

Faculty of Engineering

DESIGN OF CMOS POWER AMPLIER

Khoo Kian Hua

Bachelor of Engineering with Honours (Electronics and Telecommunication Engineering) 2011

UNIVERSITI MALAYSIA SARAWAK

	BORANG PENGES	TAHAN STATUS TESIS		
Judul:	DESIGN OF C	MOS POWER AMPLIFIER		
	SESI PENGA	JIAN: 2010/2011		
Saya	ĸ	HOO KIAN HUA		
	ibenarkan tesis * ini disimpa vak dengan syarat-syarat kegur	an di pusat Khidmat Maklumat Akademik, Universiti naan seperti berikut: 、		
 Pusat Khidinat tujuan pengajia Membuat pend Pusat Khidmat ini sebagai bah 	in sahaja. igitan untuk mambangunkan P	siti Malaysia Sarawak dibenarkan inembuat salinan untuk angkalan Data Kandungan Tempatan. siti Malaysia Sarawak dibenarkan inembuat salinan tesis pengajian tinggi.		
SULIT	SULIT (Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RASMI 1972)			
TERH/	TERHAD (Mengandung) maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan).			
TIDAK TERH/				
		Disahkan oleh		
14	D NGAN PENULIS)	(TANDATANGAN PENYELIA)		
(TANDATA	NGAN PENOLIS)	(TANDATA YIAN PERTELIA)		
Alamat tetap:	2, Jalan Melur 6, Taman Melur, 31000 Batu Gajah, Perak.	En. Ng Liang Yew Nama Penyelia		
Tarikh	13/6/2011	Tankh 13 Jane 2011		

CATATAN

- * Tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah, Sarjana dan Sarjana Muda.
- ** Jika tesis ini SULIT atau TERHAD, sıla lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT dan TERHAD.

APPROVAL SHEET

Final Year Project below:

: Design of CMOS Power Amplifier Title

Author : Khoo Kian Hua

Matric No. : 18716

Hereby read and approved by:

tiangfles

En. Ng Liang Yew Supervisor

13 June 2011 Date

DESIGN OF CMOS POWER AMPLIFIER

KHOO KIAN HUA

•

This thesis is submitted to

Faculty of Engineering, Universiti Malaysia Sarawak in partial fulfillment of the requirements for the degree of Bachelor of Engineering with Honours (Electronic and Telecommunication Engineering)

2010/2011

To my beloved parents, family members and friends.

.

ACKNOWLEDGEMENT

I would like to express my sincere thanks to every individual that has offered their help and guidance to me during the entirety of the project.

I am keen to show my utmost gratitude and appreciation to my supervisor, Mr Ng Liang Yew for his excellence patient, invaluable advice and continue support for this Final Year Project. Without his encouragement and guidance, I would not have completed this project.

I am also thankful to my colleagues in the Universiti Malaysia Sarawak for their support, advice and assistance.

Last but not least, my heartfelt thanks to my family members for their encouragement and support during the process of completing this project.

ABSTRAK

Penguat kuasa merupakan penghantar terima wayarles komponen yang penting dalam sistem komunikasi. Penguat kuasa menggunakan frekuensi radio untuk penghantaran data antara infrastruktur wayarless bergerak. Teknologi CMOS digunakan dalam penguat kuasa untuk mereka sistem integrasi pada chip. Ini disebabkan CMOS meningkatkan operasi kelajuan melalui pengkecilan saiz. Sebagai komponen yang mengguna kuasa yang tinggi di hahagian depan frekuensi radio, mereka penguat kuasa yang mempunyai prestasi yang tinggi merupakan salah satu cabaran dalam penghantar terima wayarles. Penguat kuasa prestasi boleh ditentukan dari segi kelinearan isyarat, kuasa keluaran dan gandaan kuasa. Penguat kuasa kelas AB telah dicadangkan untuk meningkatkan prestasi penguat kuasa beroperasi dalam frekuensi 3 GHz dengan kuasa masukan 8 dBm dan voltan bekalan 3 volt. Projek ini adalah untuk mereka cipta sebuah penguat kuasa RF CMOS bagi komunikasi bergerak.

ABSTRACT

Power amplifier (PA) is an important component of wireless transceiver in communications system. PA uses radio frequency for transmission between mobile wireless infrastructures. Complementary Metal Oxide Semiconductor (CMOS) technology is being used for design of system integration on chip in PA. This is due to its improved operation speed through downsizing. Being the most power hungry component of radio frequency (RF) front end, designing a high performance power amplifier is one of the most challenging parts in the wireless transceiver. The performance of power amplifier can be determined in terms of signal linearity, output power, and power gain. A proposed PA is a single-ended class AB cascode CMOS power amplifier. The simulation tool used in this project is LTspice IV. The power amplifier is operated at 3 GHz with an input power of 8 dBm and a supply voltage of 3 volt. This project is to design a RF CMOS power amplifier for mobile communications.

TABLE OF CONTENTS

		Contents	Pages
Acknowledg	gement		ïi
Abstrak			iii
Abstract			iv
Table of Co	ntents		v
List of Tabl	es		viii
List of Figu	res		ix ·
List of Abb	reviatio	ns	xii
Chapter 1	Intro	duction	1
	1.1	CMOS Technology	1
	1.2	Communication System	3
		1.2.1 Mobile Communication System	4
	1.3	Radio Frequency (RF) Power Amplifier (PA) on	8
		Mobile Communication System	
	1.4	Problem Statement	8
	1.5	Objectives	9
	1.6	Scope of the project	9
	1.7	Project Outlines	9
Chapter 2	Liter	ature Review	11
	2.1	Power Amplifier (PA) Fundamentals	11
	2.2	Power Amplifier (PA) Performance Indicators	12

		2.2.1	Output Power	12
		2.2.2	Power Gain	13
		2.2.3	Efficiency	13
		2.2.4	Linearity	14
	2.3	Linear	Power Amplifier	16
	2.4	Switch	ing Mode Power Amplifier	21
	2.5	Prior W	/ork on Integrated Power Amplifier (PA)	26
Chapter 3	Meth	odology		33
	3.1	Introdu	iction	33
	3.2	Project	Flow Chart	33
	3.3	Project	Simulation Flow Chart	35
	3.4	Simula	tion tool	36
	3.5	Techno	logy Process	36
	3.6	MOSE	ET Model	37
	3.7	Design	Specifications	37
	3.8	Power	Amplifier (PA) Design	39
Chapter 4	Resul	ts and D	Discussions	43
	4.1	Introdu	letion	43
	4.2	Analys	is of output signal	43
	4.3	Analys	is of output power	45
	4.4	Analys	is of power gain	47
	4.5	Analys	is of voltage gain	49
Chapter 5	Conc	lusions a	and Recommendations	52
	5.1	Conclu	sions	52
	5.2	Recom	mendations	53

References

•

LIST OF TABLES

Table

Pages

1.1	CMOS manufacturing process	3
1.2	Mobile Telephony Technologies and Standards	7
2.1	Summary of power amplifier classes	24
3.1	Power amplifier specifications	37
4.1	Simulation summary of class AB cascode power	
	amplifier	48

.

LIST OF FIGURES

Figures

Pages

1.1	Basic CMOS inverter	1
1.2	Cross section of CMOS inverter	2
1.3	Functional block diagram of a communication system	3
2.1	Power amplifier circuit	12
2.2	1-dB Compression characteristic	14
2.3	Third order intercept	14
2.4	Output signal of class A power amplifier	16
2.5	Output signal of class B power amplifier	16
2.6	Output signal of class AB power amplifier	17
2.7	Output signal of class C power amplifier	18
2.8	Q-point of class A, AB, B and C power amplifier	18
2.9	Conduction angles relations for linear power amplifier	19
2.10	Class D power amplifier	
	(a) Circuit Implementation	
	(a) Equivalent Circuit	
	(b) Voltage and Current Waveform	21
2.11	Class E power amplifier circuit	22
2.12	Voltage and Current Waveform of Ideal class E Power	
	Amplifier	22

2.13	Class F Power Amplifier Circuit	23
2.14	Voltage and Current Waveform of Ideal class F Power	
	Amplifier	23
2.15	The Driver and Output Stage of The Power Amplifier	25
2.16	The Schematic of The Improve Power Amplifier	26
2.17	Schematic of The Driver Stage	27
2.18	Schematic of The Power Stage	28
2.19	Schematic of The Output Matching Network	28
2.20	Schematic of Power Stage and Output Matching	
	Network	29
2.21	Schematic of Driver Stage	29
2.22	A Transformer Type Power Combiner Power Amplifier	
	Circuit	30
2.23	Single-ended Two Stage class AB Power Amplifier	31
3.1	Project Flow Chart	33
3.2	Project Simulation Flow Chart	34
3.3	The Full Schematic of Power Amplifier	40
4.1	Input and Output Transient Voltage for The Power	
	Amplifier	42
4.2	Variation of Input Power with Frequency	42
4.3	Variation of Output Power with Time (W= 3000 μ m)	43
4.4	Variation of Output Power with Time (W= 1000 μ m)	43
4.5	Variation of Output Power with Time (W= 8000 μ m)	44
4.6	Power Gain Measurement (W= 3000 µm)	45
4.7	Power Gain Measurement (W= 1000 μm)	45

4.8	Power Gain Measurement (W= 8000 µm)	46
4.9	Variation of The Voltage Gain with Frequency	
	(W= 3000 µm)	47
4.10	Variation of The Voltage Gain with Frequency	
	(W= 1000 μm)	47
4.11	Variation of The Voltage Gain with Frequency	
	(W= 8000 µm)	48

.

LIST OF ABBREVIATIONS

lG	-	First Generation
2G	67	Second Generation
3G	5 -	Third Generation
4G	-	Fourth Generation
AC	-	Alternating Current
ADS	-	Advanced Design System
AMPS	-	Advanced Mobile Phone Service
ASIC	-	Application Specific Integrated Circuit
CDMA	-	Code Division Multiple Access
CDMA2000	-	Code Division Multiple Access 2000 Evolution Data
1xEV DO		Optimized
CMOS	-	Complementary Metal Oxide Semiconductor
DAMPS	-	Digital Advanced Mobile Phone System
DAT	-	Distributed Active Transformer
DC		Direct Current
EDA		Electronic Design Automation
EDGE	-	Enhanced Data Rates for Global Evolution
FDMA	-	Frequency Division Multiple Access
GPRS	×	General Packet Radio Services
GPS	-	Global Positioning System
GSM	-	Global System for Mobile

HSCSD	-	High Speed Circuit Switched Data
HSDPA	-	High Speed Downlink Packet Access
HSUPA	-	High Speed Uplink Packet Access
IC	-	Integrated Circuit
iDEN	=	Integrated Digital Enhanced Network
IEEE	-	Institute of Electrical and Electronics Engineers
IMT-2000	-	International Mobile Telecommunications-2000
IMTS	-	Improved Mobile Telephone Service
ITU	-	International Telecommunication Union
LTE Advanced	-	Long Term Evolution Advanced
MIM	-	Metal-Insulator-Metal
MOSFET	-	Metal Oxide Semiconductor Field Effect Transistor
NMT	•	Nordic Mobile Telephone
РА		Power Amplifier
PAE	-	Power Added Efficiency
PDC	-	Personal Digital Cellular
RF	-	Radio Frequency
SOC	-	System On Chip
SONNET	-	3d Planar High-Frequency Electromagnetic Software
TACS	-	Total Access Communication System
UMTS	i.	Universal Mobile Telecommunications System
WCDMA	17	Wideband Code Division Multiple Access
WiMAX	-	Worldwide Interoperability for Microwave Access
WLAN	-	Wireless Local Area Network

CHAPTER 1

INTRODUCTION

1.1 CMOS Technology

Complementary Metal Oxide Semiconductor (CMOS) is formed by using a pairs of p-type and n-type Metal Oxide Semiconductor Field Effect Transistor (MOSFET) transistors for logic function and only one of the transistors is switched on at anytime [1]. The most common CMOS logic function is inverter as shown in Figure 1.1. The phrase "metal-oxide-semiconductor" is referred to the fabrication process where metal oxide is used to build CMOS chips as shown in Figure 1.2 [2]. Nowadays, the gate electrodes are mostly made from polysilicon instead of metal. However, the name CMOS nevertheless continues to be used in the future.

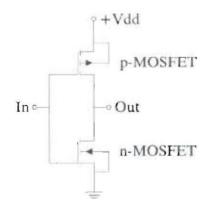


Figure 1.1 Basic CMOS inverter

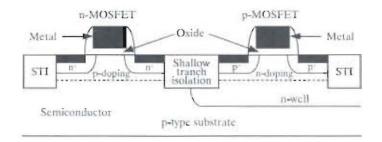


Figure 1.2 Cross section of CMOS inverter

CMOS has been a dominant technology over the years due to high speed performance and low power operation [3]. The decrease in all physical technology has indicated that the integration density and the circuit speed are significantly increased from generation to generation. This concept is known as concept of scaling. During the past, micrometre technology is used in manufacturing process. Year by year, nanometre technology has been slowly implemented into integrated circuit (IC) as shown in Table 1. In addition, CMOS is chose as the substitution of other technology due to the low power dissipation in CMOS circuit. Consequently, the low power dissipation provides low power delay and this allows very high integration densities [4]. Furthermore, high noise margin makes CMOS circuit resistant to variation of supply voltage, temperature and process. This is advantage for handling high complexity of future IC and fast realization of Application Specific Integrated Circuit (ASIC).

As a result, CMOS technology is implemented in many applications such as Third Generation (3G) mobile communication, Global Positioning System (GPS), Wireless Local Area Network (WLAN) and Bluetooth. In mobile communication system, CMOS is made as the technology of choice for its low voltage and low power operation of IC.

Table 1.1 CMOS manufacturing process [5]

Year	1999	2000	2002	2006	2008	2010	2011	2013	2015
Production	180nm	130nm	90nm	65nm	45nm	32nm	22nm	16nm	11nm
technology									

1.2 Communication System

Communication is a process that involves a sender who encodes and sends the message to the receiver where the receiver decodes the message and reply to the sender through a communication channel. A communication system is a system that consists of three basic components which are transmitter, communication channel, and receiver. In general, a communication system can be represented by the functional block diagram as shown in Figure 1.3.

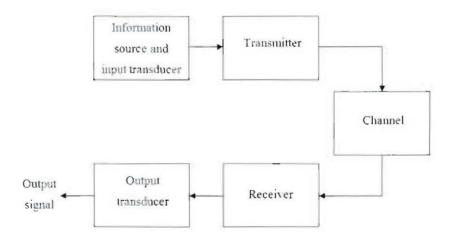


Figure 1.3 Functional block diagram of a communication system [6]

Communication system has been developed into a few types such as optical communication system, microwave communication system, satellite communication system and mobile communication system. Due to high speed requirement of multimedia access, mobile communication system continuously developed in recent years.

1.2.1 Mobile Communication System

The first mobile system was developed in the 1940s. However, these cell phones were constrained by limited mobility and poor limited service. In the 1960s, another new system called Improved Mobile Telephone Service (IMTS) has replaced the old system due to improvement on direct dialling and higher bandwidth [7]. Then, the first analogue mobile system is developed based on the IMTS in the late 1960s which is known as first generation (1G). At the end of 1980s, the second generation (2G) were introduced [8]. This continues to third generation (3G) which was launched in Japan in 2000. The fourth generation (4G) is currently under development. The technology is expected to launch by the year 2011 [8].

• First Generation (1G)

Cell signals were based on analogue system transmission which is certainly voice. The technique used for transmission was based on Frequency Division Multiple Access (FDMA). The quality of 1G is low and it had low data rates. The most common standard is Nordic Mobile Telephone (NMT), Total Access Communication System (TACS), and Advanced Mobile Phone Service (AMPS) [8].

• Second Generation (2G)

Unlike the 1G mobile communication system, the 2G mobile communication systems use digital radio transmission. Therefore, the new system allows transfer of both voice and digital data. The new system has better quality and higher capacity at lower cost to consumers. The four main standards for 2G systems are Global System for Mobile (GSM), Digital Advanced Mobile Phone System (DAMPS), Code Division Multiple Access (CDMA) and Personal Digital Cellular (PDC) [9].

• Second Generation Transitional (2.5G, 2.75G)

The 2G transitional systems are the advanced upgrade for the 2G system. The three common technologies of this system are High Speed Circuit Switched Data (HSCSD), General Packet Radio Services (GPRS) and Enhanced Data Rates for Global Evolution (EDGE) [9].

• Third Generation (3G)

International Mobile Telecommunications-2000 (IMT-2000) is also known as 3G mobile communication system which was born at International Telecommunication Union (ITU) [10]. The 3G mobile communication system provides faster communication services than 2G system. It allows simultaneous transfer of voice and high speed digital data. The main standards of 3G mobile communication systems are Universal Mobile Telecommunications System (UMTS), Code Division Multiple Access 2000 Evolution Data Optimized (CDMA2000 1xEV DO), and Wideband Code Division Multiple Access (WCDMA) [9].

• Third Generation Transitional (3.5G, 3.75G, 3.9G)

The 3G transitional systems are the continuation and upgrade of 3G technology. It offers higher data rates and larger bandwidth than 3G technology. The two standards of 3G transitional systems are High Speed Downlink Packet Access (HSDPA) and High Speed Uplink Packet Access (HSUPA) [10].

• Fourth Generation (4G)

The concept of International Mobile Telecommunications- Advanced (IMT-Advanced) from the ITU has lead to the development of 4G mobile communication system. The 4G system offers higher data transmission rates with high mobility than 3G systems. The two technologies of 4G system are Long Term Evolution Advanced (LTE Advanced) and IEEE 802.16m [9].

Generation	Standard	Frequency band	Throughput
1G	NMT, C-Nets,	Allow voice calls	600-1200 bps
	AMPS, TACS	and sending text	
		messages	
2G	GSM, CDMA,	Allows transfer of	9.6 kbps
	DAMPS, PDC,	voice or low-volume	
	iDEN	digital data.	
2G transitional	GPRS, EDGE,	Allows simultaneous	56 or 180 kbps
(2.5G, 2.75G)	HSCSD,	transfer of voice and	
	CDMA2000	moderate digital	
	lxRTT	data.	
3G	UMTS,	Allows simultaneous	384 kbps, 1.8 or
	WCDMA-FDD,	transfer of voice and	3.6 Mbps
	CDMA2000	high-speed digital	
	1xEV DO	data.	
3G transitional	HSDPA, HSUPA	Allows simultaneous	7.2 Mbps-10 Mbps
(3.5G, 3.75G,		transfer of voice and	
3.9G)		very high-speed	
		digital data.	
4G	LTE advanced,	Allows simultaneous	Up to 100Mbps
	WiMAX	transfer of voice and	
		ultra high-speed	
		digital data.	

Table 1.2 Mobile Telephony Technologies and Standards[9]