


# OPTIMIZATION OF SLUDGE FLOW BEHAVIOR IN A MIXING TANK THROUGH BLADE DESIGN

BONG KUEK KONG

Bachelor of Engineering with Honours (Mechanical and Manufacturing Engineering)

2017

### UNIVERSITI MALAYSIA SARAWAK

Grade: \_\_\_\_\_

Please tick (√) Final Year Project Report Masters PhD

### **DECLARATION OF ORIGINAL WORK**

This declaration is made on the ..... day of..... 2017.

#### Student's Declaration:

I <u>BONG KUEK KONG</u> (40735) FROM <u>DEPARTMENT</u> OF <u>MECHANICAL</u> <u>AND</u> <u>MANUFACTURING ENGINEERING</u> OF FACULTY OF ENGINEERING hereby declare that the work entitled <u>OPTIMIZATION OF SLUDGE FLOW BEHAVIOUR IN A MIXING TANK THROUGH</u> <u>BLADE DESIGN</u> is my original work. I have not copied from any other students' work or from any other sources except where due reference or acknowledgement is made explicitly in the text, nor has any part been written for me by another person.

Date submitted

BONG KUEK KONG (40735)

### Supervisor's Declaration:

I <u>IR DR MOHD DANIAL BIN IBRAHIM</u> hereby certifies that the work entitled <u>OPTIMIZATION OF</u> <u>SLUDGE FLOW BEHAVIOUR IN A MIXING TANK THROUGH BLADE DESIGN</u> was prepared by the above named student, and was submitted to the "FACULTY" as a partial fulfillment for the conferment of <u>B.ENG. (HONS) (MECHANICAL AND MANUFACTURING ENGINEERING)</u>, and the aforementioned work, to the best of my knowledge, is the said student's work.

Received for examination by: \_\_\_\_\_

Date: \_\_\_\_\_

(IR DR MOHD DANIAL BIN IBRAHIM)

I declare that Project/Thesis is classified as (Please tick ( $\sqrt{}$ )):



**CONFIDENTIAL** (Contains confidential information under the Official Secret Act 1972)\* (Contains restricted information as specified by the organisation where research was done)\*

**OPEN ACCESS** 

### Validation of Project/Thesis

I therefore duly affirm with free consent and willingly declare that this said Project/Thesis shall be placed officially in the Centre for Academic Information Services with the abiding interest and rights as follows:

- This Project/Thesis is the sole legal property of Universiti Malaysia Sarawak (UNIMAS). •
- The Centre for Academic Information Services has the lawful right to make copies for the • purpose of academic and research only and not for other purpose.
- The Centre for Academic Information Services has the lawful right to digitalise the content for the Local Content Database.
- The Centre for Academic Information Services has the lawful right to make copies of the Project/Thesis for academic exchange between Higher Learning Institute.
- No dispute or any claim shall arise from the student itself neither third party on this Project/Thesis once it becomes the sole property of UNIMAS.
- This Project/Thesis or any material, data and information related to it shall not be distributed, published or disclosed to any party by the student except with UNIMAS permission.

Student signature ) (

Supervisor signature: ( )

**Current Address:** LOT 203 RPR 95800 ENGKILILI, SARAWAK.

Notes: \* If the Project/Thesis is **CONFIDENTIAL** or **RESTRICTED**, please attach together as annexure a letter from the organisation with the period and reasons of confidentiality and restriction.

[The instrument is duly prepared by The Centre for Academic Information Services]

# APPROVAL SHEET

This project report which entitled "Optimization of Sludge Flow Behavior in a Mixing Tank through Blade Design" was prepared by <u>BONG KUEK KONG (40735)</u> is hereby read and approved by:

-----

IR. DR. MOHD DANIAL BIN IBRAHIM (Supervisor) -----

Date

## OPTIMIZATION OF SLUDGE FLOW BEHAVIOR IN A MIXING TANK THROUGH BLADE DESIGN

### BONG KUEK KONG

A dissertation submitted in partial fulfilment of the requirement for the degree of Bachelor of Engineering with Honours (Mechanical and Manufacturing Engineering)

Faculty of Engineering

Universiti Malaysia Sarawak

2017

Specially dedicated to my beloved family and friends

## ACKNOWLEDGEMENTS

Firstly, I would like to express my gratitude to my supervisor, Ir Dr Mohd Danial Ibrahim and my co supervisor Assoc Prof Dr Cirilo Nicolas Hipolito for their guidance and advice throughout this project. I also would like to express my deeply appreciation to my family for their support and encouragement that given to me throughout my four years' study and especially during completing this project. Besides that, I would like to say thank you to my beloved course mate that always cheer me up and their willingness to share their knowledge with me during these years. Last but not least, my appreciation also goes to those who help me during completing of the project especially my lab members. Thank you for the support that was given to me.

## ABSTRACT

Latic acids are very useful in industry for the food preservative and yet are expensive due to the high processing cost. One of the manners to get the latic acids is through the conversion from the starch. The starch need to under the liquefaction and saccrification in order to produce latic acid. Before the dual volume of reactor been introduced, the industries do the both processes in a separated tank. After the dual volume tank which is inner and out volume been introduced, both processes can be done simultaneously. By doing this, the heat from the inner tank can actually heat up the starch at the outer tank. However the problem occurs due to the high viscous of the starch, the current blade produces a very poor flow pattern. It will affect the mixing performance of the starch as well as affect the quality of the starch. Hence, the objective of this project is to study and modify the blade to improve the agitation in the reactor. The existing reactor is draw in the Engineering CAD software according to the original dimension provided by the owner. The existing blade and modified blade are designed and simulated by using CFD simulation. The result of the modified blade gives better flow distribution compare to existing blade.

## ABSTRAK

Asid Latic sangat berguna dalam industri untuk pengawet makanan dan mahal kerana kos pemprosesan yang tinggi. Salah satu cara untuk mendapatkan asid latic adalah melalui penukaran daripada kanji. Kanji perlu melalui proses pencairan dan saccrificasi untuk menghasilkan asid latic. Sebelum dual isi padu tangki reaktor diperkenalkan, industri menjalankan proses pencairan dan saccrificasi di dalam dua tangki yang dipisahkan. Selepas dual isi padu tangki iaitu dalaman dan luaran isi padu telah diperkenalkan, kedua-dua proses boleh dilakukan secara serentak. Dengan cara ini, haba dari tangki dalaman boleh memanaskan kanji di tangki luar. Walau bagaimanapun masalah berkaitan dengan corak aliran berlaku disebabkan kelikatan kanji yang tinggi. Ia akan memberi kesan kepada prestasi pencampuran kanji dan juga menjejaskan kualiti kanji. Oleh itu, objektif projek ini adalah untuk mengkaji dan mengubah suai bilah untuk meningkatkan pergolakan dalam reaktor. Reaktor yang sedia ada telah direka dengan menggunakan kejuruteraan CAD mengikut dimensi asal yang disediakan oleh pemilik. Selepas itu, bilah yang sedia ada dan bilah diubahsuai memberikan pengedaran aliran yang lebih baik berbanding dengan bilah yang sedia ada.

# TABLE OF CONTENTS

| ACKNOWLEDGEMENTS                                          |
|-----------------------------------------------------------|
| ABSTRACT i                                                |
| ABSTRAKii                                                 |
| TABLE OF CONTENTiv                                        |
| LIST OF TABLES vi                                         |
| LIST OF FIGURES vii                                       |
| LIST OF EQUATIONSx                                        |
| LIST OF SYMBOLS xi                                        |
| LIST OF ABBREVIATIONS xii                                 |
| CHAPTER 1 INTRODUCTION1                                   |
| 1.1 The Art of Mixing1                                    |
| 1.2 Project Scope2                                        |
| 1.3 Problem statement                                     |
| 1.4 Aims and Objectives                                   |
| CHAPTER 2 LITERATURE REVIEW                               |
| 2.1 introduction                                          |
| 2.2 Lactic acid                                           |
| 2.3 Chemical reactor                                      |
| 2.4 Types of Agitators Models, Application and Comparison |
| 2.5 Impeller for laminar                                  |
| 2.6 Impeller for turbulent                                |
| 2.7 Baffles in a Reactor14                                |
| 2.8 Normal Impeller versus Inclined Impeller15            |

| 2.9 Multiple Impeller Stirred Tanks for the Mixing of Highly Viscous Fluids | 17 |
|-----------------------------------------------------------------------------|----|
| CHAPTER 3 METHODOLOGY                                                       | 20 |
| 3.1 Introduction                                                            | 20 |
| 3.2 Identify the Dimension                                                  | 20 |
| 3.2 Modelling and Simulating Software                                       | 22 |
| 3.3 Model Simulation                                                        | 24 |
| 3.4 Pre-processing                                                          | 25 |
| 3.4.1 Geometry Modelling                                                    | 25 |
| 3.4.1.1 The outer and inner impeller for the original reactor               | 26 |
| 3.4.1.2 The inner tank and outer tank for the original reactor              | 29 |
| 3.4.1.3 The outer and inner impeller for the first innovation               | 31 |
| 3.4.1.4 The outer and inner impeller for the second innovation              | 32 |
| 3.4.1.5 The Final Models                                                    |    |
| 3.4.2 Meshing                                                               |    |
| 3.5 Processing                                                              | 41 |
| 3.5.1 Parameter setup                                                       | 43 |
| 3.6 Number of Iteration                                                     | 55 |
| 3.7 Identify the viscosity and the density of the sago starch               | 59 |
| 3.7.1 Materials and apparatus used                                          | 59 |
| 3.7.2 Procedure to measure the viscosity of the sago starch                 | 60 |
| CHAPTER 4 RESULTS AND DISCUSSIONS                                           | 63 |
| 4.1 Introduction                                                            | 63 |
| 4.2 Background of post-processing                                           | 63 |
| 4.3 Flow analysis in velocity distribution                                  | 64 |
| 4.3.1 Global range, local range and user specified                          | 65 |
| 4.3.2 Contour Surface Plot                                                  | 66 |
| 4.4 Comparison between the Three Models                                     | 67 |

| 4.4.1 Velocity Contour                    | 67 |
|-------------------------------------------|----|
| 4.4.2 Velocity Streamline                 | 69 |
| 4.5 Maximum Velocity                      | 71 |
| 4.6 Experimental Result                   | 72 |
| CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS | 77 |
| 5.1 Introduction                          | 77 |
| 5.2 Conclusion                            | 77 |
| 5.2 Recommendation                        | 78 |
| REFERENCES                                | 79 |
| APPENDIX A                                | 81 |

# LIST OF TABLES

### Table

| 2.1 | Comparison between the Impeller                                | 8  |
|-----|----------------------------------------------------------------|----|
| 2.2 | Summary of the Geometrical Configurations Studied              | 19 |
| 3.1 | The figure of the component in the reactor                     | 26 |
| 3.2 | The inner and outer tank                                       | 29 |
| 3.3 | Comparison between the original impellers and first innovation | 31 |
|     | impellers                                                      |    |
| 3.4 | Design of second innovation                                    | 32 |
| 3.5 | Number of nodes                                                | 37 |
| 3.6 | Differences between Solvers in Fluent                          | 43 |
| 3.7 | The Amount of Material Used                                    | 59 |
| 4.1 | The Velocity Distribution for Inner Tank in 10 seconds         | 68 |
| 4.2 | The Velocity Distribution for Outer Tank in 10 seconds         | 68 |
| 4.3 | The Velocity Streamline for Inner Tank                         | 70 |
| 4.4 | The Streamline Velocity for Outer Tank                         | 70 |
| 4.5 | Maximum Velocity of the Three Model                            | 71 |
| 4.6 | Viscosity during Heating                                       | 72 |
| 4.7 | Viscosity during Cooling                                       | 73 |

# **LIST OF FIGURES**

## Figures

| 1.1  | The Mixing Tank                                                  | 2  |
|------|------------------------------------------------------------------|----|
| 1.2  | Top View of the Reactor                                          | 3  |
| 2.1  | Different processes for lactic acid fermentation using renewable | 6  |
|      | resources                                                        |    |
| 2.2  | The range of viscosity for each impeller                         | 10 |
| 2.3  | Laminar flow impellers                                           | 11 |
| 2.4  | Flow patterns for                                                | 12 |
|      | (a) radial flow impeller                                         |    |
|      | (b) axial flow impeller                                          |    |
| 2.5  | Turbulent flow impellers                                         | 13 |
| 2.6  | Arrangement of baffles                                           | 14 |
| 2.7  | The simulation at                                                | 16 |
|      | (a) 0 second                                                     |    |
|      | (b) 10 second                                                    |    |
| 2.8  | Geometry of the Vessel Equipped with Four Intermig Impellers     | 18 |
| 3.1  | Master Drawing of the Reactor                                    |    |
| 3.2  | Modelling and Simulating Software                                |    |
| 3.3  | Summarized step for a CFD analysis                               |    |
| 3.4  | Pre-processing, processing and post-processing                   |    |
| 3.5  | Original Reactor                                                 |    |
| 3.6  | First Innovation Reactor                                         |    |
| 3.7  | Second Innovation Reactor                                        | 35 |
| 3.8  | Sizing Option for Meshing                                        | 36 |
| 3.9  | Cross Section View of the Reactor                                | 37 |
| 3.10 | Contact Region in Inner Tank                                     | 38 |

| 3.11 | Contact Region in Outer Tank                                    | 38 |
|------|-----------------------------------------------------------------|----|
| 3.12 | The Name Selection                                              | 39 |
| 3.13 | Element Quality for the Original Reactor                        | 40 |
| 3.14 | Flowchart for Solution Controls in Fluent                       | 41 |
| 3.15 | Pressure-based Solver is Selected                               | 44 |
| 3.16 | Selection of Model                                              | 46 |
| 3.17 | Cell Zone Condition                                             | 47 |
| 3.18 | The Setting for Inner Rotating Blade                            | 48 |
| 3.19 | The Setting for Outer Rotating Blade                            | 49 |
| 3.20 | The Setting for Inner Fluid                                     | 49 |
| 3.21 | The Setting for Outer Fluid                                     | 50 |
| 3.22 | Outer Moving Wall                                               | 51 |
| 3.23 | Inner Moving Wall                                               | 51 |
| 3.24 | Material Outline in Fluent                                      | 52 |
| 3.25 | Default Properties of Sago Starch at 100°C in Fluent Database   | 52 |
| 3.26 | Default Properties of Sago Starch at 60°C in Fluent Database    | 53 |
| 3.27 | Solution Initialization                                         | 53 |
| 3.28 | Residual Monitors                                               | 54 |
| 3.29 | Outline for Transient Solver                                    | 55 |
| 3.30 | Divergence Iteration                                            | 56 |
| 3.31 | Convergence iteration                                           | 56 |
| 3.32 | The Iteration of the Original Reactor                           | 57 |
| 3.33 | The Iteration of the First Innovation                           | 57 |
| 3.34 | The Iteration of the Second Innovation                          | 58 |
| 3.35 | Mixing Process with Mechanical Stirrer                          | 60 |
| 3.36 | Measuring the Temperature                                       | 61 |
| 3.37 | Final Product                                                   | 61 |
| 3.38 | Measure the Viscosity                                           | 62 |
| 4.1  | (a) Legend for Contour of Velocity Distribution for inner tank  | 65 |
|      | (b) Legend for Contour of Velocity Distribution for outer tank. |    |
| 4.2  | User Specify Range Option                                       | 66 |
|      | (a) inner tank                                                  |    |
|      |                                                                 |    |

(b) outer tank

## 4.3 Type of Contours

# LIST OF EQUATIONS

| Equations |                           |    |
|-----------|---------------------------|----|
|           |                           |    |
| 1.0       | Reynold's Number Equation | 45 |
| 1.2       | Navier-Strokes Equation   | 45 |
| 1.3       | Streamline Equation       | 69 |

# LIST OF SYMBOLS

| μ | - | Viscosity |
|---|---|-----------|
| ρ | - | Density   |
| ν | - | Velocity  |

# LIST OF ABBREVIATIONS

| CFD | - | Computational Fluid Dynamic |
|-----|---|-----------------------------|
| hr  | - | Hour                        |
| m   | - | Metre                       |
| mm  | - | Millimetre                  |
| Re  | - | Reynold's Number            |
| S   | - | Second                      |
| 3D  | - | Three-dimensional           |

## **CHAPTER 1**

## **INTRODUCTION**

#### **1.1 The Art of Mixing**

Mixing operations are widely used in most of the industry that involving physical and chemical change. There are many other sectors carry out mixing operations on a large scale although much of the knowledge on mixing has developed from chemical industry. Thus mixing operation is a central feature of many processes in the food, pharmaceutical, paper, plastics, ceramics and rubber industries. In most cases, mixing is carried out usually to reduce inhomogeneities, especially in the mixing of particulate solids, or to enhance a rate process, particularly in mechanically agitated vessels. In order to achieve these requirements, an understanding of how the solids and liquids move is an essential prerequisite for a successful mixer design or selection. The different form of the move will have different mechanism of mixing. According to Harnby, Edwards and Nienow (1992), there are two types of mixing that is liquid mixing and solid mixing. In liquid mixing there are laminar and turbulent mixing. Laminar mixing is associated with high-viscosity liquids and turbulent mixing is used for the liquid that with low viscosity. Meanwhile solid mixing consist of three categories that is segregation. Segregation is carried out with two component system whose particles were identical in all important properties, differing perhaps only in colour.

### **1.2 Project Scope**

Starch is a polymeric carbohydrate that consist of a large number of glucose unit. It can be found in most green plants such as maize (corn), rice, cassava and potatoes. Lattice acid can be obtained from the starch through liquefaction and saccharification. The liquefaction is where the water is mix with the starch involving the partial hydrolysis of starch, with concomitant loss in viscosity whereas the saccharification is the process of production of glucose and maltose. Although the raw material derived from biomasses are inexpensive, abundant and renewable but due to the complex cell wall structure of lignocellulose, it required a lot of cost to process it. In order to reduce the cost and energy lose, a new reactor with two inner and outer tank is introduce. This reactor consists of two motors with and followed by the gear reducers with gear ratio. The liquefaction will take place in the inner tank under 100 degrees Celsius for whereas the saccharification process takes place in the outer under 60 degrees Celsius.



Figure 1.1: The mixing tank

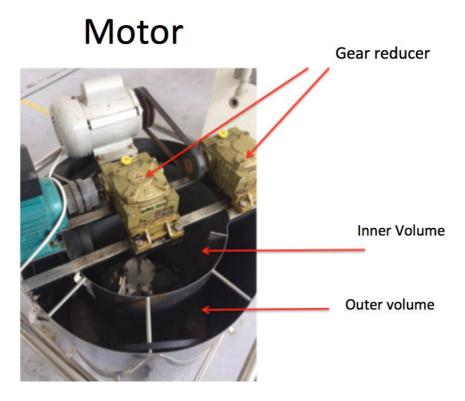



Figure 1.2: Top View of the Reactor

### **1.3 Problem statement**

The main problem occurs when the materials like sago starch which are difficult to mix homogeneously. During the production of the sago starch products, the process of gelatinization if encountered before the production of dextrins. Besides that, sago starch is a high viscosity solution. In order to mix it properly with the water, it required a high energy and proper design of mixing blade. Apart from that, the number of mixing blade inside the outer tank is consider less, this will cause the temperature and flow are not equally distributing to the solution. The flow of the mixing process inside the tank can be determined through CFD. Whereas the minor problem is time taken for the process is too long and causes the temperature to increase. The increase of temperature will melt the grease inside the gear resulting the grease to fall into the starch solution. The mixing will affect the quality of the starch due to the impurity particles.

### 1.4 Aims and Objectives

The aims and objective of this study are as below:

- I. Study the agitation for the viscous fluid
- II. Improved the surge flow of the inner tank
- III. Improved the flow distribution in outer tank
- IV. Minimized power consumption