positive real 

roots is decided for which positive real roots are equivalent to the number of signs 

changing obtained from Routh Array. 

 Given a polynomial equation , Routh Array can be 

filled in as below: 

 

		 

a11 −λ a12 ! a1n
a21 a22−λ ! a2n
" " # "
an1 an2 ! ann −λ

		 −1( )n λn + c1λ
n−1 + c2λ

n−2 + ...+ cn−1λ + cn⎡⎣ ⎤⎦

	
A= aij⎡⎣ ⎤⎦ 	ci

		 ans
n +an−1s

n−1 +!+a1s +a0 =0

		 

sn

sn−1

!
s0

an an−2 an−4 "

an−1 an−3 an−5 "

! ! ! "
! ! ! #
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Sign changes in     ,  can be determined, where 

 

Thus, if     ,  are all positive, and all the coefficients of the polynomial 

are positive, then it is said that all the roots of the characteristic equation are all having 

negative real parts.  

 

2.3.1.3 Lyapunov Second Theorem on stability 

 

Lyapunov function, , can be used to prove the asymptotically stability of the endemic 

steady state (Abramson, 2001). Let a system  has a point of equilibrium at  

and there exists continuous differentiable function , such that  

i)  

ii)  

iii) There exists continuous function such that  and 

 

iv)  where  is a constant. 

Hence, the system is said to be asymptotically stable. 

 

	Δ0 , 	Δ1 , 	Δ2 ,  … 	Δn

		Δ0 = an , 		Δ1 = an−1 ,
		 
Δ2 =

an−1 ian−2 −an ian−3
an−1

,  !

	Δ0 , 	Δ1 , 	Δ2 ,  … 	Δn

	
V x( )

	 
!x = f x( ) 		x =0

		 V x( ):!→!

		V x( ) =0⇔ x =0

		V x( ) >0⇔ x ≠0

		 W x( ):!→! 		 W x( )≥0∀x∈!

		W x( ) =0⇔ x =0

	 
!V x( ) = ∂V x( )

∂x j
f j x( )≤ −cW x( )∀x∈"j

n∑ 		c ≥0
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2.3.2 Basic reproductive number 

 

Basic reproductive number, , is the average number of secondary infections produced 

by an infectious case in a complete susceptible population. is expressed as the product 

of the rate of secondary infectious and the duration of the infectious period occur. If <1, 

then every wave of the infection in the population has fewer infected individuals being 

introduced to the susceptible population, and hence, the disease will eventually die out. If 

>1, there will be increasing of infected individuals and the disease will spread which the 

epidemic occur. If =1, there will approximately be the same number of infected cases all 

the time, which the endemic occurs (Heffernan et al., 2005). 

 is derived by threshold parameter where the average number of new infectious 

individual is the product of transmission rate and infectious period. This can be done by 

working the infected compartment in the compartmental model (Keeling & Rohani, 2008). 

However, when there are more infective compartments involved, we follow the next 

generation model to obtain the  (Heffernan et al., 2005; van den Driessche, 2017). The 

next generation model, is a general model derived in such cases where the population is 

split into discrete and disjoint classes.  is defined as the spectral radius (dominant 

eigenvalue) of the next generation operator which the formation of the operator will 

involve two compartments, infected and non-infected, from the model.  

 Let assume that the model has n compartments where m < n compartments contain 

infected individuals. We define the following (Heffernan et al., 2005; van den Driessche, 

2017): 

		R0

		R0

		R0

		R0

		R0

		R0

		R0

		R0



	
25	

D1) Let  x = xi 	be the number individuals proportion in the th compartment 

where  =1, 2, ..., n.  

D2)  Fi x( ) 	denotes the rate of new infections cases in the compartment .  Fi x( )  

is including only the newly arising infection cases but not including the 

infectious individual who is transferred from one compartment to another.  

D3)  Vi x( ) =Vi
− x( )−Vi

+ x( ) . Vi x( )  denotes the rate of other transitions between 

compartment i and other infected compartments.  Vi
+ x( )  is the individuals 

transferring rate into compartment , and  Vi
− x( )  is the individuals 

transferring rate out of the compartment  

D4) The compartment model denotes 
 

dxi

dt
= Fi x( )−Vi x( ) , gives the rate of 

change of x. Next, we form the next generation matrix (operator)   FV −1 	by 

using the partial derivatives of  Fi and  Vi . The entries of matrices F and 

 V are 
  
F =

∂Fi x0( )
∂x j

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
	and	

  
V =

∂Vi x0( )
∂x j

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

, where i, j = 1, …, m and   x0  is 

the disease-free equilibrium. The entries of matrix F is the rate of secondary 

infections produced in compartment i by an index case in compartment j. 

The entries of matrix V gives the rate of time an individual spends in a 

single visit to compartment j. The entries of matrix   V −1 	gives	the	expected	

duration	 of	 the	 infectious	 period.	 Thus,	 the	  FV −1  gives the expected 

number of secondary infections in compartment i produced by an infected 

	i

	i

	i

	i

		i.
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individual introduced in compartment j.  is given by the spectral radius 

(dominant eigenvalue) of the matrix   FV −1 . 

 

 

2.3.3 Threshold value 

 

Threshold value, say S, is used to distinguish the range of the values where the behaviors 

of the disease discussed may vary in some important way. Given an ordinary differential 

equation, say,	 yi ’	= , where ∈ , i = 1, 2, …, n.  

 Let >0, in order to study the minimum proportion of the population in which 

creates the liability of disease spreading. The threshold is determine by (S-1)>0, where if   

S >1, thus an outbreak will occur. If S <1, thus the disease will eventually die out (Keeling 

& Rohani, 2008). 

 

 

2.3.4 Model fitting test 

 

Goodness of fit is a statistical method used to find out how the observed values are 

significantly different from the actual values. It is a measurement of how correlated a 

group of actual observations are to a model’s prediction (Trottier & Philippe, 2001). In our 

study, regression analysis is used to discuss the best fit of the predicted data and actual 

data. To use regression analysis, we need to get simple linear regression, linear regression 

		R0

	
f xi( ) 	Rn

	
f xi( )
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equation, correlation coefficient and residuals plot, which are discussed in Sections 2.3.4.1 

until 2.3.4.4. Besides, root square mean error (RMSE) for sensitivity analysis is discussed 

in Section 2.3.5. 

 

2.3.4.1 Simple linear regression 

 

A simple linear regression is the best fitting straight line through a set of points. Firstly, a 

scatterplot is chosen by plotting the predicted values on the x-axis and observed values on 

the y-axis. Scatterplot is used to determine the strength of the goodness of fit of the model 

(predicted values) to the observed data. Next, we will find linear regression equation for 

the best fitting straight line to provide a solution to the problem. 

 

2.3.4.2 Linear regression equation 

 

Linear regression equation is line of best fit, which is formed by using the linear least 

squares fitting. Vertical least squares fitting proceeds by finding the sum of the squares of 

the vertical deviations  of a set of  data points (Keeping, 1962).  

      ( 2.4 ) 

 minimum when, 

 

For a linear fit,  

		R2 	n

		 R
2 = yi − f xi ,a1 ,a2 ,!,an( )⎡⎣ ⎤⎦∑

2

		R2

		

∂ R2( )
∂ai

=0, i =1,...,n
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,         ( 2.5 ) 

so, 

        ( 2.6 ) 

 

These give the following: 

         ( 2.7 ) 

        ( 2.8 ) 

We put them in matrix form, 

,   

so, we get , 

 

.     ( 2.9 ) 

		f a,b( ) = a+bx
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na+b xi = yi

i=1

n

∑
i=1

n

∑

		
a xi
i=1

n

∑ +b x2i = xi yi
i=1

n

∑
i=1

n

∑

		

n xi
i=1

n

∑

xi
i=1

n

∑ xi
2

i=1

n

∑

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

a
b

⎡

⎣
⎢

⎤

⎦
⎥ =

yi
i=1

n

∑

xi yi
i=1

n

∑

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

		

a
b

⎡

⎣
⎢

⎤

⎦
⎥ =

n xi
i=1

n

∑

xi
i=1

n

∑ xi
2

i=1

n

∑

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

−1

yi
i=1

n

∑

xi yi
i=1

n

∑

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

		

a
b

⎡

⎣
⎢

⎤

⎦
⎥ =

1

n xi
2

i=1

n

∑ − xi
i=1

n

∑⎛
⎝⎜

⎞

⎠⎟

2

yi xi
2

i=1

n

∑ − xi xi yi
i=1

n

∑
i=1

n

∑
i=1

n

∑

n xi yi
i=1

n

∑ − xi
i=1

n

∑ yi
i=1

n

∑

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥



	
29	

Thus, we get, 

       ( 2.10 ) 

                    ( 2.11 ) 

Hence, the linear regression equation, is formed. This linear regression equation 

can help to get the new predicted value in Section 2.3.4.4. Next, we will get the correlation 

coefficient, , which can be used to measure the overall quality of the goodness of fit. 

 

2.3.4.3 Correlation coefficient 

 

R-square, , is the correlation coefficient that can take on any value between 0 and 1, with 

a larger number indicating a better fit and 1 is perfect fit between the predicted data and 

observed data. R-square,  is used to read the respond of the variability between the 

actual data and the predicted data around its mean. The higher the value of the  means 

that the variability of the actual and predicted data had higher respond around its mean and 

indicating a better fit (Benesty et al., 2009; Keeping, 1962) . 

The correlation coefficient, .  

  
ssxx = xi − x( )

i=1

n

∑
2

                  ( 2.12 ) 
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2 − xi xi yi
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∑
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∑
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∑
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∑
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2 − n xi

i=1
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∑⎛

⎝⎜
⎞

⎠⎟

2

i=1

n

∑
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xi yi − xi yi
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n

∑
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n

∑
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⎝⎜
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⎠⎟
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where  ssxx  is sum of variance of data  x ,	 x 	is mean of data  x 	and	
  i=1

n

Σ 	is sum of n data.  

  
ssyy = yi − y( )

i=1

n

∑
2

       ( 2.13 ) 

where  
ssyy  is sum of variance of data	 y ,	 y 	is mean of data  y 	and	

  i=1

n

Σ 	is sum of n data. 

  
ssxy = xi − x( )

i=1

n

∑ yi − y( )                  ( 2.14 ) 

where 
 
ssxy  is sum of cross-correlation between data  x 	and	data y , 

  i=1

n

Σ 	is sum of n data. 

After obtain the , we then validate again the model by using residuals plot. 

 

2.3.4.4 Residuals plot 

 

First, we need to get the residual, the formula is as following: 

  e = y − ŷ        ( 2.15 ) 

 
where  e  is residual,  y  is scatterplot obtain from the Section 2.3.4.1 and   ŷ is predicted 

value obtain from the linear regression equation discussed in the Section 2.3.4.2. 

Next, we will plot the residuals plot by using scatterplot. It is a graph that all the 

residuals are plotted on the y-axis and predicted values obtained from numerical result are 

plotted on the x-axis. If the points in a residual plot are dispersed randomly around the 

observed data (horizontal line), thus the linear regression model is appropriate for the data. 

Hence, the validation of the mathematical model is convincing (Weisstein, 2002).  

 

		r2
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2.3.5 Root square mean error (RMSE) 

 

RMSE is the prediction error, obtains by calculating the standard deviation of the residuals, 

 e  (Section 2.3.4.4). With RMSE, we measure how far the residuals are from the linear 

regression equation (Section 2.3.4.2) data points. The smaller the RMSE, the better the 

prediction, which means, the residuals are not spread out far from the line of best fit and in 

other words, it tells us the data is concentrated around the line of best fit (Zhao et al., 

2018). The formula of RMSE is as following: 

  
RMSE = i=1

n

Σ e( )2

n
	 	 	 	 	 		( 2.16 )	

where  e  is the residuals calculated in Section 2.3.4.4, n is total number of data and
   i=1

n

Σ  is 

sum of n data. 

 

 

2.4 Thesis outline 

 

The following is the arrangement of the thesis. Formulation, theoretical analysis, numerical 

results, verifying technique for predicting cases and summarizes of the results for the basic 

SIR model will be described in Chapter 3. In Chapter 4, formulation, addition, changes 

made and modification on the basic model to create a new SEIPR model are described. 

Theoretical analysis, numerical results, summarizes of the results for the modified model 

and verifying technique for predicting cases are shown. Chapter 5 concluded the 

contribution of the models, the limitation of the models and further future work on HFMD. 
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CHAPTER 3 

FORMULATION AND ANALYSIS OF THE BASIC SIR MODEL 

 

 

3.1 Introduction 

 

In Chapter 2, a lot of researches have been done to study the epidemiology of hand, foot 

and mouth disease (HFMD). Some of the mathematical models from other researchers 

have been published to highlight the HFMD spreading causes. SIR model was then the first 

mathematical model being used to discuss the behavior of HFMD in Sarawak. Here, we 

reproduced the SIR model to be read as benchmark for our improvement SEIPR model. In 

Chapter 3, compartmental diagrams for basic model are drawn in order to describe the 

behaviors of the HFMD comprehensively. A system of nonlinear differential equations is 

formulated. The basic SIR model is being analyzed theoretically. Equilibrium points, basic 

reproductive number and threshold value are discussed. Later, numerical result is obtained 

and lastly, analysis for verifying the cases is done. Discussion and summary are made from 

the results obtained. 

 

 

3.2 Basic SIR model formulation 

 

First of all, a simple basic SIR model which consists of three differential equations have 

been studied to describe the epidemiology of the HFMD disease (Keeling & Rohani, 
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2008).  Hence, we will study the basic SIR model developed by (Tiing & Labadin, 2008) 

to describe the HFMD. To study the behaviors of the infectious HFMD based on 

mathematically modeling, the following assumptions are made (Giesecke, 2017; Tiing & 

Labadin, 2008):  

i)       All newborns are not infected at birth. 

ii)       The susceptible group is made up of children under age of nine. 

iii)       The disease is transmitted through the infectious patient. 

iv)       Individuals are mixed randomly within the population. 

v)       The infectious occur randomly based on the contact and transmission rate 

between the susceptible and the infected individuals. 

vi)       All the parameters values and initial values are constants. 

vii)       There is no intervention to curb the spreading disease. 

viii) Patients who have recovered have a temporary immunity before they return to 

the susceptible. 

ix)       The transmission only occurs when susceptible meets with the infectious. 

Now, we will look at the basic SIR model (Keeling & Rohani, 2008). This model consists 

of three compartments that are susceptible (S), infectious (I) and fully recovered (R). In 

this simple scenario, we have the transitions 	S → I → R . The movement from S to I is 

the disease transmission progression. Whereas, the movement from I to R shows that the 

infected patients has fought off the infection and moving from infectious compartment to 

the fully recovered compartment. The duration progress from being infected until 

recovered is taken into account.  
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 The scenario above has been used to study the behaviors of the HFMD (Tiing & 

Labadin, 2008), basic SIR model used is shown in Figure 3.1, the population is split into 

three compartments namely susceptible (S), infectious (I) and fully recovered (R).  

 

 

   

Figure 3.1: A compartmental diagram of SIR basic model (Susceptible-Infectious-Fully 
recovered). (Tiing & Labadin, 2008) 

 
From Figure 3.2, the susceptible compartment is increased through the nature birth 

rate, 		k1 , that is dependent on total susceptible population, N. Also, the fully recovered 

individuals who have lost their immunity return to the susceptible group at the rate of 	α2 . 

Besides, the susceptible compartment is decreased through natural death at the rate of 		k2 . 

When susceptible meets with the infectious individuals, transmission occurs with the rate 

of  α1 	and	the	infected	individual	will	move	to	infectious	compartment.	

              

Figure 3.2: Susceptible compartmental diagram, S. 

	
As shown in Figure 3.3, once the infectious individual departs from susceptible 

compartment, the patient will enter the infectious compartment. After a period of time, the 

infectious individual will depart from the infectious compartment due to death which are 



	
35	

caused by the disease with the rate of 		k3 , natural death with rate of 		k2  or fully recovered 

from the disease after time	D , thus the fully recovery rate is 
		
α3 =

1
D

.	 															 									

										  

Figure 3.3: Infectious compartmental diagram, I. 

 
After time D, the fully recovered individuals from the infectious compartment will 

enter the fully recovered compartment as shown in Figure 3.4. An individual will attain a 

short immunity after fully recovered from the disease. Once the immunity is lost after time 

	G , the individual will return to the susceptible compartment and capable to being infected 

again. The rate at which the individual loses its immunity is 
		
α2 =

1
G

. At the meantime, the 

fully recovered compartment has the population decreased due to the death which is caused 

by the natural death, with the rate of 		k2 . 

   

Figure 3.4: Fully recovered compartmental diagram, 	R . 
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Figure 3.5: The combined compartmental diagram of SIR basic model. 

	
The overview of the complete SIR model compartmental diagram can be seen at Figure 

3.5. The susceptible compartment is increased through the nature birth rate,  multiply 

with total susceptible population, N. The transition  S → I  is the disease transmission 

progression. Let is the , where  is the average number of contacts any person in 

the population and is the transmission probability. When we multiply  with , 

where  are the contacts with infected individuals, force of infection is defined as per 

capita rate at which susceptible individuals contact the infection. Finally, to obtain the 

actual number of infectious individual, we will have . The infectious 

individual will then depart from susceptible compartment and move to infectious 

compartment.  

Next, the transition  I → R  is the movement where an infectious individual has 

fully recovered and moves to fully recovered compartment with the rate  α3 . Whereas 

 R→ S  is the immunity lost individual enters the susceptible compartment again with the 

		k1

βω Λ×κ Λ

κ βω
	
I
N

	
I
N

		
α1 × I × S ,α1 =

βw
N



	
37	

rate  α 2 . Besides, the compartments S, I and R have the population decreased with natural 

death at the rate of  and at the same time, compartment I has population decreased 

through death which is caused by the disease with the rate of . The system of differential 

equations for SIR model is formed and discussed next.  

The differential equations are made as follows: 

		
dS
dt

= k1N −α1SI −k2S +α2R          ( 3.1) 

		
dI
dt

=α1SI −α3I − k2 +k3( )I          ( 3.2 ) 

		
dR
dt

=α3I −α2R−k2R           ( 3.3 ) 

The total population is 	N = S + I +R  so that,  

	
dN
dt

= dS
dt

+ dI
dt

+ dR
dt

          ( 3.4 ) 

hence, we obtain, 

  
dN
dt

= k1N − k2S − k2I − k3I − k2R 	

  
dN
dt

= k1N − k3I − k2 S + I + R( )  

	
dN
dt

= k1N −k3I −k2N * ,	( N ∗ = S + I + R )       ( 3.5 ) 

 N ∗ represents the changing of total population over time, whereas, N is the total population 

at initial time.  

 

		k2

		k3
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3.3 Theoretical analysis of the basic SIR model 

 

Theoretical analysis of SIR model is made based on the differential equations (3.1 – 3.3).  

The SIR model that describes the population should be positive all the time. From the 

equations (3.2) and (3.3), the domain of the solution is as follow: 

		Ω= I ,R( )∈R+
2 I +R ≤N ,N >0{ }         ( 3.6 ) 

The system of differential equations for the model above has a unique solution with the 

initial condition lies in Ω , for all 		t ≥0 . The number of population does not change with 

time, with this we can find the steady state equilibrium point. We set the equations (3.2), 

(3.3) and (3.5) to zero (Hethcote, 2000). 

		
dI
dt

+ dR
dt

+ dN
dt

=0          ( 3.7 ) 

To solve (3.7), we denote the equilibrium points as following 

		Ee = I∗ ,R∗ ,N∗( )          ( 3.8 ) 

where corresponding equilibrium points 	I∗ , 	R∗ 	and 		N *  are as follows: 

		
I∗ =

k2 α3 +k2 +k3( )
α3

−α2R
∗ −k1N

∗

	

		
R∗ =

α3I
∗

α2 +k1
 

		
N∗ =

k1N −k3I
∗

k2
               ( 3.9 ) 
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From equations (3.7 – 3.9), we obtain the steady state equations. When we set 		I∗ =0 , we 

can get disease-free equilibrium point, 		Ee = I∗ ,R∗ ,N∗( ) , which by solving the equations      

(3.7 – 3.9), we obtain the following: 

		R∗ =0  and 
		
N* = k1N

k2
                  ( 3.10 ) 

Hence, 

		
E0 = 0, 0, k1N

k2

⎛

⎝⎜
⎞

⎠⎟
                  ( 3.11 ) 

 

 

3.3.1 Disease-free equilibrium point 

 

The disease-free equilibrium point,   E0 , is a steady state where the infectious compartment 

is zero. This means there is no existent of HFMD in the population and the number of the 

population remains same.  

 

Proof 

 

From the equation (3.3), when 
		
dR
dt

=0 , 

		α3I = R α2 +k2( ) 	

		∴I =0⇔ R =0  
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Thus, from the disease-free equilibrium point, we can see that the infectious compartment 

will determine the existence of the HFMD. To eradicate the disease, the patients have to be 

treated early. Next, we will discuss the basic reproductive number that helps to indicate the 

prevalence of the disease.  

 

 

3.3.2 Basic reproductive number for basic SIR model 

 

As mentioned in Section 2.3.2, basic reproductive number, 	 R! , is the average number of 

the secondary infectious which is infected by a single infected individual during his or her 

entire infectious period. It can be expressed as the product of the expected duration of the 

infectious period and the rate of secondary infectious occurs (Heffernan et al., 2005; 

Keeling & Rohani, 2008; van den Driessche & Watmough, 2008). Here, the basic 

reproductive number described by (Keeling & Rohani, 2008) is used. 

 

From equation (3.2),  

		
dI
dt

=α1SI −α3I − k2 +k3( )I 	

					 	 	 	 							= I α1S −α3 − k2 +k3( )( ) 	

		
dI
dt

= I α1S − α3 +k2 +k3( )( )        

					
  
= I α3 + k2 + k3( ) α1S

α3 + k2 + k3

−1
⎛

⎝⎜
⎞

⎠⎟
                ( 3.12 )

	

At the outset of an epidemic, disease-free equilibrium, 	I =0, thus 	S=		N = S0  
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∴R0 =

α1S
α3 +k2 +k3

=
α1S0

α3 +k2 +k3
     ( 3.13 ) 

In the next section, we will look at the threshold value analysis. 

 

 

3.3.3 Threshold value analysis of the basic SIR model 

 

As mentioned in section 2.3.3, if 
		
dI
dt

<0 , then the infectious will die out. From equation           

(3.12), 

  

dI
dt

= I α3 + k2 + k3( ) α1S
α3 + k2 + k3

−1
⎛

⎝⎜
⎞

⎠⎟ 	

If  , then 
  

α1S
α3 + k2 + k3

−1< 0, since  I > 0 and   α3 + k2 + k3  > 0. Hence,    

    
  

α1S
α3 + k2 + k3

−1<	0	

  

α1S
α3 + k2 + k3

<1 	

  
S <

α3 + k2 + k3

α1

	 	 	 	 	 		(	3.14	)	

We note that if 
		
S <

α3 +k2 +k3( )
α1

, then 
		
dI
dt

<0 . Thus, 
		
α3 +k2 +k3

α1
 is referred as threshold 

phenomenon where the proportion of susceptible must exceed this critical threshold for an 

infection to invade. Also, from equation (3.13), we notice that 
		
α3 +k2 +k3

α1
=
S0
R0

 (Keeling 

		
dI
dt

<0
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& Rohani, 2008). Next sections, we are going to prove that if   R0 <1, then disease-free 

equilibrium is stable and the disease will eventually die out. If   R0 >1, the disease-free 

equilibrium is not stable and the disease will prevail. 

 

 

3.3.4 Stability of disease-free equilibrium point of basic SIR model 

 

Theorem 3.3.4 The disease-free equilibrium is stable if   R0 <1 and is not stable if 

  R0 >1 (Keeling & Rohani, 2008) 

Proof 

 

The stability of the equilibrium can be determined by using Jacobian matrix. The disease-

free equilibrium is stable when all the eigenvalues are negative. At disease-free 

equilibrium point, 		I = R =0 . Next, we will show the Jacobian matrix from equations (3.2 – 

3.3). 

		

J
I ,R( ) =

∂
∂I

dI
dt

⎛
⎝⎜

⎞
⎠⎟

∂
∂R

dI
dt

⎛
⎝⎜

⎞
⎠⎟

∂
∂I

dR
dt

⎛
⎝⎜

⎞
⎠⎟

∂
∂R

dR
dt

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

                ( 3.15 ) 

		
J
I ,R( ) =

E11 E12
E21 E22

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

                  ( 3.16 ) 

where 

		E11 =α1S − α3 +k2 +k3( )  



	
43	

		E21 =α3  

		E22 = − α2 +k2( )  

		det E −λI( )=0 

		

E11 −λ 0
E21 E22 −λ

=0

E11 −λ( ) E22 −λ( ) =0
 

We have two solutions: 

		λ = E11 =α1S − α3 +k2 +k3( )  and 		λ = E22 = − α2 +k2( )  

For the disease-free equilibrium to be stable, we need to ensure that all eigenvalues have to 

be negative. Hence, the stability criterion has to be 		α1S < α3 +k2 +k3( ) , which means 

  R0 <1. However, when 		α1S > α3 +k2 +k3( ) , we have a positive eigenvalue and the disease-

free equilibrium is not stable meaning there is the existence of the disease. 

 

 

3.3.5 Endemic equilibrium points for basic SIR model 

 

Theorem 3.3.5 When   R0 >1, the disease-free equilibrium is unstable, and the 

endemic equilibrium exists.  

 

Proof 

 

We will analyze the model from equations (3.1 – 3.3) 
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dS
dt

= k1N −α1SI −k2S +α2R 	

		
dI
dt

=α1SI −α3I − k2 +k3( )I 	

		
dR
dt

=α3I −α2R−k2R  

To find the equilibrium point, we set the right hand side of the system above to zero. When 

		
dI
dt

=0 , we obtain 
		
S∗ =

α3 +k2 +k3
α1

=
S0
R0

 

When 
		
dR
dt

=0 , 

		α3I −α2R−k2R =0 	

		 α2 +k2( ) N − S − I( ) =α3I 	

		 α2 +k2( )N − α2 +k2( )S − α2 +k2( )I =α3I 	

		
α2 +k2( )N − α2 +k2( ) α3 +k2 +k3

α1

⎛

⎝⎜
⎞

⎠⎟
= α3 +α2 +k2( )I 	

		
I =

α1 α2 +k2( )N − α2 +k2( ) α3 +k2 +k3( )
α1 α3 +α2 +k2( ) 	

		
=

α2 +k2( ) α1N − α3 +k2 +k3( )( )
α1 α3 +α2 +k2( ) 	

	 	 	
		
=

α2 +k2( )
α1 α3 +α2 +k2( ) α1N − α3 +k2 +k3( )( ) 	

				 	 	
		
=

α2 +k2( )
α1 α3 +α2 +k2( ) α3 +k2 +k3( ) α1N

α3 +k2 +k3
−1⎛

⎝⎜
⎞

⎠⎟
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=

α2 +k2( )
α1 α3 +α2 +k2( ) α3 +k2 +k3( ) α1S0

α3 +k2 +k3
−1⎛

⎝⎜
⎞

⎠⎟
	

				 	 	
		
=

α2 +k2( )
α1 α3 +α2 +k2( ) α3 +k2 +k3( ) R0 −1( )  

    
		
∴I∗ =

α3 +k2( )
α1 α3 +α2 +k2( ) α3 +k2 +k3( ) R0 −1( )  

Hence, the endemic equilibrium point, 		Ee = S*,I*,R*( ) , is as follow: 

		
Ee =

S0
R0
,

α3 +k2( )
α1 α3 +α2 +k2( ) α3 +k2 +k3( ) R0 −1( ) ,S0 − S0R0 −

α3 +k2( )
α1 α3 +α2 +k2( ) α3 +k2 +k3( ) R0 −1( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

   ( 3.17 ) 

The disease is to prevail in the population when 		I∗ >0 . Thus, when   R0 >1, the endemic 

equilibrium point exist meaning that the disease remains in the population and an outbreak 

occurs. When   R0 =1, it is given us the disease-free equilibrium point. Also, if   R0 =1, it also 

means that there will approximately the same number of infected cases all the time 

(Heffernan et al., 2005). 

 

Lemma 3.3.5  The endemic steady state is globally asymptotically stable (Keeling 

& Rohani, 2008). 

 

Proof 

 

As mentioned in Section 2.3.1.3, Lyapunov function, 	
V x( ) , can be used to prove the 

asymptotically stability of the endemic steady state (Abramson, 2001). 
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		V S ,I( ) = S − S∗ lnS + I − I∗ ln I 	

	

dV
dt

= ∂V
∂S

∂S
∂t

⎛
⎝⎜

⎞
⎠⎟
+ ∂V
∂I

∂I
∂t

⎛
⎝⎜

⎞
⎠⎟
	

							 	 	
		
= 1− S

∗

S
⎛

⎝⎜
⎞

⎠⎟
k1N −α1SI −k1S +α2R( )+ 1− I

∗

I
⎛

⎝⎜
⎞

⎠⎟
α1SI −α3I + k2 +k3( )I( ) 	

							 	 	
		
= S − S∗( ) k1N

S
−α1I −k2 +

α2R
S

⎛

⎝⎜
⎞

⎠⎟
+ I − I∗( ) α1S −α3 + k2 +k3( )( ) 	

							 	 	
		
= S − S∗( ) k1N

S
−α1I −k2 +

k2S
∗ +α1S

∗I∗ −k1N
S

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟ 	

For	
		
k2S

∗ +α1S
∗I∗ −k1N
S

,	let		S∗ = S ,		I∗ = I 	

Thus,	
		
k2S

∗ +α1S
∗I∗ −k1N

S∗ = k2 +α1I −
k1N
S∗  

Hence, 

		

dV
dt

= S − S∗( ) k1N
S

−α1I −k2 + k2 +α1I −
k1N
S∗

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜

⎞

⎠
⎟ 	

							 	 	 	
		
= S − S∗( ) k1N

S
−
k1N
S∗

⎛

⎝⎜
⎞

⎠⎟
 

							 	 	 	
		
= −

k1N
SS∗ S − S∗( )2                   ( 3.18 ) 

With this, the system is said to be asymptotically stable in the sense of Lyapunov. 
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3.4 Numerical results for basic SIR model 

 

The governing equations are nonlinear and cannot be solved analytically. The system is to 

be solved numerically. The method used is based on fourth-order Runge Kutta method in 

MatLab program. The ordinary differential equations in (3.1 – 3.3) are in the form of  

		 

dy1
dt

= f y1 , y2 ,..., yn ,t( ) ,
dy2
dt

= f y1 , y2 ,..., yn ,t( ) ,
!

dyn
dt

= f y1 , y2 ,..., yn ,t( ).

 

Here, 		y1 = S , y2 = I  and 		y3 = R . A column vector 	y  with 	t  is a scalar is applied and to be 

solved from 
  

dy t( )
dt

= y ' = f y t( ),t( ) ,	with	 initial	 condition	  y t0( ) = y0 , at initial time, 		t0 . 

The governing equations (3.1 – 3.3) are written into a column vector system, after running 

the program, the system will return us a column vector 		f y t( ) ,t( ) . The time span for 

simulation is needed so that the interval of the integration can allow the problem to be 

solved by running the program. The time span used for our simulation is 		t0 =0 	(initial 

value) to 		t =50 (terminal value). The basic SIR model provides a basic framework will be 

used as benchmark for the investigation of the HFMD spread (Bhattacharya et al., 2015). 

Parameter and initial values are taken from (Tiing & Labadin, 2008) as benchmark to 

simulate the model as their study area is same with us. The model is used to compare the 

HFMD clinical data, year 2006.  

Initial conditions are 		S =10000 , 		I = 4 	and	 		R =0  where S is susceptible, I is 

infected individuals and R is fully recovered individual. Parameter values are 
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		k1 =0.0002923, 		k2 =0.0001077, 		k3 =0.00001731, 	α1 =0.00015, 	 	α2 =0.07 	and	

	α3 =0.8325  where the unit of time is per week. 		k1  is the natural birth rate, 		k2  is the 

natural death rate, 		k3  is the death rate caused by the disease, 	α1  is the transmission 

coefficient, 	α2  is the rate of losing immunity and 	α3  is the fully recovery rate.  

The initial condition for susceptible, S, was taken based on estimation, , the 

period of losing immunity predicted is 100 days and , the prediction for the infected 

individual to reach recovered stage was 8.5 days. and  are taken from the best 

simulation results after so many times of the simulation conducted. Whereas, I, the initial 

condition for infectious individual was taken based on the clinical data from Sarawak 

Health Department. On the other hand, 		k1 , 		k2  and 		k3  were calculated based on the crude 

birth rate, crude death rate and fatality rate taken from Department of Statistic Malaysia. 

The SIR model simulation result is shown below in the Figure 3.6.  

 
 

	α2

	α3

	α2 	α3
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Figure 3.6: The predicted cases of the basic SIR model for susceptible, infectious and 
fully recovered over the time. 

 
From Figure 3.6, the graphs are governed by the graphs of susceptible, predicted 

infectious cases and fully recovered individual. As we can see when the infectious cases 

increasing rapidly, the number of susceptible drops sharply. And, when the infectious cases 

start to drop, the recovered individuals increase a lot and the number of susceptible is 

started to rebound.  
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Figure 3.7: Comparison of the actual infectious cases and predicted infectious cases. 

 
Figure 3.7 is the plot of comparison between the predicted infectious cases and 

actual infectious cases. By using visual inspection, the fitting between predicted infectious 

cases and actual infectious cases is not well matched. The predicted curve shifts slower and 

reach the peak later compare to actual data shows slower spreading. We then try to change 

the parameters to do other sensitivity tests.  
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Table 3.1: Parameters values of SIR model for sensitivity analysis. 

Parame- 
ters 

Values 

Trial tests for sensitivity analysis 

First trial Second trial Third trial 

 2.923  2.923 
 

2.923 
 

 1.077  1.077  1.077  

 1.731  1.731  1.731  

 
1.5 

 
1.771 

 
1.18 

 

 
0.07 0.07 0.07 

 0.8325 0.8325 0.8325 

 4 4 4 
 N  10,000 9,000 12,000 

 0 0 0 
 10,000 9,000 12,000 

 

Table 3.1 above shows the parameter values of SIR model for the other two 

sensitivity tests, which are second trial and third trial besides the first trial. The sensitivity 

analysis results are used to compare with actual HFMD cases in year 2006. The following 

are the numerical results for the sensitivity analysis. 

		k1 	×10−4

	×10−4 	×10−4

		k2 	×10−4 	×10−4 	×10−4

		k3 	×10−5 	×10−5 	×10−5

	α1
	×10−4 	×10−4 	×10−4

	α2

	α3

	I

	R
	S
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Figure 3.8: Comparison of the actual infectious cases and predicted infectious cases, 
second trial. 

	
Figure 3.8 shows the comparison between the actual infectious cases and predicted 

infectious cases.	Notice that, the graphs show a better match by visual inspection compare 

to Figure 3.7 during the first wave when S is changed to 9000. The predicted infectious can 

reach the peak almost same as the actual data. Next, we will change the parameters again 

for another sensitivity analysis. Figure 3.9 below shows the numerical results for third trial 

test. 
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Figure 3.9: Comparison of the actual infectious cases and predicted infectious cases, third 
trial. 

 

From Figure 3.9, the predicted infectious cases dispersed more when S is put as 

12000. The predicted infectious cases show a slower spreading and reach the peak a bit 

later than the actual cases. Next, we will use RMSE in MatLab program to calculate the 

prediction error by comparing the actual infectious cases and the predicted infectious cases 

of sensitivity analysis. As mentioned in Section 2.3.5, the smaller the RMSE, the better the 

prediction, which means, the predicted results are closer to the actual results and 

parameters used are more suitable for the prediction. By visual inspection, Figure 3.8 
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shows a better fit during the first wave, by estimation, we then choose the first thirteen 

weeks of the results to have the prediction error test for all the trial tests. The results data is 

shown in Table 3.2.  

 
Table 3.2: Results of the actual infectious cases in 2006, predicted infectious cases of 
sensitivity analysis and RMSE values by using SIR model for first until third trial. 

Weeks 
 

Actual 
infectious 

cases 

Predicted infectious cases of sensitivity analysis 
First trial Second trial Third trial 

0 4 4 4 4 
1 15 11 14 10 
2 53 21 28 15 
3 98 45 61 24 
4 105 58 1065 52 
5 193 132 180 91 
6 435 227 404 155 
7 633 490 667 270 
8 1212 800 1160 449 
9 1234 1114 1277 586 
10 1345 1290 1350 911 
11 1282 1299 1230 1208 
12 1017 1258 1027 1300 
13 567 988 679 1325 
RMSE values 194.4 44.65 371.1 

 

 

Table 3.2 shows the actual data for HFMD cases in 2006, predicted data and RMSE 

values for sensitivity analysis of SIR model from first trial until third trial. From table 3.2, 

the lowest prediction error happens at the second trial sensitivity analysis test shows that 

the parameters values from second trial are suitable to use for further analytical analysis. 

After this, we will further analyze the result by using threshold value and basic 

reproductive number, 		R0  based on the data that produces the least RMSE from which the 

data is second trial of the sensitivity analysis.  
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Threshold value is the maximum or minimum number of susceptible predicted 

which serves as a benchmark to have a complete review of the proportion of the population 

that creates the liability of disease spreading. As mentioned in Section 3.3.3, threshold 

value is 
		
α3 +k2 +k3

α1
. Hence, by calculating, we get threshold value estimation as 4701. By 

graph, Figure 3.10 below shows the threshold value when S = 9000, the outbreak occurs 

when the threshold value is 4701. When the number of susceptible is above the minimum 

proportion of 4701, outbreak occurs, otherwise, no outbreak. 

Whereas, 		R0 , is showing the average number of infectious cases infected by an 

infectious case during his or her entire infectious period. By using equation (3.19), 		R0  is 

approximately 1.91.  
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Figure 3.10: Susceptible, predicted infectious cases and actual infectious cases of second 
trial sensitivity analysis. Dashed line indicated threshold value. 
 

 

3.5 Summary  

 

From the basic SIR model, we can calculate the threshold value by using the parameter 

values. It shows that the predicted threshold value is 4701, which means when there is the 

cohort of the susceptible exceeds this value, then the outbreak will occur. This can be seen 

at the Figure 3.10. On the other hand, 		R0  is calculated. The 		R0  is 1.91, indicating that the 
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disease invades the susceptible and outbreak occurs. An 		R0  = 1.91, means that every 

infectious child would infect almost two children during the outbreak.  

However, since the basic SIR model provides only a basic framework for the 

HFMD spreading investigation (Bhattacharya et al., 2015), and after so many study done 

on the biological factors as mentioned in Section 2.2, we decide to extend the basic SIR to 

SEIPR model.  

The biological factors contribute to HFMD spreading are incubation period, 

infectious period and post-infectious virus shedding period (Han et al., 2010; Li et al., 

2013; Mandal, 2017; Podin et al., 2006; Teng et al., 2013). Throughout the years, a lot of 

studies have mentioned incubation period and post-infectious virus shedding period 

together with the infectious period contribute to the disease transmission (Chadsuthi & 

Wichapeng, 2018; Phutthichayanon & Naowarat, 2015; Podin et al., 2006; Shi et al., 2018; 

Teng et al., 2013).  

Thus, we cannot ignore some of the known biological factors while discussing the 

HFMD behaviors. With this, SEIPR model adds in the compartments of incubation period 

and post-infectious virus shedding period together with the infectious period compartment 

as infected compartments in order to provide complete biological factors to discuss the 

characteristic of HFMD. In next chapter, we will further discuss our new SEIPR model. 
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CHAPTER 4 

FORMULATION AND ANALYSIS OF THE SEIPR MODEL 

 

 

4.1 Introduction 

 

As mentioned in Chapter 2, the concern towards the contact pattern in the population is 

highlighted, hence contributed to the formulation of a refined model, SEIPR model. In this 

chapter, schematics diagrams for SEIPR model are drawn to describe the characteristic of 

the HFMD. A system of nonlinear differential equations is formulated and SEIPR model is 

analyzed theoretically. Also, the equilibrium points, basic reproductive number and 

threshold value are discussed. Sensitivity analysis is done. Numerical results are obtained 

and lastly, the goodness of fit test is used to verify the results. Discussion and summary are 

made from the results obtained. 

 

 

4.2 SEIPR model formulation 

 

The behaviors of the infectious HFMD based on SEIPR mathematical model is studied, the 

following assumptions are made: 

i)       All newborns are not infected at birth. 

ii)       The susceptible group is made up of children under age of nine. 

iii)       The disease is transmitted through the infected patient. 



	
59	

iv)       Individuals are mixed randomly within the population. 

v)       The infectious occur randomly based on the contact and transmission rate 

between the susceptible and the infected individuals (incubation period). 

vi)       The infectious occur randomly based on the contact and transmission rate 

between the susceptible and the infected individuals (infectious period). 

vii)       The infectious occur randomly based on the contact and transmission rate 

between the susceptible and the infected individuals (post-infectious period). 

viii) All the parameters values and initial values are constants. 

ix)       There is no intervention to curb the spreading disease. 

x)       Patients who have recovered have a temporary immunity before they return to 

the susceptible. 

xi)       The transmission only occurs when susceptible meets with the infected patients. 

 

 

 

 

 

Figure 4.1: A schematic diagram of SEIPR basic model (Susceptible-Incubation period-
Infectious-Post infectious virus shedding-Fully recovered).  

 
The compartmental SEIPR model is shown in Figure 4.1. The model consists of five 

compartments that are susceptible (S), incubation period (E), infectious period (I), post-

infectious virus shedding period (P) and fully recovered (R). The transitions are  S → I , 

 S → P , I        E, P        E and 	S→ E→ I→ P→R . The movement from S to 	E , S to 	I , 

and S to 	P  are the disease transmission progression. The infection that is transmitted from 
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the incubation period patients resulted the movement from S to E. The movement from S to 

E together with the movements from I to 	E  and 	P  to 	E  both shown as dotted arrow lines in 

Figure 4.1 are the infected patients having the incubation period and at the asymptomatic 

stage. These infected patients are the susceptible (S) that are initially gained the infection 

from incubation (E), infectious (I) and post-infectious virus shedding or is known as 

clinically recovered (P) patients. Once infected, these infected asymptomatic patients will 

move to the incubation compartment. The movement from 	E  to 	I  shows that the patients 

have shown the HFMD symptoms. And, from 	I  to 	P , the patients have the symptoms 

subsided and carrying the post-infectious virus shedding. Lastly, the patients has fought off 

the infection and moving from post-infectious compartment to the fully recovered 

compartment. The duration progress from being infected until fully recovered is taken into 

account. The scenario mentioned above has been used to study the biological behaviors of 

the HFMD comprehensively. Next, we will discuss Figure 4.2, the susceptible 

compartment. 

 

 

 

 

 

Figure 4.2: Susceptible compartmental diagram, S. 

 
In Figure 4.2, susceptible compartment is increased through the nature birth rate, 

		k1 , that dependents on total susceptible population, N and decreased through natural death 

at the rate of . Meanwhile, the recovered individuals who have lost their immunity 		k2
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return to the susceptible group at the rate of 	β7 . When susceptible meets with the infected 

individual during incubation period, infected individual during infectious period and 

infected individual during post-infectious period (clinically recovered individual), 

transmission can occur and newly infected individual has produced and this leads to these 

newly infected individuals depart from susceptible compartment with the transmission 

coefficient of  β1 ,  β5  and  β6 . Once an infected individual departs from susceptible 

compartment, the patient will enter the incubation period compartment where the 

individual is at asymptomatic stage which is shown in Figure 4.3. 

 

 

 

 

 

 

Figure 4.3: Incubation period compartmental diagram, . 

 
As shown in Figure 4.3, the increasing population is gained from the transmission 

rates of ,  and .  is the transmission coefficient obtained from the exposed 

individual to susceptible, it is directly move from susceptible to incubation period group. 

 is the transmission coefficient obtained from the infectious individual to susceptible. It 

is at first caused by the contact between the susceptible and the infectious individual, when 

the susceptible being infected and soon the infected individual will move to the incubation 

period group where the individual is at asymptomatic stage and capable to transmit the 

	E

	β1 	β5 	β6 	β1

	β5
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disease to other susceptible when there is close contact. Meanwhile,  is the transmission 

coefficient obtained from the close contact between clinically recovered individual and 

susceptible. Once being infected, the infected individual soon will move to incubation 

period compartment as symptoms have not yet developed but the infected individual as 

well can transmit the disease to other susceptible. At the same time, the decreasing 

population at this compartment can occur due to the natural death with rate of . After a 

period of time, these infected individuals will depart from the incubation period 

compartment after time , thus, the rate at which an asymptomatic patient develops the 

symptoms is  and depart to infectious compartment shown in Figure 4.4. 

 

 

 

 

 

 

Figure 4.4: Infectious compartmental diagram, . 

 
Figure 4.4 shows the infectious individuals have shown the disease symptoms. At 

this stage, it is a highly contagious period and the infectious individual is easily to transmit 

the disease to the susceptible when there is close contact. Once the susceptible being 

infected, the infected individual will soon move out from the infectious compartment and 

enter the incubation period group. This can be seen from Figure 4.4, the move in rate of  

	β6

		k2

	W
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shown with solid arrow line and also the move out rate of  shown with dotted arrow 

line. At the meantime, the infectious compartment has the population decreased due to 

natural death, with the rate of  and death which is caused by the disease, with the rate of 

. On the other hand, for the infectious symptomatic individuals who stay in this 

compartment, after time , when the symptoms subside, they will move out and enter the 

clinically recovered compartment or we called it post-infectious virus shedding 

compartment shown in Figure 4.5. Hence, the rate at which an infectious individual reach 

the clinically recovered stage is .  

 

 

 

  

 

Figure 4.5: Clinically recovered compartmental diagram, . 

 

From Figure 4.5, after time , the infectious asymptomatic individuals from the 

infectious compartment will enter the clinically recovered compartment. Here, the 

infectious individuals have the disease symptoms subsided. However, the clinically 

recovered individuals still carry the post-infectious virus shedding and able to transmit the 

disease when there is close contact with the susceptible. Once being infected, soon, the 

newly infected individuals will move out and enter the incubation compartment. This is 

shown by solid arrow line, moving in with rate of  and dotted arrow line, moving out 

	β5

		k2

		k3

	Q

		
β3 =

1
Q

	P

	Q

	β6
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with the rate . After time  when the clinically recovered individual has fully 

recovered, they will depart from this compartment with the rate of  and enter fully 

recovered compartment, shown in Figure 4.6. Also, the clinically recovered compartment 

has the population decreased due to natural death, with the rate of . 

 

 

 

 
 
 
 

Figure 4.6: Fully recovered compartmental diagram, . 

 
Clinically recovered individuals will reach fully recovered stage when they are not 

capable to transmit the disease. In Figure 4.6, after time , the infected patients are not 

carrying the post-infectious virus shedding anymore and they will enter to the fully 

recovered compartment. An individual will attain a short immunity after fully recover from 

the disease. Once the immunity is lost after time , the individual will return to the 

susceptible compartment and capable to being infected again. The rate at which the 

individual loses its immunity is . At the meantime, the fully recovered compartment 

has the population decreased due to natural death, with the rate of . 

 

	β6 	Z

		
β4 =

1
Z

		k2

	R

	Z

	G

		
β7 =

1
G

		k2
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Figure 4.7: The combined compartmental diagram of SEIPR model. 

 
Figure 4.7 shows an overview of the compartmental diagram of SEIPR model. The 

susceptible compartment is increased through the nature birth rate,  multiply with total 

susceptible population, N. The transitions  S → E ,  S → I and  S → P are disease 

transmissions progression. The transition  S → E  is the transmission where susceptible get 

infected when meets with the asymptomatic infected patient (E). Let  is , where  

is the average number of contacts any person in the population and  is the transmission 

probability. The multiplication of and , where are the infected asymptomatic 

individuals, force of infection is occurred as per capita rate at which susceptible individual 

contact with the infected individual. To obtain the actual number of infected individual, we 

have , . 

For next case, we will look at the transition  S → I . Let βω is the Λ×κ , where Λ  

is the average number of contacts any person in the population and κ is the transmission 

probability. When we multiply βω  with 
	
I
N

, where 
	
I
N

 are the infectious individuals, force 

of infection is defined as per capita rate at which susceptible individual contacts the 

		k1

βς 	b× c 	b

	c

βς 	
E
N 	

E
N

		β1 ×E × S 		
β1 =

βς

N
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infectious individual. Finally, to obtain the actual number of infected individual causes 

from infectious compartment, we will have 		β5 × I × S , 
		
β5 =

βω

N
.  

At another scenario where susceptible meets with the post-infectious individual (P) 

or clinically recovered individual, the transition  S → P  occurs. The disease transmission 

happens as well when there is close contact via droplets or fomites that are carrying the 

infectious virus. Post-infectious individual has the symptoms subsided, but the virus may 

continue to shed for several weeks after the symptoms gone. Hence, the scenario leads to 

another force of infection. Let βε  is 	m×n , 	m  is the average number of contacts any 

person in the population and 	n  is the transmission probability. We multiply the βε  and 

	
P
N

, where 
	
P
N

 are the post-infectious individual who is still carrying the post-infectious 

virus shedding, force of infection happens as per capita rate at which susceptible individual 

contacts with the post-infectious virus shedding carrier. To get the actual infected 

individual, we have 		β6 ×P × S , 
		
β6 =

βε

N
. 

After time Z as mentioned above, the clinically recovered individual will move to 

fully recovered compartment,  P→ R , with rate of  β4 . And after time G, the fully 

recovered individual lost the immunity and move to susceptible compartment again with 

rate of  β7 .	Besides, the compartments S, 	E , I, P and R have the population decreased with 

natural death at the rate of  and at the same time, compartment I has population 

decreased through death which is caused by the disease with the rate of . The system of 

differential equations for SEIPR model is formed and discussed next. 

 

		k2

		k3
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The differential equations are made as follow: 

		
dS
dt

= k1N +β7R−β1SE −β5SI −β6SP −k2S        ( 4.1 ) 

		
dE
dt

= β1SE +β5SI +β6SP −β2E −k2E         ( 4.2 ) 

		
dI
dt

= β2E −β3I − k2 +k3( )I          ( 4.3 ) 

		
dP
dt

= β3I −β4P −k2P           ( 4.4 ) 

		
dR
dt

= β4P −k2R−β7R           ( 4.5 ) 

The total population is 	N = S +E + I +P +R ,  so that,  

	
dN
dt

= dS
dt

+ dE
dt

+ dI
dt

+ dP
dt

+ dR
dt

        ( 4.6 ) 

hence, we obtain, 

  
dN
dt

= k1N − k2S − k2E − k2I − k3I − k2P − k2R 	

  
dN
dt

= k1N − k3I − k2 S + E + I + P + R( )  

	
dN
dt

= k1N −k3I −k2N * , ( N ∗ = S + E + I + P + R )      ( 4.7 ) 

 N ∗ represents the changing of total population over time, whereas, N is the total population 

at initial time. 
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4.3 Theoretical analysis of the SEIPR model 

 

Theoretical analysis of SEIPR model is made based on the differential equations (4.2 – 

4.5). The SEIPR model which describes the population should be positive all the time. 

From equations (4.2 – 4.5), the domain of the solution is as follow:    

		Ω= E ,I ,P ,R( )∈R+
4 E + I +P +R ≤N ,N >0{ }        ( 4.8 ) 

Hence, the steady state equilibrium point can be found. We set the equations (4.2 – 4.5 and 

4.7) to zero (Hethcote, 2000). 

		
dE
dt

+ dI
dt

+ dP
dt

+ dR
dt

+ dN
dt

=0
	 	 	 	 	 					

( 4.9 ) 

To solve equation (4.9), we denote the equilibrium point as following 

		Ee = E∗ ,I∗ ,P∗ ,R∗ ,N∗( )        ( 4.10 ) 

where 

		
E∗ =

β5I
∗ +β6P

∗( )S∗

β2 +k2 −β1S
∗

 

		
I∗ =

β2E
∗

β3 +k2 +k3
 

		
P∗ =

β3I
∗

β4 +k2
 

		
R∗ =

β4P
∗

k2 +β7
 

		
N∗ =

k1N −k3I
∗

k2
       ( 4.11 ) 
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When we set 		E
∗ ,I∗ ,P∗ =0we can get disease-free equilibrium point, 		E0 = E∗ ,I∗ ,P∗ ,R∗ ,N∗( )  

by solving the equations (4.9 – 4.11), we obtain the following: 

		E∗ =0 ,			I∗ =0 ,			P∗ =0 ,			R∗ =0  and 
		
N* = k1N

k2
     ( 4.12 ) 

Hence, 

		
E0 = 0,0,0,0,k1N

k2

⎛

⎝⎜
⎞

⎠⎟
       ( 4.13 ) 

 

 

4.3.1 Disease-free equilibrium point 

 

As mentioned in Section 3.3.1, the disease-free equilibrium point, 		E0 , is a steady state 

where the infectious compartment is zero. This means there is no existent of HFMD in the 

population and the number of the population remains same.  

 

Proof 

 

From the equation (4.2), when 
		
dI
dt

=0 , 

		β2E = β5 +k2 +k3( )I 	

		I =0⇔ E =0 	
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From the equation (4.3), when 
		
dP
dt

=0 , 

		 β4 +k2( )P = β3I 	

		I =0⇔ P =0  

From the equation (4.4), when 
		
dR
dt

=0 , 

		 k2 +β7( )R = β4P 	

		P =0⇔ R =0  

Here, we can see that the infectious compartment will determine the existence of the 

HFMD. Next, we will discuss the basic reproductive number, 		R0 , that helps to indicate the 

prevalence of the disease.  

 

 

4.3.2 Basic reproductive number for SEIPR model 

 

As mentioned in Section 2.3.2, we follow the next generation model to obtain the 

  R0 (Heffernan et al., 2005). 

Let function 	Fi  represents new infections and cannot be negative. From equations (4.1– 

4.5), we obtain 

 

		

Fi =

β1SE +β5SI +β6SP

0
0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

       ( 4.14 ) 
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Let  	Vi
−  is the rate of transfer of individuals out of the 	ith compartment. 

		

Vi
− =

k2E +β2E

β3I + k2 +k3( )I
β4P +k2P

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

       ( 4.15 ) 

Let  	Vi
+  is the rate of transfer of individuals into the 	ith compartment.  

		

Vi
+ =

0
β2E

β3I

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

        ( 4.16 ) 

	Vi =Vi
− −Vi

+  

		

Vi =

k2E +β2E

β3I + k2 +k3( )I −β2E
β4P +k2P −β3I

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

      ( 4.17 ) 

		

F =

∂F1
∂E1

∂F1
∂I1

∂F1
∂P1

∂F2
∂E2

∂F2
∂I2

∂F2
∂P2

∂F3
∂E3

∂F3
∂I3

∂F3
∂P3

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

= 

		

β1S β5S β6S

0 0 0
0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

                ( 4.18 ) 

		

V =

∂V1
∂E1

∂V1
∂I1

∂V1
∂P1

∂V2
∂E2

∂V2
∂I2

∂V2
∂P2

∂V3
∂E3

∂V3
∂I3

∂V3
∂P3

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

= 

		

k2 +β2 0 0
−β2 β3 +k2 +k3 0
0 −β3 k2 +β4

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

   ( 4.19 ) 
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With this, we obtain   R0  by using the spectral radius of the matrix 		FV −1 . The operation 

gives the rate at which an infected individual produces new infections times the length of 

time an individual spends in single visit to the infectious compartments. Hence, to get   R0 , 

first we need to get 		V −1 . We use inverse matrix formula to obtain 		V −1 . 

		
V −1 = 1

V
adjoint V  

Let  

	V = 

		

k2 +β2 0 0
−β2 β3 +k2 +k3 0
0 −β3 k2 +β4

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

		

a 0 0
b c 0
0 d e

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

    ( 4.20 ) 

Where 

		

a= k2 +β2 ,
b= −β2 ,
c = β3 +k2 +k3 ,
d = −β3 ,
e = k2 +β4

 

	
V = ace  

cofactor of 	V =

		

ce −be bd
0 ae −ad
0 0 ac

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

      ( 4.21 ) 

adjoint of  

		

V =
ce 0 0
−be ae 0
bd −ad ac

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

      ( 4.22 ) 
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V −1 = 1
ace

ce 0 0
−be ae 0
bd −ad ac

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 

               =

		

1
a

0 0

−b
ac

1
c

0

bd
ace

−d
ce

1
e

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

        ( 4.23 ) 

		FV −1=

		

β1S β5S β6S

0 0 0
0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

		

1
a

0 0

−b
ac

1
c

0

bd
ace

−d
ce

1
e

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

 

           

		

=

β1S
a

+
β5S −b( )
ac

+
β6S bd( )
ace

β5S
c

+
β6S −d( )
ce

β6S
e

0 0 0
0 0 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

    ( 4.24 ) 

Thus,  

  R0 =
		
β1S
a

+
β5S −b( )
ac

+
β6S bd( )
ace

 

       =
		

β1S
k2 +β2

+
β5β2S

k2 +β2( ) β3 +k2 +k3( ) +
β6β2β3S

k2 +β2( ) β3 +k2 +k3( ) k2 +β4( )     ( 4.25 ) 

Disease-free equilibrium, 	I =0, thus 	S =		N = S0 , thus 

		R0 = R1 +R2 +R3  
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		R0 =
		

β1S0
k2 +β2

+
β5β2S0

k2 +β2( ) β3 +k2 +k3( ) +
β6β2β3S0

k2 +β2( ) β3 +k2 +k3( ) k2 +β4( )     ( 4.26 ) 

 

Hence, we have obtained 		R0  from our new SEIPR model. The 		R0 consists of three 

terms. The first term, 		R1 , is representing the number of secondary infectious during the 

asymptomatic stage. The denominator of the first term is the inverse of the natural death 

rate plus the transition rate from asymptomatic to symptomatic cases, 		k2 +β2 . The second 

term, 		R2 , gives contributions from the infectious compartments. The denominator of the 

second term is the multiplication of 		k2 +β2  with the inverse of the natural death rate plus 

death rate which is caused by disease plus the transition rate from symptomatic to 

clinically recovered cases, 		β3 +k2 +k3 . Lastly, the third term, 		R3 , is the number of 

secondary infectious during the clinically recovered stage. The denominator of the third 

term is the multiplication of 		 k2 +β2( ) β3 +k2 +k3( )  with the inverse of the death rate plus 

the transition rate from the clinically recovered to the fully recovered cases, 		k2 +β4 (van 

den Driessche, 2017). In the next section, we will discuss the threshold value analysis. 

 

 

4.3.3 Threshold value analysis of the SEIPR model 

 

As mentioned in Section 2.3.3, if 
		
dI
dt

<0 , then the infectious will die out. From equations       

(4.2 – 4.4), 
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We let 
		
dE
dt

= dI
dt

= dP
dt

=0 , and, we obtain the following: 

		β1SE +β5SI +β6SP −k2E −β2E =0  

		
E * =

−β5S * I *−β6S *P *
β1S *−k2 −β2

      ( 4.27 ) 

		β3I −β4P −k2P =0  

		
P* =

β3I *
β4 +k2

        ( 4.28 ) 

		β2E −β3I − k2 +k3( )I =0       ( 4.29 ) 

 

Substitute equation (4.27) and equation (4.28) into equation (4.29), 

 

		

β2
−β5S * I *−β6S *P *

β1S *−k2 −β2
⎛

⎝⎜
⎞

⎠⎟
− β3I − k2 +k3( )I =0

β2

−β5S * I *−β6S *
β3I *
β4 +k2

⎛

⎝⎜
⎞

⎠⎟

β1S *−k2 −β2

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

− β3I − k2 +k3( )I =0

β2

−β5S *−β6S *
β3

β4 +k2

⎛

⎝⎜
⎞

⎠⎟

β1S *−k2 −β2

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

= β3 +k2 +k3

β2S * −β5 −β6
β3

β4 +k2

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜

⎞

⎠
⎟ = β3 +k2 +k3( ) β1S *−k2 −β2( )

 

		
β2S * −β5 −β6

β3
β4 +k2

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜

⎞

⎠
⎟ = β3β1S *−β3k2 −β3β2 +k2β1S *−k22 −k2β2 +k3β1S *−k2k3 −β2k3  
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S * β2 −β5 −β6

β3
β4 +k2

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜

⎞

⎠
⎟ − β3β1 +k2β1 +k3β1( )

⎛

⎝
⎜

⎞

⎠
⎟ = −β3k2 −β3β2 −k2

2 −k2β2 −k2k3 −β2k3  

		

S* = −β3k2 −β3β2 −k2
2 −k2β2 −k2k3 −β2k3

β2 −β5 −β6
β3

β4 +k2

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜

⎞

⎠
⎟ − β3β1 +k2β1 +k3β1( )

S* = −β3k2 −β3β2 −k2
2 −k2β2 −k2k3 −β2k3

β2
−β5 β4 +k2( )−β6β3

β4 +k2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
− β3β1 +k2β1 +k3β1( )

 

		
S* =

−β3k2 −β3β2 −k2
2 −k2β2 −k2k3 −β2k3( ) β4 +k2( )

β2 −β5 β4 +k2( )−β6β3( )− β3β1 +k2β1 +k3β1( ) β4 +k2( )     ( 4.30 ) 

With this, we have found the threshold value, 		S * .   

If 

		
S* >

−β3k2 −β3β2 −k2
2 −k2β2 −k2k3 −β2k3( ) β4 +k2( )

β2 −β5 β4 +k2( )−β6β3( )− β3β1 +k2β1 +k3β1( ) β4 +k2( ) , then 
		
dI
dt

>0 , there must be 

an epidemic, otherwise no epidemic would occur. 

 

 

4.3.4 Stability of disease-free equilibrium point of SEIPR model 

 

As mentioned in Section 2.3.1.1, the stability of the equilibrium can be determined by 

using Jacobian matrix. The disease-free equilibrium is stable when all the eigenvalues are 

negative. At disease-free equilibrium point, 		E = I = P = R =0 . Next, we will show the 

Jacobian matrix from equations (4.2 – 4.5). 
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Let 
 
A = Aij( )  the Jacobian matrix, where  A  is matrix  A  with entry  

Aij at the intersection 

of the  ith  row and  j
th  column, having the order of  m× n . 

 

A =

∂
∂E

dE
dt

⎛
⎝⎜

⎞
⎠⎟

∂
∂I

dE
dt

⎛
⎝⎜

⎞
⎠⎟

∂
∂P

dE
dt

⎛
⎝⎜

⎞
⎠⎟

∂
∂R

dE
dt

⎛
⎝⎜

⎞
⎠⎟

∂
∂E

dI
dt

⎛
⎝⎜

⎞
⎠⎟

∂
∂I

dI
dt

⎛
⎝⎜

⎞
⎠⎟

∂
∂P

dI
dt

⎛
⎝⎜

⎞
⎠⎟

∂
∂R

dI
dt

⎛
⎝⎜

⎞
⎠⎟

∂
∂E

dP
dt

⎛
⎝⎜

⎞
⎠⎟

∂
∂I

dP
dt

⎛
⎝⎜

⎞
⎠⎟

∂
∂P

dP
dt

⎛
⎝⎜

⎞
⎠⎟

∂
∂R

dP
dt

⎛
⎝⎜

⎞
⎠⎟

∂
∂E

dQ
dt

⎛
⎝⎜

⎞
⎠⎟

∂
∂I

dQ
dt

⎛
⎝⎜

⎞
⎠⎟

∂
∂P

dQ
dt

⎛
⎝⎜

⎞
⎠⎟

∂
∂R

dQ
dt

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

    ( 4.31 ) 

		

A=

A11 A12 A13 A14
A21 A22 A23 A24
A31 A32 A33 A34
A41 A42 A43 A44

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

 

Solving 
 

∂
∂R

dE
dt

⎛
⎝⎜

⎞
⎠⎟
,	
 

∂
∂P

dI
dt

⎛
⎝⎜

⎞
⎠⎟
,	
 

∂
∂R

dI
dt

⎛
⎝⎜

⎞
⎠⎟
,	
 

∂
∂E

dP
dt

⎛
⎝⎜

⎞
⎠⎟
,	
 

∂
∂R

dP
dt

⎛
⎝⎜

⎞
⎠⎟
,	
 

∂
∂E

dQ
dt

⎛
⎝⎜

⎞
⎠⎟
	and	

 

∂
∂I

dQ
dt

⎛
⎝⎜

⎞
⎠⎟
	

will	lead	to	zero.	Hence,	we	obtain,       

		

A=

A11 A12 A13 0
A21 A22 0 0
0 A32 A33 0
0 0 A43 A44

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

       ( 4.32 ) 

where 

		A11 = β1S −β2 −k2 	

		A12 = β5S 	

		A13 = β6S 	

		A21 = β2 	
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		A22 = −β3 − k2 +k3( ) 	

		A32 = β3 	

		A33 = −β4 −k2 	

		A43 = β4 	

		A44 = −k2 −β7  

The fourth column forms one eigenvalue as it contains only diagonal term, 		A44 . 

 gives 		A44  < 0. With this, the equilibrium point is asymptomatically stable. 

Next, the fourth row and column are eliminated to form the matrix below: 

A =

A11 A12 A13
A21 A22 0
0 A32 A33

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

      ( 4.33 ) 

The other three roots can be obtained from the eigenvalues from matrix A (4.33). The 

characteristic equation is defined by the following: 

 det AI −λI( ) =0  

det AI −λI( )
		

=

A11 −λ A12 A13
A21 A22 −λ 0
0 A32 A33 −λ

 

=		 A11 −λ( ) A22 −λ( ) A33 −λ( )− A12A21 A33 −λ( )+ A13A21A32  

		= A11A22A33 − A11A22λ − A11A33λ + A11λ
2 − A22A33λ + A22λ

2 + A33λ
2 −λ3 − A12A21A33 + A12A21λ + A13A21A32  

		= −λ
3 + A11 + A22 + A33( )λ2 − A11A22 + A11A33 + A22A33 + A12A21( )λ + A11A22A33 + A13A21A32 − A12A21A33  

det AI −λI( ) =0  

		λ
3 − A11 + A22 + A33( )λ2 + A11A22 + A11A33 + A22A33 + A12A21( )λ − A11A22A33 − A13A21A32 + A12A21A33 =0  

		A44 = −k2 −β7



	
79	

To simplify the above, we let, 

B1 = −A11 = β2 +k2 − β1S 	

		B2 = A12 = β5S 	

		B3 = A13 = β6S 	

		B4 = A21 = β2 	

		B5 = −A22 = β3 +k2 +k3 	

		B6 = A32 = β3 	

		B7 = −A33 = β4 +k2 	
So, the characteristic equation is  

		a3λ
3 +a2λ

2 +a1λ +a0 =0         ( 4.34 ) 

where, 

		a3 =1  

		a2 = B1 +B5 +B7  

		a1 = B1B5 +B1B7 +B5B7 +B2B4  

and 

		a0 = B1B5B7 −B3B4B6 −B2B4B7  

As mentioned in Section 2.3.1.2, for a system to be stable, all the roots of the polynomial 

should have negative real parts and for this to happen, all coefficients of polynomial are 

positive. 

The expression of 		a0  can be written as 

		a0 = β2 +k2( ) β3 +k2 +k3( ) β4 +k2( ) 1−R0( ) ,	for			R0 <1 ,	with	this,			a0 > 0. 

The Routh Hurwitz criterion is adopted when 		n=3 . All the coefficients 	ai  in the 

characteristic equation (4.34) are not zero and are positive. This, the necessary condition in 
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the Routh Hurwitz criterion is fulfilled. Next, by using Routh Array, the number of the 

positive real roots is decided for which positive real roots are equivalent to the number of 

signs changing obtained from Routh Array. 

Hence, we obtain the following: 

		Δ0 = a3 =1  

		Δ1 = a2 = B1 +B5 +B7  

For 		B1=			β2 +k2 −β1S 	=			 β2 +k2( ) 1−R1( ) ,	for			R1 <1 ,	with	this,			B1>	0,	thus,		Δ1=			a2> 0. 

		

Δ2 =
a2a1 −a0a3

a2
a3 =1

Δ2 =
a2a1 −a0
a2

 

		a2a1 −a0 = B1 +B5 +B7( ) B1B5 +B1B7 +B5B7 +B2B4( )−B1B5B7 +B3B4B6 +B2B4B7 	

		= B1
2B5 +B1

2B7 +B1B5
2 +B5

2B7 +B1B7
2 +B5B7

2 +B1B2B4 +B2B4B5 +B3B4B6 +2B1B5B7 +2B2B4B7 >0  

Thus, 
		
Δ2 =

a2a1 −a0a3
a2

> 0 is the sum of positive terms. 

		Δ3 = a0 >0  

With all the positive coefficient obtained from equation (4.34), thus, all roots of equation 

(4.34) have negative real parts, which means 		R0 <1. With this, by using the Routh Hurwitz 

criterion, it is proven that the disease-free equilibrium is stable when 		R0<1. 
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4.3.5 Endemic equilibrium points for SEIPR model 

 

Theorem 3.3.5 When 		R0 >1, the disease-free equilibrium is unstable, and the 

endemic equilibrium exists.  

Proof 

 

We will analyze the model from equations (4.1 – 4.5) 

		

dS
dt

= k1N −β1SE −β5SI −β6SP −K2S +β7R

dE
dt

= β1SE +β5SI +β6SP −β2E −k2E

dI
dt

= β2E −β3I − k2 +k3( )I
dR
dt

= β3I −β4P −k2P

dR
dt

= β4P −k2R−β7R

 

To find the equilibrium point, we set the right hand side of the system above to zero. When 

		
dI
dt

=0 , we obtain  

E* = β3 +k2 +k3
β2

⎛

⎝
⎜

⎞

⎠
⎟ I *        ( 4.35 ) 

		
dE
dt

=0 , we obtain   

		β5S * I *+β6S *P* = β2 −β1S *+k2( )E *     ( 4.36 ) 

		
dP
dt

=0 , we obtain  
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P* = β3
β4 +k2

⎛

⎝
⎜

⎞

⎠
⎟ I *        ( 4.37 ) 

To perform 
	
(4.35)
(4.36) : 

		

E *
β2 −β1S *+k2( )E * =

β3 +k2 +k3
β2

⎛

⎝⎜
⎞

⎠⎟
I *

β5S * I *+β6S *
β3

β4 +k2

⎛

⎝⎜
⎞

⎠⎟
I *

 

		

1
β2 −β1S *+k2( ) =

β3 +k2 +k3
β2

⎛

⎝⎜
⎞

⎠⎟

β5S *+β6S *
β3

β4 +k2

⎛

⎝⎜
⎞

⎠⎟

 

		

1
β2 −β1S *+k2( ) =

β3 +k2 +k3

β2( ) β5S * β4 +k2( )+β3β6S *
β4 +k2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

 

		β2 β5S * β4 +k2( )+β6S *β3( ) = β3 +k2 +k3( ) β4 +k2( ) β2 −β1S *+k2( )( )  

		

β2β5 β4 +k2( )+β2β6β3( )S* = β2β3β4 +β3k2β4 −β1β3β4S *+β2k2β4 +k22β4 −β1k2β4S *
+k3β2β4 +k2k3β4 −β1k3β4S *+β2k2β3 +β3k22 −β1β3k2S *
+β2k2

2 +k2
3 −β1k2

2S *+k2k3β2 +k22k3 −β1k2k3S *
 

		

β2β5 β4 +k2( )+β2β6β3 +β1β3β4 +β1k2β4 +β1k3β4 +β1β3k2 +β1k22 +β1k2k3( )S* =
β2β3β4 +β3k2β4 +β2k2β4 +k2

2β4 +k3β2β4 +k2k3β4 +β2k2β3 +β3k2
2 +β2k2

2 +k2
3 +k2k3β2 +k2

2k3
 

		

β2β5 β4 +k2( )+β2β6β3 +β1β3β4 +β1k2β4 +β1k3β4 +β1β3k2 +β1k22 +β1k2k3( )S* =
β2β3 +β3k2 +β2k2 +k2

2 +k3β2 +k2k3 +β2β3 +β3k2 +β2k2 +k2
2 +k3β2 +k2k3( ) β4 +k2( )  

		

β2β5 β4 +k2( )+β2β6β3 +β1β3β4 +β1k2β4 +β1k3β4 +β1β3k2 +β1k22 +β1k2k3( )S* =
k2 +β2( ) β3 +k2 +k3( ) β4 +k2( )

 



	
83	

		

β2β5 β4 +k2( )+β2β6β3 + β4β1( ) β3 +k2 +k3( )+ β1k2( ) β3 +k2 +k3( )( )S* =
k2 +β2( ) β3 +k2 +k3( ) β4 +k2( )
β2β5 β4 +k2( )+β2β6β3 + β3 +k2 +k3( ) β4β1 +β1k2( )( )S* =
k2 +β2( ) β3 +k2 +k3( ) β4 +k2( )
β2β5 β4 +k2( )+β2β6β3 + β3 +k2 +k3( ) β4 +k2( )β1( )S* =
k2 +β2( ) β3 +k2 +k3( ) β4 +k2( )

 

		

S* =
k2 +β2( ) β3 +k2 +k3( ) β4 +k2( )

β2β5 β4 +k2( )+β2β6β3 + β3 +k2 +k3( ) β4 +k2( )β1( )
1
S * =

β2β5 β4 +k2( )+β2β6β3 + β3 +k2 +k3( ) β4 +k2( )β1( )
k2 +β2( ) β3 +k2 +k3( ) β4 +k2( )

=
β1

k2 +β2( ) +
β2β5

k2 +β2( ) β3 +k2 +k3( ) +
β2β6β3

k2 +β2( ) β3 +k2 +k3( ) β4 +k2( )

 

		
1
S * =

R0
S0

 

		
S* = S0

R0
       ( 4.38 ) 

When 
		
dS
dt

=0
 
, we obtain, 

		β1S *E *+β5S * I *+β6S *P *+k2S* = k1N −β7R*  

		

β1S *E *+β5S * I *+β6S *P *+k2S* = k1N − β1S *E *+β5S * I *+β6S *P *+k2S *−k1N( )
β1S *E *+β5S * I *+β6S *P *+k2S* = k1N +k1N −β1S *E *−β5S * I *−β6S *P *−k2S *

 

		

2 β1S *E *+β5S * I *+β6S *P *+k2S *( ) =2k1N
β1S *E *+β5S * I *+β6S *P *+k2S* = k1N

β1
β3 +k2 +k3

β2

⎛

⎝⎜
⎞

⎠⎟
I *+β5I *+β6

β3I *
β4 +k2

⎛

⎝⎜
⎞

⎠⎟
+k2 =

k1N
S *
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β1

β3 +k2 +k3
β2

⎛

⎝⎜
⎞

⎠⎟
I *+β5I *+β6

β3I *
β4 +k2

⎛

⎝⎜
⎞

⎠⎟
=
k1N
S * −k2  

		

β1
β3 +k2 +k3

β2

⎛

⎝⎜
⎞

⎠⎟
+β5 +β6

β3
β4 +k2

⎛

⎝⎜
⎞

⎠⎟
I *( ) = k1NS * −k2

β1 β3 +k2 +k3( ) β4 +k2( )+β5β2 β4 +k2( )+β2β3β6
β2 β4 +k2( ) I *( ) = k1NS * −k2

 

		
I* =

β2 β4 +k2( )
β1 β3 +k2 +k3( ) β4 +k2( )+β5β2 β4 +k2( )+β2β3β6

k1N
S * −k2

⎛

⎝⎜
⎞

⎠⎟
 

Let 
		
m=

β2 β4 +k2( )
β1 β3 +k2 +k3( ) β4 +k2( )+β5β2 β4 +k2( )+β2β3β6

 

		
I* =m k1N

S * −k2
⎛

⎝⎜
⎞

⎠⎟  

From equation (4.38), 

		

I* =m k1N
S0
R0

−k2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

		
I* =m R0k1N

S0
−k2

⎛

⎝⎜
⎞

⎠⎟
 

From  equation (4.13), 

		
N =

k2N *
k1

=
k2S0
k1

 

		I* =m R0k2 −k2( )  
Hence, we obtain, 

		I* =mk2 R0 −1( )        ( 4.39 ) 
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From (4.35), 

		
E* = β3 +k2 +k3

β2

⎛

⎝⎜
⎞

⎠⎟
I *

 

		
E* = β3 +k2 +k3

β2

⎛

⎝⎜
⎞

⎠⎟
mk2 R0 −1( )        ( 4.40 ) 

From (4.37), 

P* = β3
β4 +k2

⎛

⎝
⎜

⎞

⎠
⎟ I *  

		
P* = β3

β4 +k2

⎛

⎝⎜
⎞

⎠⎟
mk2 R0 −1( )         ( 4.41 ) 

Hence, the endemic equilibrium point, 		Ee = S*,E*,I*,P*,R*( ) , is as follow: 

	Ee =
		

S0
R0
, β3 +k2 +k3

β2

⎛

⎝⎜
⎞

⎠⎟
mk2 R0 −1( ) ,mk2 R0 −1( ) , β3

β4 +k2

⎛

⎝⎜
⎞

⎠⎟
mk2 R0 −1( ) ,N − S *−E *−I *−P *

⎛

⎝
⎜

⎞

⎠
⎟  

   ( 4.42 ) 

 

The disease is to prevail in the population when 		I* >0 . Thus, when >1, the endemic 

equilibrium point exist meaning that the disease remains in the population. When =1, it 

is given us the disease-free equilibrium point. Also, if =1, it means that there will be 

approximately the same number of infected cases all the time, which the endemic occurs 

(Heffernan et al., 2005). 

	
	
	
	
	

		R0

		R0

		R0
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4.4 Numerical results for SEIPR model 

 

The ordinary differential equations in (4.1 – 4.5) are in the form of  

		 

dy1
dt

= f y1 , y2 ,..., yn ,t( ) ,
dy2
dt

= f y1 , y2 ,..., yn ,t( ) ,
!

dyn
dt

= f y1 , y2 ,..., yn ,t( ).

 

Here, 		y1 = S , y2 = E , y3 = I , y4 = P  and 		y5 = R . The system is to be solved numerically. The 

method used is based on fourth-order Runge Kutta method in MatLab program. The time 

span used for our simulation is 		t0 = p  to 	t = q  where 	p  is initial value and 	q  is the 

terminal value. Initial conditions and parameter values are to be determined to simulate the 

SEIPR model. Table 4.1 shows the description of parameters values for SEIPR model. 

 
Table 4.1: Parameters values of SEIPR model description. 
_________________________________________________________________________ 
Parameter Definitions (unit)            References 

 Transmission coefficient of susceptible individuals    fitting 
getting infected by incubation period individual for 
SEIPR model (per time) 

 
 The rate at which an asymptomatic patient developing   fitting 

symptoms for SEIPR model (per time) 
 

 The rate at which an infectious individual clinically    fixed 
recovered for SEIPR model (per time) 
 

 
 The rate at which a clinically recovered individual fully  fixed 

 recovered for SEIPR model (per time) 

	β1

	β2

	β3

	β4
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Table 4.1 continued 
_________________________________________________________________________ 

 Transmission coefficient of susceptible individuals    fitting 
getting infected by infectious individual for SEIPR 
model (per time) 

 
 Transmission coefficient of susceptible individuals    fitting 

getting infected by clinically recovered individual for   
SEIPR model (per time) 

 
 The rate at which a recovered individual loses its immunity  fixed 

for SEIPR model  (per time) 
 

 Natural birth rate (per time)      actual  
data 
 

  Natural death rate (per time)      actual 
           data 

  Death rate which is caused by disease (per time)   actual 
           data 

  Number of infected individual during incubation   fitting 
period at time         

  Number of infectious individual at time     actual 
           data 
 

  Total population       fitting 

  Number of clinically recovered individual     actual 
(post-infectious virus shedding period) at time    data 

 
  Number of fully recovered individual at time    fixed 

 
  Number of susceptible at time      fixed 

 

 

From table 4.1,  and  are actual data obtained from Department of Statistic 

Malaysia.  together with the initial conditions for  and  are actual data taken from the 

	β5

	β6

	β7

		k1

		k2

		k3

	E
	t

	I 	t

	N

	P
	t

	R 	t

	S 	t

		k1 		k2

		k3 	I 	P
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actual cases reported from Sarawak Health Department.  is number of HFMD cases of 

the first week of the year and is the number of HFMD of the last week from previous 

year. Values of  in years 2006 and 2010 are made based on the assumption, as we have 

no information for the number of HFMD cases during the last weeks of 2005 and 2009. 

Next, we will discuss the fixed parameters values, , , , 	R , 	S  and 	N .  is 

the rate at which an infectious individual clinically recovered per unit time. In other words, 

 is the rate of time a symptomatic patient has symptoms subsided. From literature 

review, the most contagious period of HFMD spreading is the first week during the 

infectious period when symptoms appear and the symptoms normally will resolve in 7 to 

10 days (CDC, 2015; Mandal, 2017; Ministry of Health, 2014; Podin et al., 2006; Roy & 

Halder, 2010). We then decide that the time taken for symptoms subsided is seven days. 

Besides that, we found out the best simulation results obtained for our study when the 

infectious individual to reach clinically recovered stage is set to be one week as well. 

On the other hand,  is the rate at which a clinically recovered individual fully 

recovered per unit time. Clinically recovered individual is having the transition process 

from symptomatic infectious individual to asymptomatic post-infectious individual. Before 

a clinically recovered patient reaches fully recovered stage, the patient can still carry the 

post-infectious virus shedding. As mentioned in 2.2, most of the clinically recovered cases 

will carry the post-infectious virus shedding for at least one week and for some cases, post-

infectious virus shedding can persist in stool and throat for several weeks. (Han et al., 

2010; Li et al., 2013; Podin et al., 2006; Teng et al., 2013). Based on the best simulation 

results from sensitivity tests in Section 4.4.1 and trial running for other years (2010-2014) 

	I

	P

	P

	β3 	β4 	β7 	β3

	β3

	β4
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of HFMD outbreaks simulation, we decide to fix the time taken for clinically recovered 

individual fully recovered as seven days. 

 is the rate recovered individual loses its immunity and it was predicted that the 

period of losing immunity is 100 days after a few simulation ran by (Tiing & Labadin, 

2008). We decide to use the same value as our study area taken is same with (Tiing & 

Labadin, 2008). Whereas, for , fully recovered cases, we fix the value as zero because no 

infected patient is recovered at the initial condition. Meanwhile, and N, susceptible and 

total population are fixed as 10000 after the sensitivity tests and discussion made in 

Section 4.4.1 below. 

Besides, the initial condition for , incubation period cases, is fitting value 

decided based on the  and  taken together with the consideration of the best simulation 

results. While , the rate at which asymptomatic patient developing symptoms per unit 

time is fitting value based on the best simulation results and literature review. Incubation 

period can last for one day and up to two weeks (CDC, 2015; Lai et al., 2016; Mandal, 

2017; Ministry of Health, 2014; Podin et al., 2006). In our study, we fix the incubation 

period as 1.27 day for all the years taken except in year 2014, the incubation period taken 

is 3.9 days. Besides, ,  and  are fitting values based on the best results after many 

time of running the simulations. 

For the next section, sensitivity analysis for SEIPR model’s parameters will be 

discussed. The numerical results then will be verified by using root square mean error 

(RMSE). 

 

 

	β7

	R

	S

	E

	I 	P

	β2

	β1 	β5 	β6
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4.4.1 Sensitivity analysis for SEIPR model’s parameters  

	

The sensitivity analysis for SEIPR model’s parameters is used to determine the best initial 

values for parameters. Sensitivity test is laborious task as it took a lot of trials attempting to 

search for the best fit between the predicted results and actual data results. We have done 

countless simulation tests in order to give the reasonable parameters values to be used. 

Table 4.2 summarizes the closer range of parameters values to reach the best fit for 

sensitivity analysis.	

	
Table 4.2: Parameters values of SEIPR model for sensitivity analysis. 

Parame- 
ters 

Values 

Trial tests for sensitivity analysis 

First 
trial 

Second 
trial 

Third 
trial 

Fourth 
trial 

Fifth 
trial 

Sixth  
trial 

 2.923
 

2.923 
 

2.923 
 

2.923 
 

2.923 
 

2.923 
 

 1.077
 

1.077
 

1.077
 

1.077
 

1.077
 

1.077
 

 1.731
 

1.73
 

1.731
 

1.731
 

1.731
 

1.731
 

 
9 

 
3.5 

 
3 

 
5.3 

 
6 

 ×10−6  
1.4  

 
5.5 5.5 5.5 5.5 5.5 5.5 

 1 1 1 1 1 1 

 1 1 1 1 1 1 

 5.5
 

2.5 
 

1.5 
 

1 
 

1.5
 

1 
 

 9 
 

3 
 

6 
 

5.4 
 

2 
 ×10−6  

1.2  

 0.07 0.07 0.07 0.07 0.07 0.07 

 4 4 4 4 4 4 
 4 4 4 4 4 4 

		k1 	×10−4 	×10−4 	×10−4 	×10−4 	×10−4 	×10−4

		k2 	×10−4 	×10−4 	×10−4 	×10−4 	×10−4 	×10−4

		k3 	×10−5 	×10−5 	×10−5 	×10−5 	×10−5 	×10−5

	β1 	×10−5 	×10−5 	×10−5 	×10−5
	×10−5

	β2
	β3
	β4
	β5 	×10−4 	×10−4 	×10−4 	×10−4 	×10−4 	×10−4

	β6 	×10−5 	×10−5 	×10−5 	×10−5
	×10−5

	β7
	E
	I



	
91	

Table 4.2 continued 
 

 N  5,000 8,000 10,000 12,000 12,000 15,000 
 4 4 4 4 4 4 
 0 0 0 0 0 0 
 5,000 8,000 10,000 12,000 12,000 15,000 

 
From table 4.2, parameters values of SEIPR model for sensitivity analysis are 

tested by running the simulation based on the actual HFMD cases in 2006. Fixed parameter 

values are , 	β3 , 	β4 , 	β7  and 	R . As mentioned in Section 4.4, fixed parameter values 

have been taken after the thorough study of biological factors whereas, , ,  and  

are actual data values. Fitting values, which are ,  and are recorded after the 

simulation, which showed the relevant best match with the actual HFMD cases in 2006. 

On the other hand, fitting values for ,  and N are based on the assumption. For the 

value S, before the fixed value is determined, some values are selected to run the 

sensitivity tests based on the reference taken from (Tiing & Labadin, 2008) because the 

study area taken for their works are similar as our study. The following are the numerical 

results for the sensitivity analysis. 

 

 

	

	P
	R
	S

	β2

		k1 		k2 		k3 	I

	β1 	β5 	β6

	E 	P
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Figure 4.8: Comparison of the actual infectious cases and predicted infectious cases, first 
trial. 

	
From Figure 4.8, the SEIPR model predicts the HFMD cases with a rapid spreading 

and reached the peak a lot earlier than the real cases by visual inspection. This is because 

the susceptible used is too small that is 5000 in which resulted the  is too high in order 

to reach the same peak with the real cases. With high , the predicted graph shifts too 

fast, thus the timing predicted is not accurate and not suitable compare to the actual data. 

Next, we will increase the number of susceptible to 8000 for second trial test and the 

numerical result is shown in Figure 4.9.  
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Figure 4.9: Comparison of the actual infectious cases and predicted infectious cases, 
second trial. 

	
As shown in Figure 4.9, SEIPR model predicts the HFMD cases with fast spreading 

and reached the peak earlier than the real cases as well. This may due to the susceptible 

used is still too small and the  is still too high in order to reach the same peak with the 

real cases. The timing predicted is still not accurate and not suitable compare to the actual 

data. We then increase the number of susceptible to 10000 for third trial test and the 

numerical result is shown in Figure 4.10. 
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Figure 4.10: Comparison of the actual infectious cases and predicted infectious cases, 
third trial. 

	
Figure 4.10 shows the fitting between predicted infectious cases and actual 

infectious cases during the first wave of the outbreak is well matched from visual 

inspection. The predicted infectious cases able to the peak almost the same time as the real 

infectious cases. Thus, the timing predicted is suitable compare to the actual data for the 

first wave. In order to have more supporting reasons to decide the value of S, again, we 

continue to increase the number of susceptible to 12000 for fourth trial test and the 

numerical result is shown in Figure 4.11. 
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Figure 4.11: Comparison of the actual infectious cases and predicted infectious cases, 
fourth trial. 

	
As shown in Figure 4.11, SEIPR model predicts the HFMD cases with slower 

spreading and reached the peak slower than the real cases. This may due to the susceptible 

used is big and the  cannot fit to have the result to reach the peak same with the real 

cases. With this the timing predicted is not accurate and not suitable compare to the actual 

data. Next step, we will use the same number of susceptible for fifth trial test but trying to 

change the other fitting values as shown in Table 4.2 and the numerical result is shown in 

Figure 4.12. 
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Figure 4.12: Comparison of the actual infectious cases and predicted infectious cases, fifth 
trial. 

 
From Figure 4.12, SEIPR model predicts the HFMD cases with slightly slower 

spreading. The timing predicted again is not suitable compare to the actual data. To have 

more significant reason to choose a suitable value for S, we increase the number of 

susceptible again to 15000 for sixth trial test and the numerical result is shown in Figure 

4.13. 
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Figure 4.13: Comparison of the actual infectious cases and predicted infectious cases, 
sixth trial. 

 
From Figure 4.13, SEIPR model predicts the HFMD cases with slower spreading 

than the actual cases. With higher value of S,  chosen has to be smaller so that the over 

rapid spreading can be avoided. After the simulation, Figure 4.13 shows that the timing 

predicted again is not suitable compare to the actual data. Thus, the value of S, 15000 is 

not suitable.  

After running so many sensitivity tests, we found out the suitable value for S that 

can be chosen is 10000 for HFMD cases in year 2006 by using SEIPR model. To ensure 
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that the value of S is 10000, we calculate the RMSE by using the predicted results and 

actual results.  

As mentioned in Section 2.3.5, RMSE calculates the prediction error. The closer 

the predicted results to the actual results, the smaller the RMSE and indicates better 

prediction. Since, our model able to predict the first wave of the HFMD cases more 

accurately at third trial sensitivity test based on the numerical results as seen in Figure 

4.10, thus we choose the first thirteen weeks duration by estimation for the first wave to 

test the RMSE by using the RMSE program in MatLab. 

	
Table 4.3: Results of the actual infectious cases in 2006 and predicted infectious cases of 
sensitivity analysis by using SEIPR model for first until sixth trial. 
	
Weeks 

 
Actual 

infectious 
cases 

Predicted infectious cases of sensitivity analysis 
First 
 trial 

Second 
trial 

Third 
trial 

Fourth 
trial 

Fifth 
trial 

Sixth 
trial 

0 4 4 4 4 4 4 4 
1 15 23 23 16 16 12 14 
2 53 102 54 46 291 22 24 
3 98 374 136 96 53 42 41 
4 105 1001 311 104 95 77 67 
5 193 1348 609 192 166 139 110 
6 435 997 1045 433 290 262 191 
7 633 579 1341 635 490 441 300 
8 1212 333 1250 1218 749 706 455 
9 1234 207 966 1280 1050 1031 691 
10 1345 137 686 1349 1275 1264 934 
11 1282 103 457 1194 1340 1341 1180 
12 1017 86 322 1021 1251 1224 1321 
13 567 77 236 563 1064 1027 1344 
RMSE values 530.3 455.7 28.67 231.1 220.4 363.3 
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Figure 4.14: Plot of RMSE values for first trial until sixth trial. 

	
 Table 4.3 shows the actual data for HFMD cases in 2006, predicted data and RMSE 

values for sensitivity analysis from first trial until sixth trial. Figure 4.14 shows the plot of 

RMSE values obtained by comparing the actual data and predicted data. From Figure 4.14, 

it is noticed that the lowest prediction error happens at the third trial sensitivity analysis 

test. Thus, the parameters used are more suitable for the prediction and the S value, which 

is 10000 will be chosen as benchmark for our study. Since our study will include other 

years of HFMD outbreaks, which are 2010, 2011, 2012, 2013 and 2014, thus, before we 

select the suitable value of S, we compare the actual number of HFMD cases on those 

years with the number of susceptible taken from Department of Statistic Malaysia and the 

data is shown in Table 4.4. 
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Table 4.4: Total population of children under age 9 and number of HFMD cases, year 
2006, 2010, 2011, 2012, 2013 and 2014. 

Years Total population of children under 
age 9 

Number of HFMD cases 

2006 550700 14875 
2010 466853 5010 
2011 464000 2944 
2012 456100 13388 
2013 455100 8568 
2014 444300 9452 

 
Table 4.4 shows the total population of children under age 9 taken from 

Department of Statistic Malaysia and number of HFMD cases taken from Sarawak Health 

Department in years 2006, 2010, 2011, 2012, 2013 and 2014. The data is taken in 

consideration for choosing the value of S in order to run the simulation of SEIPR model in 

predicting the HFMD cases on those years. The comparison result is shown in Figure 4.15 

below. 

 

 
Figure 4.15: Comparison between the total population of children under age 9 and number 
of HFMD cases. 
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From Figure 4.15, the curve for number of HFMD cases is fluctuating. Over the 

years since 2010, the total population of children under age 9 is decreasing slightly. The 

total population of children under age 9 is used as susceptible benchmark in Sarawak as the 

total population by age provided from Department of Statistic Malaysia is grouped from 

year 0-4, 5-9, 10-14 and so on. Thus, we choose children below age 9 as susceptible 

benchmark (Chan et al., 2000; Lu et al., 2013; Podin et al., 2006; Solomon et al., 2010).  

However, the total population of children under age 9 does not change dramatically 

and has insignificant role in affecting the fluctuating HFMD cases over the years. Even 

clearly as seen in year 2012, while the total population of children under age 9 was 

decreasing, the HFMD cases had sharply increased. With this, we ensure that the spreading 

of HFMD cases is not merely affected by the number of susceptible but it is mainly caused 

by the contact rate when there is a cohort of children having a close contact to each other 

met the HFMD viruses (Podin et al., 2006; Roy & Halder, 2010).  

Further more, since Sarawak is a big state with an area of 123,449  where the 

population is dispersed throughout the country and quite majority of the children were 

staying in the rural area (Tiing & Labadin, 2008). Since the model mode is using mass 

action principle in which force of infection is to be applied, we need to consider the 

chances of susceptible to meet with the infectious individual (Keeling & Rohani, 2008). In 

the rural area, the chances of close contact between susceptible and infectious are lower 

compare to towns and cities area. The disease is showing the trend to spread among school 

going children in nurseries, kindergartens and primary schools (Tiing & Labadin, 2008). 

Therefore, after consider all the factors discussed and the results of sensitivity tests above, 

the initial condition used for susceptible was lower down and fixed as 10000 for our 

research study. At the same time, we estimate the value of N as 10000 to have relevant 

		km2
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total population involved by taking the ratio of population same as the number of 

susceptible.	

For the next section, numerical results for SEIPR model for the years of 2006, 

2010, 2011, 2012, 2013 and 2014 will be shown and analyzed by using threshold value, 

basic reproductive number, goodness of fit test and lastly the results will be summarized 

 

 

4.4.2 Numerical results for SEIPR model, year 2006 

 

From Section 4.4.1, sensitivity analysis tests by using the actual data in year 2006 show the 

best simulation result is the third trial sensitivity test. This can be seen at Figure 4.10 of 

which by visual inspection, the graphs are best fit during the first wave of the outbreak. 

The data is analyzed and in Table 4.3, it is shown that the third trial sensitivity test shows 

the least RMSE. Thus, we will use the third trial parameters to discuss the analytical 

analysis of threshold value and basic reproductive number for numerical results of 2006 

and hence, verified the SEIPR model by comparing the results to the SIR model discussed 

in Chapter 3. Initial conditions and parameter values are 		S =10000, 		E = 4,  		I = 4,  		P = 4,  

		R =0,  		k1 =0.0002923,  		k2 =0.0001077,  		k3 =0.00001731,  	β1 =0.00003,  	β2 =5.5,  

	β3 =1,  	β4 =1,  	β5 =0.00015,  	β6 =0.00006,  	β7 =0.07.  The SEIPR model plot is shown at 

Figure 4.16. 
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Figure 4.16: The predicted cases of the SEIPR model for susceptible, incubation period, 
infectious, post-infectious virus shedding and fully recovered over time, year 2006.  

 
From Figure 4.16, the susceptible curve drops sharply when infectious cases 

increasing rapidly. After about ten weeks, the infectious cases start to decrease, susceptible 

graph is bouncing back and fully recovered individual are increasing a lot. Post-infectious 

virus shedding graph shows similar wave with infectious graph but slower cycle as post-

infectious virus shedding cases only happens after the infectious period. Graph of 

incubation period increases slowly shows that the incubation period patients played a small 

role in contributing to the virus spreading. We will have two comparisons of the actual 
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infectious cases of year 2006 by using SEIPR model and SIR model in Figure 4.17 and 

4.18.  

 

 

 
 

Figure 4.17: Comparison of the best fit between SEIPR and SIR models. Parameters for 
SEIPR model are     

       

 β6 = 0.00006  and  Parameters for SIR model are   S = 9000,    

   α1 = 0.0001771,   and 
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Figure 4.17 is the comparison of the best fit for both SEIPR and SIR model. 

However, for the best fit by using the SIR model, the initial value of S is 9000 as 

mentioned in Section 3.4 which is different with SEIPR model, the initial S value is 10000. 

Both models with the best simulation show the best fit during the first wave of the HFMD 

outbreak. The RMSE calculated is slightly different with SEIPR model is approximately 

28.67 and SIR model is approximately 44.65. 

On the other hand, Figure 4.18 shows the comparison of the actual infectious cases 

and predicted infectious cases by using SEIPR model and SIR model when the initial value 

of S is same, S =10000. The predicted cases for SEIPR model still same as Figure 4.17, but 

the predicted cases for SIR model is different with Figure 4.17 as the parameters changed. 

Figure 4.18 shows that the prediction by using SEIPR model is well matched compare to 

the prediction by using SIR model with the real data at the first wave of the disease 

spreading. The predicted infectious cases able to shift faster and reach the peak almost the 

same time as the real infectious cases for SEIPR model. However, the prediction timing for 

infectious cases by using the SIR model has a slower cycle running.  

This may due to SEIPR includes both the incubation period and post-infectious 

virus shedding period as parts of the compartments have shown their abilities to contribute 

to the disease spreading help to speed up the virus spreading and hence, the prediction 

infectious cases can shift faster compare to SIR model. The RMSE calculated for SIR 

model is approximately 194.4. Thus, both comparison results verified that the SEIPR 

model is able to predict the first wave of the HFMD outbreaks as well with smaller RMSE.	
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Figure 4.18: Comparison of the best fit between SEIPR and SIR models with value of 
initial S is 10000. Parameters for SEIPR model are    

     

    β6 = 0.00006  and Parameters for SIR model are 

 

 and . 
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Although SIR model in Figure 4.17 has the best fit almost same as SEIPR model 

when the value of S is reduced to 9000, however, SIR model only provides the limited 

ability where only the infectious period is giving the transmission role. As mentioned in 

Section 3.5, a lot of studies have mentioned incubation period and post-infectious virus 

shedding period together with the infectious period contribute to the disease transmission 

(Chadsuthi & Wichapeng, 2018; Phutthichayanon & Naowarat, 2015; Podin et al., 2006; 

Shi et al., 2018; Teng et al., 2013). Therefore, we cannot ignore some of the known 

biological factors while studying the HFMD behaviors. With this, we present our SEIPR 

model by adding in the complete biological factors with the aim to provide a more suitable 

framework to deliberate the HFMD behaviors.  

Next, we will look at the threshold value. As mentioned in Section 2.3.3, threshold 

value is minimum proportion of the population in which creates the liability of disease 

spreading. Threshold value formulated is shown at equation (4.30). Figure 4.19 shows the 

real infectious cases and predicted infectious cases are having a good match at the first 

wave by visual inspection. The calculated threshold value benchmark is 4642, which 

means the outbreak occurs when the susceptible exceeds this value for the first wave of 

outbreak in 2006.  
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Figure 4.19: Susceptible, predicted infectious cases and actual infectious cases based on 
SEIPR model, year 2006. Dashed line indicated threshold value. 

 
Basic reproductive number, , on the other hand, is the average number of 

secondary infections produced by an infectious case in a complete susceptible population. 

The equation (4.26) allows the 		R0  to be found. The 		R0  consists of three terms, which are 

		R1 , 		R2  and 		R3 . After calculation, we found that 		R0  is 2.15 where the 		R1  is 0.05, 		R2 is 1.5 

and 		R3  is 0.6, indicating that the disease invaded the susceptible rapidly and outbreak 

occurred. The  of 2.15 means that every infectious child would infect almost two to 
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three children over the course of his or her entire infectious period. The first term, 		R1  is 

0.05, showing that the incubation group was mildly infectious but still had the capability to 

transmit the disease even the infected individual had not shown any symptom. In the 

meantime, the second term, 		R2  is 1.5, which means the infectious individual was the most 

contagious during the infectious period. During this time, the patients had shown the 

HFMD symptoms, thus, the patients would be advised to stay isolation and avoid having 

close contact with others. Meanwhile, 		R3 = 0.6, saying that after the symptoms subsided, 

the HFMD viruses continued to shed and still could cause the virus transmission and 

contributed to the number of infected cases. After this, regression analysis is done by using 

linear regression equation, correlation coefficient and residuals plot. As discussed in 

Section 2.3.4, regression analysis is a goodness of fit method to test the best match 

between the observed data and predicted data. The linear regression plot, linear regression 

equation, correlation coefficient,  and residuals plot are done by using the built-in 

regression analysis programs in the Matlab. We will use the regression analysis to test the 

goodness of fit for the predicted data and actual data up to 13 weeks for year 2006 

outbreak. 

 
 

 

 

 

 

 

		r2
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Table 4.5: Results of the observed values and predicted values by using SEIPR model, 
year 2006. 

Outbreak in 2006 
Weeks Actual infectious cases Predicted infectious cases 

0 4 4 
1 15 16 
2 53 46 
3 98 96 
4 105 104 
5 193 192 
6 435 433 
7 633 635 
8 1212 1218 
9 1234 1280 

10 1345 1349 
11 1282 1194 
12 1017 1021 
13 567 563 

	
 

Based on the results in Table 4.5, the predicted infectious data and observed 

infectious data are plotted and shown in Figure 4.20. The best fitting straight line as 

mentioned in Section 2.3.4.2 is found. The best fitting line or called as linear regression 

equation is   y = x +1.783 . Furthermore, as mentioned in Section 2.3.4.3, we will get the r-

square, , or being called as correlation coefficient in which is used to read the respond of 

the variability between the actual data and the predicted data around its mean. The higher 

the value of the  means that the variability of the actual and predicted data had higher 

responds around its mean and indicating a better fit. From the built-in program in Matlab, 

we get   r
2 = 0.9973 .		

	

		r2

		r2
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Figure 4.20: Simple linear regressions plot, year 2006. 

	
	

 

Then, in order to make the goodness of fit more reliable, we continue the testing by 

residuals plot. In Section 2.3.4.4, it mentioned that the residuals plot is a graph that all the 

residuals are plotted on the y-axis and predicted values are plotted on the x-axis. If the 

points in a residual plot are dispersed randomly around the horizontal line, thus the linear 

regression model is appropriate for the data. Hence, the validation of the mathematical 

model is convincing. 

 

	
Figure 4.21: Residuals plot, year 2006. 
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In Figure 4.21, the residuals plot shows that most of the residuals are dispersed near 

the horizontal line. Meanwhile, the correlation coefficient,  equals to 0.9973, means that 

99.73% of the variability of the data used from SEIPR prediction cases and the actual 

infectious cases for the year 2006 has the respond around its mean. With this, we conclude 

that the SEIPR model is stable for the prediction infectious cases for the first 13 weeks, 

year 2006. 

From Figure 4.19, we can see clearly the model can help to predict the second wave 

of the virus spreading, however, the prediction shows that the spreading of the disease is 

slightly advance compare to the real data. This may due to the changing transmission 

parameters (Lai et al., 2016) as after the peak infectious cases, public health personnel had 

taken the preventions and precautions into the account to educate the public to raise the 

awareness in order to curb the virus spreading. The changing of the contact pattern altered 

the transmission coefficient resulted the second wave of the outbreak had a different 

transmission compare with the first wave.  

As a result, the force of infection plays an important role in disease spreading. The 

outbreak can only occur when a cohort of children who have not been exposed to the 

disease encounter the viruses. Other transmission parameters that are 	β1 , 	β5  and 	β6  play 

the significant role in virus spreading as well because the transmission parameters take into 

account the close contact and transmission probability. When there are infectious 

individuals being introduced to the group and multiply with the transmission parameters, 

force of infection produces the newly infected individual.  

Finally, after the simulation and goodness of fit test, we conclude that the close 

contact between the susceptible and transmission parameters play the significant roles for 

causing the infectious dynamic wave. The validation of the SEIPR model is reliable and 

		r2
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stable to predict the infectious cases for the first wave of outbreak. For next sections, we 

will discuss the simulation done by using the clinical data for the years 2010, 2011, 2012, 

2013 and 2014 obtained from Sarawak Health Department. 

	

	

4.4.3 Numerical results for SEIPR model, year 2010 

 

As mentioned in Section 4.4.1, fixed parameter values taken to run the simulation are 

		S =10000,  β4 = 1 and Fitting	 values	 are	 	

 β5 = 0.00009 and  β6 = 0.00003. Actual	 values	 are	 		I =121,  		P =100,   

		k1 =0.0003212,    k2 = 0.000005192 	and   k3 = 0 .  

The above 		k1  and 		k2  were calculated by using the following formulae steps: 

		

k1 =

crude birth rate
1000 ×100

52 =

16.2
1000 ×100

52 =0.03212% per week

k2 =

crude death rate
1000 ×100

52 =

0.27
1000 ×100

52 =0.0005192% per week

 

The numerical result for SEIPR model, year 2010 is shown at Figure 4.22. The result 

shown is validated by the HFMD clinical data, year 2010.   

 

		R =0, 	β3 =1, 	β7 =0.07. 		E =50, 	β1 =0.00001,

	β2 =5.5,
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Figure 4.22: The predicted cases of the SEIPR model for susceptible, incubation period, 
infectious, post-infectious virus shedding and fully recovered over the time, year 2010.  
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Figure 4.23: Comparison of the actual infectious cases and predicted infectious cases, year 
2010. 

 
From Figure 4.23, by visual inspection, the comparison of the actual infectious 

cases and predicted infectious cases shows the best fit at the first wave for ten weeks. Since 

the predicted data and actual data reach the peak at the same time, next, we will look at the 

threshold value. By using the equation (4.30), the threshold value calculated is 8209. It can 

be seen from Figure 4.24.  
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Figure 4.24: Susceptible, predicted infectious cases and actual infectious cases based on 
SEIPR model, year 2010. Dashed line indicated threshold value. 

 
By comparing the threshold value to year 2006, threshold value in year 2010 is 

higher and transmission coefficients for 	β1 ,  	β5  and 	β6  are lower, this explains that the 

outbreak in 2010 had a smaller number of the infectious cases than year 2006. 

On the other hand, the basic reproductive number, 		R0 , is 1.22. Based on the 

formula from equation (4.26), 		R1 =0.018 , 		R2 =0.9  and 		R3 =0.3.  From the result, 
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infectious group was the most contagious. As mentioned earlier in Section 2.3.2, 		R0 >1 

indicates the outbreak occurs. In year 2010, based on the analysis, the outbreak was mainly 

contributed by infectious individuals but also was caused by post-infectious patients as 		R2  

itself could not reach value of one. Next, we will use the regression analysis to test the 

goodness of fit for the predicted data and actual data up to 10 weeks. 

 
Table 4.6: Results of the observed values and predicted values, year 2010. 

Outbreak in 2010 
Weeks Actual infectious cases Predicted infectious cases 

0 121 121 
1 129 136 
2 179 182 
3 193 203 
4 240 241 
5 227 243 
6 159 259 
7 274 274 
8 268 277 
9 285 280 

10 196 275 

 
The predicted infectious data and observed infectious data in Table 4.6 are plotted 

and shown in Figure 4.25. The best linear regression equation is 		y =0.8038x +24.43  and 

. 		r2 =0.6609



	
118	

 
Figure 4.25: Simple linear regressions plot, year 2010. 

 

 
Figure 4.26: Residuals plot, year 2010. 
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from the observed data (actual data). Next, the correlation coefficient, 		r2  equals to 0.6609, 

means that 66.09% of the variability of the data used from SEIPR prediction cases and the 

actual infectious cases for the year 2010 has the respond around its mean. The outliers do 

not bring big impact to the data as we can see in Figure 4.23, the predicted data and real 
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data have shown the same spreading duration for the first wave to reach the peak and thus 

we conclude that the SEIPR model is stable for the prediction infectious cases for the first 

10 weeks, year 2010. 

 

 

4.4.4 Numerical results for SEIPR model, year 2011 

 

Based on the actual infectious cases in year 2011 (Figure 4.28), we decide to consider two 

waves in doing the simulation because the first wave is not an outbreak. From our 

verification done in Section 4.4.1, our model able to predict the first wave of the outbreak 

each year. So, since the outbreak starts nearly after week 21 in 2011, we separate the study 

case to two parts, which are first dynamic wave from zero week to week 21 and second 

dynamic wave from week 21 to week 50. 21 week as the cut-off point taken from the 

middle point by estimation between the endemic and first fluctuating outbreak points. In 

2011, initial conditions and parameter values taken to run the simulation are as follows:  

 

A First dynamic waves of the HFMD, from zero week to week 21 

Fixed parameter values taken to run the simulation are 

 β4 = 1 and Fitting	 values	 are	 	

 β5 = 0.0001 	and	 .	 Actual	 values	 are	    

  k2 = 0.000005154 	and   k3 = 0 .  

 

 

		R =0, 		S =10000, 	β3 =1, 	β7 =0.07. 		E =10, 	β1 =0,

	β2 =5.5, 	β6 =0 		I =33, 		P =10, 		k1 =0.0003308,
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B Second dynamic waves of the HFMD, from week 21 to week 50 

Fixed parameter values taken to run the simulation are   β4 = 1  and  

Fitting values for    R = 350  and   S = 9700 are taken based on the estimation from the 

graphs after 21st week by visual inspection and best fit of the simulation, whereas 

  P = 10 and   E = 10  are fitting values taken same as first wave while  

  β5 = 0.00008  and are fitting values of the best fit Actual values 

are    k2 = 0.000005154  and   k3 = 0 .  

 

The numerical result for SEIPR model, year 2011 is shown at Figure 4.27. The result 

shown is validated by the HFMD clinical data, year 2011. Figure 4.27 shows the dynamic 

characteristic of the SEIPR model. The dashed line separates the dynamic waves to two 

parts, first dynamic wave with total of 21 weeks and second dynamic wave is shown after 

week 21. The predicted cases in Figure 4.27 is enlarged in Figure 4.28. 

 

 

 

 

 

 

 

	β3 =1, 	β7 =0.07.

I =25,

β1 =0.000025,

	β2 =5.5, β6 =0.000032

		k1 =0.0003308,
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Figure 4.27: The predicted cases of the SEIPR model for susceptible, incubation period, 
infectious, post-infectious virus shedding and fully recovered over the time, year 2011.  
Dashed line separated the dynamic waves to two parts, first 21 weeks and after 21 weeks. 

 
Whereas, from the Figure 4.28, the best fit between the predicted data and the 

observed data is lasted for 45 weeks by visual inspection. By looking at the infected 

behavior curve from the first dynamic wave, there was no outbreak occur. However after 

about 21 week, outbreak occurred. Next, we proceed to the threshold value and . 
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Figure 4.28: Comparison of the actual infectious cases and predicted infectious cases, year 
2011. Dashed line separated the dynamic waves to two parts, first 21 weeks and after 21 
weeks. 

 
As mentioned in Section 4.3.5, when =1, it is given us the disease-free 

equilibrium point and also if =1, it means that there will be approximately the same 

number of infected cases all the time, which the endemic occur. Virulence during the first 

wave do not have the ability to attack the susceptible, thus, there is no benchmark to decide 

the minimum proportion of the population to create the liability of disease spreading. 

However, by looking at Figure 4.27, there is slightly dropping of the susceptible curve and 
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slightly increasing at the recovery curve at the first wave. This explains that when = 1, 

there were still infected cases but the number of infected cases are approximately same all 

the time and hence, no outbreak occurs. 

For second wave, the threshold value is 8580 and  is 1.13. The scenario explains 

that after 21 weeks, the virus meets the cohort and outbreak occurs. From the calculation, 

		R0  is obtained from incubation period patients with 		R1 = 0.044, infectious patients,		R2 = 

0.78 and post-infectious patients, 		R3 = 0.31. The outbreak occurs due to the increasing 

transmission coefficients from 	β1  and 	β6 . The incubation period patients and post-

infectious patients together with the infectious patients play the role to transmit the disease 

and cause the outbreak around the middle of the year. This may due to the remaining 

disease in the population at the beginning of the year caused the outbreak when the viruses 

met the cohort. 

On the other hand, from Figure 4.29, for the outbreak to reach the peak, the 

predicted threshold value calculated is 8580. Figure 4.30 is enlarged figure for predicted 

infectious cases and actual infectious cases which appeared too small at the bottom of 

Figure 4.29. Since the timing for actual and predicted infectious cases to reach peak 

number are different, we can see from the Figure 4.30, the actual infectious reached the 

peak faster (dotted line) compare to the predicted data (dashed line). Thus the threshold 

value for year 2011 is recommended for reference only. The actual threshold value was 

higher than 8580. By comparing with year 2010, the threshold value is higher and the  is 

lower in year 2011, means that less people were infected in year 2011 compare to 2010. 

Next, the goodness of fit test is done by using regression analysis for the predicted data and 

actual data up to 45 weeks. 

		R0

		R0

		R0
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Figure 4.29: Susceptible, predicted infectious cases and actual infectious cases based on 
SEIPR model, year 2011. Dashed line indicated threshold value of predicted data. Dotted 
line indicated threshold value of real data. Dashed-dotted line separated the dynamic waves 
to two parts, first 21 weeks and after 21 weeks. 
	
 

          

Figure 4.30: Enlarge figure for predicted infectious cases and actual infectious cases from 
Figure 4.29. 
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Table 4.7 shows the predicted and actual data. Figure 4.31 shows the best fitting 

straight line. Linear regression equation obtained as . Furthermore, 

correlation coefficient,  found is 0.8201, means that 82.01% of the variability of the data 

used from SEIPR prediction and the actual infectious cases for the year 2011 has the 

respond around its mean.  

	
Table 4.7: Results of the observed values and predicted values, year 2011. 

Outbreak in 2011 
Weeks Actual infectious cases Predicted infectious cases 

0 33 33 
1 28 36 
2 36 36 
3 23 35 
4 18 35 
5 35 35 
6 39 34 
7 29 33 
8 35 33 
9 54 32 

10 36 32 
11 36 31 
12 27 30 
13 34 30 
14 26 29 
15 29 29 
16 34 28 
17 26 27 
18 27 27 
19 15 26 
20 19 25 
21 22 25 
22 28 29 
23 34 33 
24 26 34 
25 33 37 
26 39 41 
27 50 48 
28 46 51 
29 62 56 

		y =1.031x +0.874

		r2
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Table 4.7 continued 
 

30 82 61 
31 126 64 
32 136 71 
33 115 76 
34 73 79 
35 86 86 
36 88 90 
37 85 93 
38 109 107 
39 110 107 
40 104 108 
41 89 113 
42 111 117 
43 133 124 
44 130 127 
45 123 128 

 

 

Figure 4.31: Simple linear regressions plot, year 2011. 
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Figure 4.32: Residuals plot, year 2011. 

 

 

Meanwhile from residuals plot (Figure 4.32), most of the residuals are randomly 

dispersed near the x-axis. With this, we conclude that the SEIPR model is stable for the 

prediction infectious cases for the year 2011 up to 45 weeks. 

 

 

4.4.5 Numerical results for SEIPR model, year 2012 

 

Fixed parameter values taken are  β4 = 1and 	Fitting	

values	 are	 	 and	 β5 = 0.000142 	and	 .	 Actual	

values	are	      k2 = 0.000004923 	and   k3 = 0 . The numerical 

result for SEIPR model, year 2012 is shown at Figure 4.33. The result shown is validated 

by the HFMD clinical data, year 2012.  
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Figure 4.33: The predicted cases of the SEIPR model for susceptible, incubation period, 
infectious, post-infectious virus shedding and fully recovered over the time, year 2012.  
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Figure 4.34: Comparison of the actual infectious cases and predicted infectious cases, year 
2012. 

	
	
	

From Figure 4.34, by visual inspection, the best fit between the predicted data and 

the observed data is at the first wave for first 15 weeks. Threshold value found (Figure 

4.35) is 6501 and is 1.54, where = = 0.018+1.42+0.1, thus outbreak 

occurred. By comparing to the year 2011, the threshold value is lower and  is higher, 

indicating the infected cases were a lot more compare to the year 2011. The fast spreading 

was helped by the transmission contributed from infectious patients. Higher value of  
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leads to . Figure 4.34 shows the actual infectious cases for second wave happen 

faster than predicted cases. This may due to the changing of the transmission coefficients. 

Thus, based on our study in this case, we hope that the public health personnel can take the 

intervention right after the first outbreak to control the next spreading cycle.  

	
	
	
	

 

Figure 4.35: Susceptible, predicted infectious cases and actual infectious cases based on 
SEIPR model, year 2012. Dashed line indicated threshold value. 
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Table 4.8 shows the results of the observed values and predicted values. Next, we 

will discuss the regression analysis based on Table 4.8, Figure 4.36 and Figure 4.37. 

	
Table 4.8: Results of the observed values and predicted values, year 2012. 

Outbreak in 2012 
Weeks Actual infectious cases Predicted infectious cases 

0 62 62 
1 69 93 
2 90 135 
3 107 195 
4 130 285 
5 214 375 
6 261 480 
7 492 590 
8 697 661 
9 668 668 

10 449 630 
11 452 563 
12 435 484 
13 345 406 
14 338 346 
15 317 315 

 

 

Figure 4.36: Simple linear regressions plot, year 2012. 
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Simple linear regression plot can be seen in Figure 4.36, and linear regression 

equation found is   y = 0.9353x − 47.21 . The correlation coefficient,  is 0.8557, means 

that 85.57 % of the variability of the data used from SEIPR prediction and the actual 

infectious cases for the year 2012 has the respond around its mean. 

 

	

 

Figure 4.37: Residuals plot, year 2012. 

	
	
	
	

Meanwhile from Figure 4.37, the residuals plot, we can see that most of the 

residuals were randomly dispersed near the x-axis. With this, we conclude that the SEIPR 

model is stable and able for the prediction infectious cases for the first 15 weeks, year 

2012.  
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4.4.6 Numerical results for SEIPR model, year 2013 

 

Fixed parameter values taken are  β4 = 1 and  Fitting 

values are  and  β5 = 0.0001  and . Actual 

values are      k2 = 0.000004313  and   k3 = 0 . The 

numerical result for SEIPR model, year 2013 is shown at Figure 4.38. The result shown is 

validated by the HFMD clinical data, year 2013.   

 

 

Figure 4.38: The predicted cases of the SEIPR model for susceptible, incubation period, 
infectious, post-infectious virus shedding and fully recovered over the time, year 2013.  
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From Figure 4.39, we can see that the best fit between the actual infectious data and 

predicted infectious data is at the first twenty-two weeks of the first wave outbreak. The 

threshold value found is 7304 (Figure 4.40). While =1.37 indicating outbreak occurred. 

The outbreak was mostly contributed by infectious patients which the 		R2 =1 . However the 

incubation period patient and post-infectious patients also contributed the transmission as 

both had 		R1 =0.069  and		R3 =0.3 . The threshold value is higher and the 		R0  is lower than 

year 2012. Thus, the infected cases were lower than 2012. However, if compare to the 

years 2010 and 2011, the threshold value is lower and 		R0  is higher, means that the infected 

cases in year 2013 were more compare with the years 2010 and 2011. 

 

		R0
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Figure 4.39: Comparison of the actual infectious cases and predicted infectious cases, year 
2013. 
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Figure 4.40: Susceptible, predicted infectious cases and actual infectious cases based on 
SEIPR model, year 2013. Dashed line indicated threshold value. 

 
Next, like previous years, regression analysis is done for 2013 based on Table 4.9, 

Figure 4.41 and Figure 4.42. Linear regression equation in Figure 4.41 obtained is. 

		y =0.8908x +7.797.  The correlation coefficient, 		r2 ,  found is 0.8653, means that 86.53 % 

of the variability of the data used from SEIPR prediction and the actual infectious cases 

has the respond around its mean.  
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Table 4.9: Results of the observed values and predicted values, year 2013.  

Outbreak in 2013 
Week Actual infectious cases Predicted infectious cases 

0 143 143 
1 207 207 
2 200 241 
3 247 290 
4 269 347 
5 231 398 
6 401 441 
7 422 470 
8 483 482 
9 469 468 

10 436 434 
11 371 393 
12 264 354 
13 306 318 
14 329 313 
15 278 276 
16 214 226 
17 219 220 
18 202 202 
19 186 183 
20 130 157 
21 122 145 
22 154 144 

 

 

 

Figure 4.41: Simple linear regressions plot, year 2013. 
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Figure 4.42: Residuals plot, year 2013. 

	

	

Residuals plot (Figure 4.42) shows that most of the residuals are randomly 

dispersed near the x-axis. With this, we conclude that the SEIPR model is stable and able 

for the prediction infectious cases for the first twenty-two weeks, year 2013. 
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result for SEIPR model, year 2014 is shown at Figure 4.43. The result shown is validated 

by the HFMD clinical data, year 2014.  

 

 

Figure 4.43: The predicted cases of the SEIPR model for susceptible, incubation period, 
infectious, post-infectious virus shedding and fully recovered over the time, year 2014.  
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Figure 4.44: Comparison of the actual infectious cases and predicted infectious cases, year 
2014. 

 

 

By visual inspection, Figure 4.44 shows the best fit between the actual infectious 

data and predicted infectious data is at the first thirty weeks of the first wave outbreak. 

Threshold value calculated is 7347 and 		R0 	calculated	is	1.36.  
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Figure 4.45: Susceptible, predicted infectious cases and actual infectious cases based on 
SEIPR model, year 2014. Dashed line indicated threshold value. 

	
 

From Figure 4.45, threshold value shown is 7347. While  indicating 

outbreak occurred. The outbreak was mostly contributed by infectious patients which the 

 However  and  show mild infectious characteristic and also 

contributed to the transmission. On the other hand, Table 4.10, Figure 4.46 and Figure 4.47 

are used for regression analysis. 
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Table 4.10: Results of the observed values and predicted values, year 2014. 

Outbreak in 2014 
Weeks Actual infectious cases Predicted infectious cases 

0 68 68 
1 72 70 
2 109 89 
3 142 108 
4 127 126 
5 176 148 
6 162 156 
7 245 200 
8 259 229 
9 263 260 

10 304 281 
11 288 288 
12 284 312 
13 222 226 
14 328 338 
15 328 343 
16 343 342 
17 319 331 
18 309 319 
19 278 302 
20 330 297 
21 248 271 
22 246 253 
23 208 242 
24 174 218 
25 188 206 
26 189 195 
27 172 183 
28 133 173 
29 123 164 
30 104 158 

 

Table 4.10 shows the observed values and predicted values. The linear regression 

plot in Figure 4.46 has the equation   y = 0.909x +19.06 and the correlation coefficient, 
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shows that 85.15% of the variability of the data used from SEIPR prediction and the 

actual infectious cases for the year 2014 has the respond around its mean 

 

 
Figure 4.46: Simple linear regression plot, year 2014. 

	
	
	

 

Figure 4.47: Simple linear regression plot, year 2014. 
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.Residuals plot in Figure 4.47 has most residuals randomly dispersed near the x-

axis. Hence, we conclude that the SEIPR model is stable and able for the prediction 

infectious cases for the first thirty weeks, year 2014. 

 

 

4.5 Comparison of theoretical analysis and numerical results for the year 2006, 

2010, 2011, 2012, 2013 and 2014 

 

SEIPR model had been used to analyze the transmission dynamics of HFMD for year 

2006, 2010, 2011, 2012, 2013 and 2014. The comparison results between the predicted 

data from SEIPR model and actual clinical data throughout the study years verified that 

SEIPR model is stable to predict the infectious cases especially for the first wave of the 

outbreak. Regression analysis is used to test the goodness of fit between the actual 

infectious data and predicted infectious data for our study. The summarized results are 

shown in the Table 4.11 and Table 4.12. 

 
 
	
Table 4.11: The initial and parameters values. 

Initial 
and 

Parame- 
ters 

Values 

Outbreak 
2006 2010 2011 2012 2013 2014 

First 
Wave 

Second 
Wave 

	S  10,000 10,000 10,000 9700 10,000 10,000 10,000 
	E  4 50 10 10 16 50 10 
	I  4 121 33 25 62 143 68 
	P  4 100 10 10 16 50 75 
	R  0 0 0 350 0 0 0 
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Table 4.11 continued 
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Table 4.12: Threshold values, basic reproductive numbers ( ) and correlation coefficient 

(		r2 )  
 

Values Outbreak 
2006 2010 2011 2012 2013 2014 

First 
Wave 

Second 
Wave 

Threshold 
Values 

4642 8209 10,00
0 

8580-9000 6501 7304 7347 

		R0 =

		R1 +R2 +R2  

2.15= 
0.05 
+1.5 
+0.6 

1.22= 
0.018 
+0.9 
+0.3 

1= 
0 

+1 
+0 

1.13= 
0.044 
+0.78 
+0.31 

1.54= 
0.018 
+1.42 
+0.1 

1.37= 
0.069 

+1 
+0.3 

1.36= 
0.06 
+1.1 
+0.2 

Correlation 
Coefficient, 

		r2  

0.9973 0.6609 0.8201 0.8557 0.8653 0.8515 

 

		k1 	×10−4 	×10−4 	×10−4 	×10−4 	×10−4 	×10−4 	×10−4

		k2 	×10−4 	×10−6 	×10−6 	×10−6 	×10−6 	×10−6 	×10−6

		k3 	×10−5

	β1 	×10−5 	×10−5 	×10−5 	×10−5 	×10−5 	×10−5

	β2
	β3
	β4
	β5 	×10−4 	×10−5 	×10−4 	×10−5 	×10−4 	×10−4 	×10−4

	β6 	×10−5 	×10−5
	×10−5

	×10−5 	×10−5 	×10−5

	β7

		R0
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Figure 4.48: Comparison between the transmission coefficients and basic reproductive 
numbers. 

 
From Figure 4.48, it is notice that 	β5 , the transmission coefficient from infectious 

individual to susceptible played the main role to spread the disease throughout the years. 

However, 	β1  and 	β6  cannot be ignored as both transmission coefficients gained from 

incubation period patients and post-infectious patients changed the dynamic behaviors of 

HFMD. We learned that from the simulation done by SEIPR model, the parameters 	β1  and 

	β6  help to speed up the transmission process by shifting the infectious cases curve to reach 

the peak of the curve within shorter duration. This means, the viruses can invade the 

susceptible rapidly when they met the cohort. Throughout this research study, the  is 

recorded at the range between 0.8	×10−4  to 1.5	×10−4 ,  is recorded at the range between 

0.1	×10−4  to 0.38	×10−4  and  is recorded at the range between 0.1	×10−4  to 0.6	×10−4 .  
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On the other hand, basic reproductive numbers,   R0 , if more than one, then it is 

indicating that the outbreak occurs. As seen in Table 4.12, infectious patients contribute to 

the  R2  are the most contagious as they are the main role to infect more people during their 

infectious time. This is followed by post-infectious patients,   R3  and incubation period 

patients,   R1 .	 Interestingly, in year 2011 during the first wave of the infection, the   R0  

calculated is one, this means the disease free equilibrium point is achieved and endemic 

occurred. We can see that during the disease free duration, 	β1  and 	β6  do not play any role 

in the transmission and   R1  and   R3  are zero, this may due to the threshold condition of 

reaching the number of cohort was not met. Also from Table 4.12, the basic reproductive 

numbers,   R0  recorded are between 1.13 and 2.15 during the outbreaks.   R1  is recorded at 

the range between 0.018 to 0.069,   R2  is recorded at the range between 0.78 to 1.5 and   R3  

is recorded at the range between 0.1 to 0.6. From the records, the   R2  has not exceeded one 

in year 2010, 2011 and 2013. Thus, the outbreaks to be occurred were helped by 

incubation period and post-infectious patients.  

As mention in Section 2.3.3, threshold value is the minimum proportion of the 

population in which creates the liability of disease spreading. From Figure 4.49, we notice 

that when the value of   R0  is higher, the threshold value is smaller. Meanwhile, from 

Figure 4.48, when   R0  is higher, the transmission coefficient also higher. The results shown 

are what is expected because when threshold value is small, the transmission coefficient is 

high, which means the average number of contacts any person in the population is higher 

and virus is easily spreading within the cohort. As a consequence, the transmission is 

aggressive and more people being infected, so   R0  becomes higher. 
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Figure 4.49: Comparison between the threshold values and basic reproductive numbers. 

  

 

The goodness of fit tests chosen to validate the data is regression analysis. 

Correlation coefficient,  and residuals plot are used. As mentioned in Section 2.3.4.3, the 

higher the value of the 		r2  means that the variability of the actual and predicted data has 

higher respond around its mean and indicating a better fit. In year 2010, 		r2  is 0.6609, 

means that 66.09 % of the predicted infectious and actual infectious data have the 

variability responds around its mean. Whereas in year 2006, and from year 2011 until year 

2014, the variabilities of the actual infectious and predicted infectious data have higher 

respond around its mean, range between 82% to 99%, indicating a good fit between the 

predicted and actual data.  
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transmission coefficients. The model validation done by using the predicted infectious data 

and actual infectious data is reliable as those data are in the best matched. Hence, SEIPR 

model is stable and able to predict the HFMD cases especially during the first wave of the 

outbreaks. 

 

 

4.6 Summary   

 

In Chapter 4, a formulation of SEIPR model has been discussed. The inclusion of the post-

infectious virus shedding period into the infected compartments formed the SEIPR model. 

The numerical results in Section 4.4 is gained from the simulation ran by SEIPR model by 

using fourth-order Runge Kutta method, the built-in function in MatLab and had been 

tested for validation by using goodness of fit test based on the predicted infectious data and 

actual infectious data. The goodness of fit test showed that there were good fit between the 

predicted infectious data and actual infectious data within the periods chosen. Hence, by 

using the parameters obtained from the simulation, we calculated the threshold values and 

basic reproductive numbers,  for years 2006, 2010, 2011, 2012, 2013 and 2014. The 

threshold value for each year is 4642 people in 2006, 8209 people in 2010, 10000 people 

in first wave of the outbreak in 2011, 8580-9000 people in second wave of the outbreak in 

2011, 6501 people in 2012, 7304 people in 2013 and 7347 people in 2014. Whereas the  

acted correspondingly where when the value of  is higher, the threshold value is smaller. 

 in year 2006 is 2.15, 1.22 in year 2010, 1.00 in first wave of the outbreak in year 2011, 

1.13 in second wave of the outbreak in year 2011, 1.54 in year 2012, 1.37 in year 2013 and 

		R0

		R0

		R0

		R0
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1.36 in year 2014. On the other hand, it is observed that the transmission coefficient gained 

from the simulation ran by SEIPR model is higher when  is higher. With this, we 

conclude that the transmission coefficients play an important role in controlling the HFMD 

outbreak. Hence, in order to control the outbreaks, the transmission coefficient needs to be 

reduced which means the number of any contact person within the infected region needs to 

be controlled. 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATIONS 

 

 

5.1 Introduction  

 

SEIPR model was formulated to satisfy the first objective of this thesis of which the aim of 

the model was to incorporate the virus biological factors namely the incubation, infectious 

and post infectious periods in order predict the infectious cases. As shown in Chapter 3 and 

Chapter 4, analysis of the models have been done, numerical results are obtained and being 

analyzed, methods of goodness of fit test are used to validate the results and also results 

obtained are discussed and summarized. In this chapter, contribution of the research works, 

limitation and future work will be discussed. 

 

 

5.2 Contribution 

 

The SEIPR model in this thesis has incorporating the biological factors of the viruses 

during the incubation period, infectious period and post-infectious virus shedding period 

(CDC, 2015; Han et al., 2010; Li et al., 2013; Mandal, 2017; Ministry of Health, 2014; 

Podin et al., 2006; Roy & Halder, 2010; Teng et al., 2013) that make a more reliable 

predicting method of the disease outbreak. The transmission coefficients used are based on 

the best results after simulation of the model implied the average number of contacts any 



	
152	

person in the population creates the chance of disease spreading when they meet an 

infected individual that is introduced to the population. The higher the transmission 

coefficients, the higher  will be produced and the faster the disease is spreading. At the 

same time, from the  calculating, there are 		R1  and 		R3  besides 		R2  which are contributed 

by incubation period and post-infectious patients, help to speed up the transmission 

process. 		R1  shows that the transmission happens even the patients have shown no 

symptoms and this is the blind spot for disease prevention. In the other hand, 		R3  is 

contributed by the post-infectious patients (clinically recovered) who are post-infectious 

virus shedding carrier with the disease symptoms have subsided.  

To date, it was reported that vaccine EV71 has started being used for infants and 

children in China. The vaccine EV71 does not provide life long immunity to the vaccinated 

individuals. At the same time, the vaccinated individuals still can be infected by other 

HFMD viruses besides virus EV71 (Shi et al., 2018; Tan & Cao, 2018). Meanwhile, in 

other countries, there is no vaccine and specific treatment applied to protect against the 

virus (Ministry of Health, 2014; SHD, 2018). Thus, to implement the intervention, we 

suggest that all children who are diagnosed as HFMD patients should be quarantined to at 

least another one more week after symptoms subside, as the clinically recovered patients 

are still being able to transmit the disease. And, for incubation period patients, are hardly 

to be diagnosed by visual inspection, thus, all the susceptible should avoid to go nearer to 

those who have close contact with the infectious patients as they may have been infected 

but no symptoms shown.  

Besides, threshold value found is to predict the minimum proportion of population 

that creates the liability of the disease outbreak. By comparing the threshold values and 

		R0

		R0
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transmission coefficients results throughout the years, when the cohort condition met and 

the average number of contact any person in the population is high, once an infected 

individual is introduced to the group, the disease can spread rapidly with a smaller 

threshold value indicating more people will be infected.   

As a conclusion, SEIPR shares a comprehensive description of the HFMD 

transmission dynamics. Since the HFMD is very contagious, thus, with all the reliable 

results obtained from our research, we hope that more effective control interventions can 

be planned by public health personnel to reduce the effect of the future outbreaks.  

 

 

5.3 Limitation 

 

The SEIPR model discussed in this thesis did not study much about the second wave of the 

outbreaks. The reason we did not focus on the second wave is that after the first wave of 

the outbreaks, the public health personnel would take the preventive actions in order to 

control the disease. Once the public is acknowledging with the outbreaks, people will start 

to avoid close contact with the infected patients, prevent to go to the crowded area and 

aware with the hygiene implementation. With this prevention acts, the number of actively 

susceptible provided for the virulence has been reduced causing the contact rate is low 

which means the force of infection is not aggressive and resulted that transmission 

coefficients are lower compare to the first wave of outbreak. Thus, the prediction based on 

the model would not be accurate, as the transmission coefficients have changed (Lai et al., 

2016).  
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 Also, the number of susceptible and incubation patients are from the best 

assumption as real number of the susceptible and incubation patients are unable to be 

found accurately. Besides, parameter 	β2 , the rate at which an asymptomatic patient 

develops the symptoms is the best result after the simulation running. Since 	β2  can be 

from one day to two weeks (CDC, 2015; Lai et al., 2016; Mandal, 2017; Ministry of 

Health, 2014; Podin et al., 2006), we can only get the rate by testing the simulation within 

the correct range.  

 On the other hand, parameter 	β4 , the rate at which a clinically recovered individual 

fully recovered is also the best result after running. Although for most of the cases, the 

virus will continue to shed for at least one week after symptoms gone, however, for some 

cases, the post-infectious virus still can continue to shed for another few more weeks as 

mentioned in Section 2.2. 

 

 

5.4 Future work 

 

The SEIPR model has helped to predict the HFMD based on the biological factors of 

HFMD. The model can predict the infectious cases with a good match with the actual 

infectious data during the first waves of the outbreaks. However, most of the second waves 

of the outbreaks are not accurate based on the simulation. This may due to transmission 

coefficients have changed (Lai et al., 2016). Thus, some refinements can still be carried out 

to improve the performance of the model by allowing the transmission parameters 

changing and also may include the prevention factor as part of the compartments in order 
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to improve the HFMD second wave transmission dynamics. With more compartments 

added in, the parameter values can have more sensitivity analysis and the prediction results 

can be more reliable. 
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