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ABSTRACT  

 

The thesis reported on a deterministic inverse scattering method in time-domain to 

reconstruct dielectric profiles of an unknown embedded object within its peripheral region. 

Image reconstruction of geometrically simple objects taken after breast profiles and lung(s) 

model are solely done by simulation executed in single computing. In effort to alleviate the 

nonlinearity problem of inverse scattering, the inversion technique has been integrated with 

varied types of techniques to improve the inversion solution. The extended algorithm would 

only increase the computational cost, nevertheless would never eliminate the nonlinearity 

problem that degrade the inversion solution. The reconstruction process started in a coarse 

region which then rescaled down according to object geometry configuration. This is 

accomplished by combining an inversion technique of Forward-Backward Time-Stepping 

(FBTS) with an Automated Scaling Region of Interest (AS-ROI) method. Edge preserving 

techniques comprises of edge preserving regularization and anisotropic diffusion are 

integrated into the combined FBTS and AS-ROI to further increase the accuracy level in the 

profiles’ intensity. Accuracy of reconstructed object is validated by using mean squared error 

(MSE), relative error (RE) and Euclidean distance (ED) that measure the precision in terms 

of pixels’ intensity, size and localization. Results exhibited significant improvement in the 

accuracy level of reconstructed images with a combined method of FBTS and AS-ROI. AS-

ROI has successfully increased the pixels precision in relative to FBTS about 10.33% for 

breast model and 25.17% for lung model. The accuracy increment by AS-ROI is due to better 

fields penetration as exterior pixels are replaced with background layer of low profiles. In 

the combined rescaled and regularized method in FBTS, edge preserving smoothing filter 

and regularization are alternately imposed on the improved reconstructed profiles by AS-
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ROI. Therefore, the accuracy is further increased to 18.58% and 40.68%, respectively for 

breast and lung model. In term of size estimation, average error in object’s radius is 

analogous to accuracy level measured in MSE. It indicates that efficiency of AS-ROI is 

highly relied upon the accuracy of FBTS estimation in reconstructing image profiles prior to 

rescaling process. Apart from that, accuracy in size estimation differ for varied shapes due 

to number of pixels at the boundary. Average RE is 61.94% for a circular shape in breast 

model, meanwhile attains RE of 4.17% for a U-shape object. The highest RE for a single 

circular tumour’s size in lung model is 62.5%. However, object localization by AS-ROI is 

100% for a circular and U-shape object in breast model. Nevertheless, AS-ROI attains an 

average ED of 2.3 for lung model. Computational time decreases accordingly with the 

reduced number of pixels involved after the rescaling process. Reduction in the 

computational time is 13.06% for breast model, nonetheless 28.74% for lung model. 

Significant time reduction observed for lung model is benefited from considerable number 

of pixels that has been removed from the original image. The inclusion of edge preserving 

techniques into the combined AS-ROI with FBTS however has slightly increase the 

computational time about 5.87% and 4.69% for breast and lung model, respectively. 

Nevertheless, it compensates the computational cost for higher accuracy of image profiles’ 

intensities.  

 

Keywords: Automated Scaling Region of Interest (AS-ROI), edge preserving 

techniques, Forward-Backward Time-Stepping (FBTS), image 

reconstruction, inverse scattering 
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Penskalaan Automatik Rantau Kepentingan  

dengan Pemuliharaan Sempadan Berulang dalam Forward-Backward Time-Stepping 

 
ABSTRAK 

 

Tesis ini melaporkan kaedah serakan songsang yang bersifat tentu dalam domain 

masa untuk membina profil dielektrik objek yang tidak diketahui dalam rantau sempadan 

objek tersebut. Pembinaan imej bagi objek dengan geometri mudah yang diambil daripada 

profil dielektrik payudara dan model paru-paru (paru) dilakukan dengan simulasi yang 

dilaksanakan dalam pengkomputeran tunggal. Dalam usaha untuk mengurangkan masalah 

ketidakstabilan bagi serakan songsang, teknik penyongsangan telah disepadukan dengan 

pelbagai jenis teknik untuk memperbaiki penyelesaian penyongsangan. Pertambahan 

algoritma hanya akan meningkatkan kos pengiraan, namun tidak akan menghapuskan 

ketidakstabilan yang akan menjejasan penyelesaian teknik penyongsangan. Proses 

pembinaan profil bermula di dalam rantau dengan anggaran kasar dan kemudian dikecilkan 

mengikut konfigurasi geometri objek. Ini dicapai dengan menggabungkan teknik 

songsangan Forward-Backward Time-Stepping (FBTS) dengan kaedah Penskalaan 

Automatik Rantau Kepentingan (AS-ROI). Kaedah pemuliharaan sempadan dalam imej 

terdiri daripada penormalan pemuliharaan sempadan dan penyebaran anisotropic 

diintegrasikan ke dalam gabungan FBTS dan AS-ROI untuk meningkatkan tahap ketepatan 

dalam keamatan profil. Ketepatan objek yang telah dibina disahkan dengan menggunakan 

ralat min kuasa dua (MSE), ralat relatif (RE) dan jarak Euclidean (ED) yang mengukur 

kejituan dari segi keamatan piksel, saiz dan petempatan. Keputusan menunjukkan 

peningkatan ketara dalam tahap ketepatan untuk imej yang telah dibina dengan kaedah 

gabungan FBTS dan AS-ROI. AS-ROI telah berjaya meningkatkan ketepatan piksel 

sebanyak 10.33% untuk model payudara dan 25.17% bagi model paru berbanding FBTS. 
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Peningkatan dalam ketepatan oleh AS-ROI adalah disebabkan kadar penembusan medan 

yang lebih baik kerana piksel luaran digantikan dengan lapisan dasar yang mempunyai nilai 

profil rendah. Di dalam gabungan kaedah penskalaan dan penormalan di dalam FBTS, 

penapis pemuliharaan sempadan dan penormalan diaplikasikan kepada imej yang telah 

dibina dan ditambah baik oleh AS-ROI. Oleh itu, ketepatan meningkat kepada 18.58% dan 

40.68%, masing-masing untuk model payudara dan paru. Dari segi penganggaran saiz, 

purata ralat bagi radius objek adalah berkadaran dengan tahap ketepatan yang diukur 

dalam MSE. Ini bermaksud kecekapan AS-ROI sangat bergantung kepada ketepatan 

pengiraan FBTS dalam membina semula profil imej sebelum proses pengecilan rantau 

pembinaan profil. Selain itu, ketepatan dalam penganggaran saiz berbeza untuk bentuk yang 

berlainan disebabkan jumlah piksel pada sempadan bentuk tersebut. Purata RE adalah 

61.94% untuk bentuk bulat dalam model payudara, manakala objek berbentuk U mencapai 

RE sebanyak 4.17%. Nilai RE tertinggi untuk saiz sebiji tumor bulat dalam model paru 

adalah 62.5%. Namun begitu, ketepatan lokasi objek dengan AS-ROI adalah 100% untuk 

objek bulat dan bentuk U di dalam model payudara. Walau bagaimanapun, AS-ROI 

mencapai purata ED sebanyak 2.3 untuk model paru. Masa yang diambil untuk 

pemprosesan berkurangan selaras dengan pengurangan jumlah piksel yang terlibat selepas 

proses pengecilan rantau pembinaan profil. Pengurangan pemprosesan masa adalah 

13.06% untuk model payudara, manakala 28.74% untuk model paru. Pengurangan masa 

yang ketara diperhatikan untuk model paru adalah disebabkan banyak piksel yang dibuang 

daripada imej asal. Penerapan teknik pemeliharaan sempadan ke dalam gabungan AS-ROI 

dan FBTS walau bagaimanapun telah meningkatkan sedikit masa pengiraan lebih kurang 

5.87% dan 4.69% masing-masing untuk model payudara dan paru. Walau bagaimanapun, 
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gabungan tersebut menyeimbangkan peningkatan kos pengiraan untuk mencapai ketepatan 

profil yang lebih tinggi. 

 

Kata kunci: Penskalaan Automatik Rantau Kepentingan (AS-ROI), kaedah 

pemuliharaan sempadan, Forward-Backward Time-Stepping (FBTS), 

pembinaan imej, serakan songsang 
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CHAPTER 1  

INTRODUCTION 

  

1.1 Inverse scattering  

There are many situations where there is a need to interpret an unknown object with 

limited known data for deduction. This can be described as inverse problems, which arise in 

medical field to reconstruct internal structure of human body [1, 2], non-destructive testing 

to detect cracks or quality of material structure [3], geophysical prospecting [4] that can be 

applied to find oil mines or other green resources, as well as for archaeology [5]. In these 

mentioned examples, none of required information can be directly obtained from the object 

as in forward problem. Nevertheless, it is indirectly measured as the unknown object or 

scatterer 1 is embedded inside of a substance. Inverse problem can be described as to portray 

image contrast and geometry of an embedded scatterer by manipulating the electromagnetic 

fields from which it originates, as illustrated in Figure 1.1.  

 

 

 

 

 

 

Figure 1.1: Portray physical properties with partially known fields 

 

                                                 
1 The unknown object is also defined as scatterer in this thesis 
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Figure 1.2 summarizes few related matters to inverse scattering. Inverse problem can 

be classified into two categories; inverse obstacle scattering (impenetrable medium) and 

inverse medium scattering (penetrable medium) in which geometry and material properties 

are sought [6, 7]. Unknown scatterer to be solved with inverse scattering is categorized by 

its dimensional size in relative to incident field wavelength [8]. Extended scatterer is to 

define object of at least similar size to incident field wavelength. Point-like scatterer is 

referring to object that is physically smaller than the wavelength. 

Inverse scattering method, as the name implies, generally initiated with results which 

refers to partially known scattered fields originated from the unknown object, to find causes 

of the result that is the unknown object itself. Obviously, it is rather ill-posed in nature due 

to the fact that one has to characterize the object’s physical properties merely based on fields 

measurements outside the object and numerical assumption from optimization process. 

Some information of the physical properties may not be retrieved entirely at the receiving 

points that encircling the object. The result could be either in good solution or just trapped 

in local minima due to lack of stability.  

Being ill-posed or extremely dependent on the data solution would cause small 

agitations due to noise during measurement process of the actual object yields 

overwhelmingly volatile outcome [9]. On top of that, the solution is characterized by 

nonlinear relation between the scattered fields and dielectric profiles [10]. The term ill-posed 

is defined by Jacques Salomon Hadamard’s rules [9], in which instability of inverse 

scattering cannot be eliminated even it is combined with other algorithms for better solution 

[11]. 
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Figure 1.2: Overview of inverse scattering 
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1.1.1 Deterministic Inversion Solution 

Inverse scattering problem can be unravelled either with deterministic or stochastic 

solutions. Regardless of optimization solutions utilized for the inversion, the effectiveness 

relies on its ability to minimize the cost functional, complexity level, appropriate number of 

parameters involved, as well as convergence criterion [12]. Classical methods that have been 

well-developed over past decades can be categorized as deterministic algorithm divided into 

nonlinear and linear solutions, which still widely discussed in recent years [12].  

Deterministic solution is quite synonym to nonlinear optimization, in which some 

of the proposed methods are gradient based method [11, 13], Contrast Source Inversion 

(CSI) [14], Subspace-Based Optimization Method (SOM) [15, 16] and New Integral 

Equation (NIE) method [17]. The process is initiated by assigning initial guess values as an 

estimation for the object’s profiles, in which some are empirically determined [11, 13], 

roughly determined [15, 17] and some are calculated [14]. The solution progresses iteratively 

towards convergence. Conventional deterministic gradient based method compares 

measured scattered fields outside the sought objects to be determined with computed 

scattered fields originates from artificial object for optimization [18, 19]. Conjugate gradient 

method and Polak–Ribière Polyak search directions are employed in most deterministic 

solutions to determine the object profiles [11, 13, 14, 16, 17]. Most deterministic solutions 

solve forward problem to obtain scattered fields at each iteration, nevertheless is not required 

in CSI thus reduce the complexity and computational burden [14].  

There are two obvious limitations with deterministic solution. First, there ought to 

be priori knowledge of the scatterer such as its material type and profiles boundary [16, 20]. 

Estimation in initial guess must be approximate to the actual object contrast setting [16, 17, 

21]. This could be unrealistic under certain circumstances, considering that the sought object 
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is supposed to be unknown. Secondly, most algorithms are implemented in iterative manner 

which might suffer from high computational burden particularly for higher dimensional 

problem [16, 17, 20, 21]. However, the end results are often quite promising despite its 

limitations.  

Linear or weak scattering method is based on approximation of the scatterer to 

linearize the relation between the scattered fields and object profiles. Conservative linear 

methods are Born or Rytov approximations, that attain the linear relation by assuming very 

low contrast between layers of object and background with low and high frequency, 

respectively [8]. These methods only can provide rough estimation on the object.  

 

1.1.2 Stochastic Inversion Solution  

State of art to solve inverse scattering problem is by stochastic method or known as 

population-based optimization to find global minimum in inversion technique. It overcome 

limitation of deterministic algorithm in which  eliminate dependency on the properties of the 

unknown scatterer [12, 22]. Some proposed stochastic methods to solve inverse scattering 

problem are Genetic Algorithm (GA) [23, 24], Particle Swam Optimization (PSO) [23, 25] 

and Differential Evolution (DE) [25]. 

It can provide dielectric properties2 contrast distribution even in complex shape other 

than locate the scatterer based on probability [23]. Global minimum is searched for to reduce 

probability of being trapped in false solution. The convergence can be achieved faster since 

solution is searched in several points in each iteration [22]. Stochastic approach has been 

proven robust to noise and able to overcome nonlinear optimization limitation, which does 

                                                 
2 Dielectric properties is a synonym of dielectric profiles or image contrast, comprising relative permittivity 

and conductivity 
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not require close approximation of initial guess to obtain good reconstruction results [23, 

26]. The overall process does not require gradient and direction as in nonlinear optimization.  

However, some may have limitations such as optimization untimely converged and 

poorly performed for local search which found in GA [27]. Study by [24] which previously 

utilizes gradient based method [28, 29] also proved that GA unable to supersede the gradient 

based method particularly for inhomogeneous media with large unknowns. DE which found 

superior than PSO in terms of speed and accuracy in shape reconstruction [25], nevertheless 

has no tools to extract and apply global information of the search space [30].  

 

1.1.3 Formulation Domain for Solution Implementation 

Formulation to solve inverse scattering can be implemented in continuous time-

domain or frequency-domain. Several frequency-domain inversion approaches have shown 

quite satisfying results subjectively or numerically proven [2, 31]. Advantage of single 

frequency or monochromatic source in inversion technique is that it can reduce difficulties 

and complexities in reconstructing dispersive model [2]. Finding from [32] in brain stroke 

monitoring suggests that, large bandwidth provides insignificant contribution in the result, 

since useful bandwidth for brain image reconstruction is narrow. However, major limitation 

of solution in frequency-domain is extreme nonlinearity at high frequency to attain better 

resolution of image profiles [19].  

Study by [33] proposed multi-frequency technique to overcome resolution problem 

of monochromatic source with continual procedure from low to high frequency. Time-

domain obviously has a lot to offer than frequency-domain approach since it operates at 

broad range of frequencies which in turn provides abundant valuable information. This can 

be seen in [34], which has demonstrated that the time-domain results are much better than 
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multi-frequency technique. However, despite abundant time-dependant data that can be 

exploited with time-domain approach, computational cost required for its implementation is 

much higher. It is a major trade-off between amount of data that can be obtained and the 

computational cost. Nevertheless, computational cost can be greatly reduced with the 

implementation in parallel computing [35, 36].  

 

1.2 Overview of Research Work  

Despite promising advantages offered by stochastic optimization method, this research 

work shall utilize well-developed time-domain nonlinear optimization technique namely as 

Forward Backward Time-Stepping (FBTS), which is deterministic and still an active area to 

discover. FBTS utilizes gradient-based method that is conceptually similar to modified 

gradient method by [13], in which the optimization requires solving forward and inverse 

scattering problem in each iteration to minimize error of fields data. The optimization is 

locally convergence in which requires proper initial guess to guide the solution. Calculations 

are implemented in Finite-Difference Time-Domain (FDTD) that discretizes partial 

differential of Maxwell’s equations, which to virtually measure the scattering 

electromagnetic fields due to scatterer.  

FBTS algorithm was pioneered by Takenaka et al. since 1997 [28] with focus research 

in inversion resolved by deterministic solution in time-domain for nondispersive object [18, 

37–40], dispersive object [19, 41], and stochastic solution in time-domain [24]. Recent 

advancement in FBTS algorithm only manipulate the knowledge of total fields and eliminate 

the needs of detail information on incident fields in the reconstruction region [21, 24, 42].  

Essential of this research is exploiting the limitation of nonlinear optimization 

inversion technique in which boundary of sought object is of priori known, and the fact that 
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limiting the unknowns that described the object can alleviate the ill-posedness problem [11, 

26, 43].  In this research context, limiting the unknowns means segmenting object’s region 

within its peripheral for reconstruction.  

Iterative Multi Scaling Approach (IMSA) is a segmentation technique that rescale the 

size of ROI in multiple stages [11, 44–46]. The zooming process is carried out multiple times 

until the peripheral object is defined. The resolution level is increased accordingly to the 

iterative rescaling process. It is very intriguing to incorporate tools which not only can reduce 

the ill-posedness, nevertheless less complicated to be implemented. There is no documented 

study to the extent of researcher’s knowledge that has applied Adaptive K-means clustering 

method to point out scatterer location and its peripheral at single iteration in deterministic 

nonlinear optimization inversion technique.  

 

1.3 Research Problem 

FBTS system is divided into two parts, where the first part (direct scattering problem) 

is to generate measured scattering data which based on actual and estimated input object.  

Rough image will be used as a priori-estimated input to its second part (inverse scattering 

problem) to generate the reconstructed object which then utilized to compute its 

corresponding calculated scattering data in subsequent iterations. Inverse scattering problem 

of FBTS is highly relying on a correct estimation of the local context to reduce the cost 

functional value.  

Local minimum in the cost functional is sought which guided by proper initial guess. 

This can lead to the creation of artifacts and resulting distorted reconstructed output image 

on condition that improper initial guess is applied or arbitrary error occurs during estimating 

electrical properties in the preceding reconstruction process, as discussed in previous section. 
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Therefore, it can be said that FBTS is intrinsically nonlinear or instable such that any error 

or changes in the input process shall produce substantial error on the output.  

It is proven in a research study by [10] that the applied low pass filter in both measured 

and calculated scattering data in inverse scattering problem was more robust to noise in 

image reconstruction [37]. However, any extended algorithm fused inside FBTS must yields 

secondary effect, in terms of computational time and space memory allocation, as more 

processes involved. On top of that, nonlinearity or instability of the inversion solution cannot 

be eliminated despite being combined with tools to improve the inversion solution. The 

extended algorithm only able alleviate the effect of nonlinearity problem [11]. Being highly 

nonlinear would increase the possibility of the solution trapped in local minima, in which 

can be assessed by the accuracy of the reconstructed image profiles [9, 21].  

This research work therefore shall focus on implementing an Automated Scaling 

Region of Interest (AS-ROI) in FBTS, which can zoom in to object’s size and location for 

image reconstruction. The rescaling process of AS-ROI is intended to overcome the 

nonlinearity problem, as the level of nonlinearity is proportional to the size of problem or 

the number of pixels to be reconstructed [11, 21]. AS-ROI is also combined with edge 

preserving techniques to smooth unnecessary artifacts of the object in the spatial domain. 

Since the reconstruction area is reduced and with smaller number of pixels involved, such 

method is anticipated to operate in a timely manner other than improving object’s accuracy. 

Further elaboration of the proposed technique will be discussed in Chapter 3. Appropriate 

image quality metric will be applied to evaluate the efficacy of the combined algorithms in 

the image reconstruction. 
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1.4 Research Objectives  

The aim of this research is to reconstruct object profiles within its estimated radius 

based on object size and location. In order to achieve the research aim, objectives for this 

research work are as follows:  

a) To formulate an algorithm for an Automated Scaling Region of Interest (AS-ROI) that 

can rescale down the image reconstruction area approximately to object’s geometry to 

reduce the nonlinearity problem and computational cost.  

b) To evaluate the combined algorithm of the FBTS, AS-ROI and edge preserving 

techniques in minimizing relative change of mean squared error (MSE) between 

dielectric properties in actual and reconstructed object.  

c) To validate the consistency of the combined algorithm of the FBTS, AS-ROI and edge 

preserving techniques in improving the accuracy of reconstructed object with respect 

to the actual in lung(s) model.  

 

1.5 Scope of Research  

The research is motivated by limitations of cancer imaging modalities due to the fact 

that current surgical procedures are generally still incapable to completely remove the 

tumour due to the insufficient margin detected. About 20% to 70% patients have to undergo 

for additional surgeries to remove the excess tumour [47]. Precise detection of tumour 

delineation would minimize the risk of recurrence. Other than sensitivity, specificity and 

accuracy, another crucial factors to elevate microwave imaging’s profile is to have non-

ionizing radiation imposed on patients and cost effective [48], which can be offered with 

inverse scattering method.  
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Method and findings from this research work therefore can be beneficial for image 

acquisition in medical field, such that it could assist radiologist or doctor in detecting tumour 

or cancerous region. The research work is solely done by simulating the scattering problems 

of electromagnetic waves towards numerical breast and lung(s) tissues models. Breast model 

is not represented in its actual form in this research work, nevertheless its dielectric profiles 

are taken to form simple shapes of objects.  Tissues of both breast and lung(s) models are 

assumed to be homogeneous, which contrast to human tissues. Actual tissue layers are 

inhomogeneous in nature and may infiltrated to each other. Models are nondispersive which 

are independent of frequency changes. All numerical models involved are immersed in free 

space as a coupling medium. Geometrical information as well as dielectric profiles levels of 

unknown object or scatterer are of interest in this research.  

Simulations are carried out in single computing platform, and hence objects ought to 

be small in size considering times taken for measurement and limited memory capacity to 

accommodate data for simulations. Algorithms involved in the research work were written 

in C++ language. Visual C++ is a platform used to obtain the numerical values of 

reconstructed image along with its field parameters. These numerical values which actually 

the image profiles then converted into spatial images by using MATLAB code. Evaluation 

on the cost functional along with the accuracy of the generated images are also executed via 

MATLAB software.    

In inverse scattering method, the type of object that need to be detected has to be 

specified beforehand. Otherwise, the interpretation would be ambiguous with vast options 

has to be made. On top of that, it helps to estimate the initial guess of dielectric profiles. 

Either too high or too low of dielectric profiles guess would cause the optimization trapped 

in local minima.  
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In general, the research work is a combination of gradient based optimization FBTS, 

AS-ROI method as well as edge preserving techniques as shown in Figure 1.3, to improve 

the accuracy of the reconstructed object in terms of image pixels. Image pixels in this case 

is referring to dielectric properties value of the object. Ideal condition is assumed for all 

analyses that the measurement process is not fluctuated by noise. The main focus of the 

research work is to study the proposed work to overcome the nonlinearity problem of inverse 

scattering in noiseless condition. 

 

Figure 1.3: Proposed techniques of research work  

 

In AS-ROI, Adaptive K-means clustering is used to zoom in to object’s region. Once 

location and size of object has been estimated, object’s area is segmented from the initial 

image reconstruction region with the rest are regularized to background’s dielectric values. 

Therefore, image reconstruction process only occurs within the segmented area, which is 

expectant able to improve accuracy as well as to reduce the computational cost. In reality 

with current technology, the process can be considered as tissues segmental resection for ex-

vivo dielectric spectroscopy. In contrast to reality, resection is only performed once tissues 

area has been recognized as cancerous. Nonetheless in this research, segmental resection or 

AS-ROI is performed for the sake of dielectric properties measurement to determine the 

malignancy. Boundary is a clear limitation of nonlinear optimization inversion technique.  

FBTS

AS-ROI

Edge 
preserving 

techniques 
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AS-ROI in FBTS is fused with edge preserving regularization and anisotropic 

diffusion filter, which alternately applied on gradients obtained by Polak-Ribière-Polyak [18, 

49] and image gradients. It would help to smooth while preserve the edges of reconstructed 

object. The edge preserving process, however, only employed on relative permittivity image 

while conductivity is only optimized by AS-ROI in FBTS. Therefore, it reduces the number 

of parameters involved, since each dielectric property needs its own parameter settings, 

which is formidable task to be determined. In addition, incorrect parameter estimation would 

cause errors in the reconstruction solution. Parameters in edge preserving techniques 

includes regularization coefficient, gradient threshold, potential function and number of 

iteration to initiate the process. These parameters value are determined empirically once the 

original ROI rescaled down to object’s size. Optimal values are evaluated based on image 

similarity index by using MSE between the reconstructed and actual object.   

 

1.6 Contribution of the Research 

Innovative aspect for the research work is threefold. Firstly, Automatic-Scaling 

Region of Interest (AS-ROI) is designed to extract object’s region automatically during 

iterative reconstruction based on the estimated location and size. It incorporates Adaptive K-

means clustering method as a segmentation tool to point out object’s region in single 

iteration with single resolution level. In contrast to this contribution, IMSA which also has 

the same function is executed in multi stages in multi-resolution level [11, 44–46]. However, 

AS-ROI requires sufficient details of reconstructed image for segmentation purpose to be 

instigated in early iterations of reconstruction. Computational cost can be reduced by AS-

ROI since less number of pixels are involved. High accuracy of reconstructed object 

significantly contributes to the solution speed. 
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Secondly, edge preserving techniques are integrated with FBTS once the 

reconstruction area has been segmented. Edge preserving regularization is usually imposed 

on the solution [13, 18, 29, 50]. Nevertheless, in this contribution regularization is applied 

on both solution and reconstructed image profiles by means of edge preserving 

regularization and anisotropic diffusion, respectively. As for the regularization on the 

solution, it is only applied on relative permittivity despite that it commonly applied on all 

profiles available [13, 18, 29, 50]. However, the regularized relative permittivity is 

unaffected by the unregularized conductivity.  

Thirdly, the feasibility of the proposed work is studied on lung(s) area which 

reconstructed based on related literatures. The analyses are extended from breast to lung(s) 

phantom model due to lung cancer has the highest mortality rate in comparison to other 

cancers. The highest statistic is not only reported in Malaysia, nonetheless occurred 

worldwide [51, 52]. Lung(s) phantom model was never been studied to be reconstructed by 

FBTS. Therefore, several phantom models are empirically tested in terms of sizes and level 

of contrast between its layers, since the minimal value for the lung(s) size and contrast 

difference that can cause nonlinearity are not known prior to the analysis. The purpose is to 

obtain the optimal size and contrast difference of lung(s) phantom model to reduce the 

nonlinearity problem.    

 

1.7 Thesis Outlines 

This thesis comprises of five chapters in total including Chapter 1, which covers the 

background of this research work particularly on the overall view of inverse scattering in 

terms of its solutions. Research problem, objectives and scope of research are also included.  
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Chapter 2 discusses FBTS, FDTD along with algorithms or tools that have been 

applied in other research works to mitigate the ill-posedness and nonlinearity problem of 

inverse scattering. Adjunct algorithms are divided into three sections, each of which 

discussing potentials and drawbacks of common methods to be incorporated with inversion 

technique encompasses filtering, regularization and reconstruction region segmentation.  

Chapter 3 addresses the methodological processes and theoretical formulations of 

algorithms utilized in the research to enhance the quality of object reconstruction and at the 

same time ameliorate the computational cost. Methods that have been explained involving 

three techniques: FBTS, Automated Scaling Region of Interest (AS-ROI) and edge 

preserving techniques. Model properties characterization is also presented.  

Chapter 4 emphasizes on the analysis of results obtained by using algorithms 

discussed in Chapter 3. Results are categorized into two aspects: comprises reconstruction 

by combined method of FBTS with AS-ROI and reconstruction by regularized FBTS with 

AS-ROI.  

Chapter 5 summarizes and concludes the obtained results. Suggestions for future 

works based on current research limitations are also discussed.  
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CHAPTER 2  

LITERATURE REVIEW  

 

Advancements to alleviate ill-posedness and nonlinearity problem of inverse scattering 

for image reconstruction until recent years falls between three categories, comprises of 

filtering, regularization and segmentation of reconstruction region in which focusing on the 

object to search. Based on thorough review on literatures, regularization is frequently 

proposed in most approaches to overcome the above mentioned intrinsic problem of inverse 

scattering. These three categories of adjunct algorithms to optimization method shall be 

emphasized in this chapter.  

This chapter shall be divided into three parts. The first part in Section 2.1 discusses on 

Forward-Backward Time-Stepping (FBTS), the applications and advancements that have 

been made to upgrade the conventional FBTS until recent years. The second part in Section 

2.2 deliberates on the Finite-Difference Time-Domain (FDTD). The third part in Section 2.3 

up to 2.5 elaborates on adjunct algorithms that can be integrated into the FBTS system to 

improve the inversion technique. The adjunct algorithms of optimization describe on related 

studies on edge preserving smoothing filter and regularization for denoising purpose along 

with reconstruction region segmentation by means of multiscaling process. 

 

2.1 Forward-Backward Time-Stepping  

Forward-Backward Time-Stepping (FBTS) is a deterministic inversion technique to 

solve inverse scattering problem in which the cost function is locally minimized. This 

technique was introduced by Takenaka et al. in 1997 [28]. The function is to estimate 

geometrical characteristics of a lossy or lossless unknown object embedded in known 
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medium by exploiting the electromagnetic scattering fields radiated from the object.  Lossy 

is referring to a condition that electromagnetic fields can penetrate and propagate into sought 

object to be detected with certain amount of its power dissipated during the process. In 

contrast to lossy, lossless is an ideal situation in which the received electromagnetic fields 

would be equal to the transmitted fields in its intensity level. Both object and background 

medium can be either homogeneous or inhomogeneous in its profiles’ values. The 

geometrical traits of an unknown object therefore can be estimated by reconstructing the 

electrical profiles distribution in relative to the object scattered fields.  

In efforts to reconstruct the electrical profiles, it requires priori knowledge in a form 

of initial guess. Proper values of initial guess can guide the optimization solution from being 

trapped in local minima or so called as premature convergence [21]. On condition that the 

solution trapped in undesired local minima, the optimization shall not progress to obtain the 

optimal result [18].  Hence the resulting reconstructed profiles may not be resembled to the 

actual object.  

The optimization process is carried out by means of minimizing the cost function that 

requires direct problem solution in each iteration. Cost function is the difference between 

measured and calculated scattered fields obtained from the solution of direct problem.  

Measured and calculated scattered fields are radiated from actual and estimated object 

profiles, respectively. Measured fields in the FBTS research context are virtually measured 

since the whole algorithm is computationally implemented. Direct problem solution is a 

process of estimating the accumulated scattered fields at the receiving antennas with given 

object profiles.  

Conjugate gradient method with Polak-Ribière-Polyak search directions  [13, 29] are 

employed in the optimization to determine the object profiles. Convergence criterion for the 
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optimization are varied according to researcher’s preferences based on the imaging 

application and desired image quality, which can reached up to 2000 iterations [37].  

Formulations of the optimization solution are solved in time-domain by using Finite-

Difference Time-Domain (FDTD) that discretizes partial differential of Maxwell’s 

equations. Type of wave mode that characterize the electromagnetic waves propagation in 

most FBTS research works is the Transverse Magnetic (TM) mode due to its simplicity to 

be formulated. Transverse Electric (TE) mode on the other hand has more terms in the cost 

functional [53]. Consequently, it has more Fréchet derivatives to solve the optimization 

problem with conjugate gradient method which increase the complexity.  

The object profiles can be either homogenous or inhomogeneous in nature. Most 

models utilized in FBTS are considered non-dispersive and only a few research works 

analysed on the dispersive models [19, 41]. Dispersive is referring to dependency of 

electrical profiles values with frequencies. Variety of the background medium, however, is 

never discussed in any paper related to FBTS in which free space is employed as the 

background.  

 

2.1.1 Applications of FBTS 

Most of the FBTS researches were applied in breast imaging to localize tumour. 

Analyses on a simple non-dispersive two-dimensional (2D) breast phantom model of high 

contrast in breast composition was reported in [29]. The 2D non-dispersive realistic breast 

model which derived from Magnetic Resonance Imaging (MRI) image were presented in 

[54] which have shown the efficacy of FBTS to detect the embedded tumour precisely. It 

also able to distinguish composition layers of breast constitutes of skin, fatty tissues and 

fibroglandular with a convergence criterion of 250 iterations. Three-dimensional (3D) 
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heterogeneous and non-dispersive breast model based MRI image was analysed in [1]. The 

resultant image exhibited reasonable accuracy in reconstructing a 10mm tumour however, 

deteriorated for 5mm tumour. It was also found that the reduced contrast in dielectric profiles 

also contributed to poor reconstructed image.  

Extended study of the 2D non-dispersive realistic breast model was analysed with 

Chebyshev filtered FBTS in [37]. The model has high contrast level between fat and 

fibroglandular layers nevertheless has low contrast between fibroglandular and fat layers. It 

showed high accuracy in estimating internal structure of breast profiles with 5mm tumour, 

and additionally has potential to reconstruct dense breast image. Later study by [35] has 

shown the ability of FBTS to reconstruct tumour in 4mm size. The Chebyshev filtered FBTS 

in [55] exhibited its ability to eliminate noise in homogeneous breast model nevertheless 

losing certain amount of measured data due to the filtering effect. Therefore, the researchers 

recommended to combine band-pass and low-pass filters to avoid missing information in the 

future work.  

Other than being applied for breast tumour detection, FBTS was also studied to 

reconstruct a 3D air-filled cavity [56], air-filled wooden cylinder [57] and soil 

characterization presented in [36] which emphasizing on the acceleration of an FBTS 

algorithm. A 2D lossless cylinder of inhomogeneous electrical profiles was analysed in [53].  

A spatial image of lossless dielectric cylinder image with contaminated transient fields was 

reconstructed by Chebyshev filtered FBTS in [10]. Recent studies [18, 38–40, 49, 58] 

concerning on reconstructing objects of simple geometries with the dielectric profiles taken 

from a homogeneous breast model embedded in homogeneous background. Based on 

satisfactory outcomes reported in the aforementioned research studies, FBTS has great 

potential to be analysed against variety of imaging applications. 
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2.1.2 Modified Version of FBTS with Extended Algorithms 

Adjunct algorithms to overcome intrinsic problem of inverse scattering and stabilize 

the optimization solution of FBTS were presented in several research papers. Regularization 

is a common approach to assist FBTS in order to achieve better solution. The findings of a 

combined edge preserving regularization in FBTS can be referred from early research work 

in [29], which later further developed to be an automated version of edge preserving 

regularization in [18, 49]. A technique to update the threshold parameter of regularization 

based on the occurrence of edge was also briefly explained in [18].  

Other regularization scheme was analysed in [40] which employed a Tikhonov 

regularization. However, numerical measures on the accuracy of reconstructed object was 

not presented. The method was also studied in [18] to compare edge preserving 

regularization and Tikhonov regularization which found that the latter technique produces 

oversmoothed effect on the reconstructed electrical profiles.  Total variation regularization 

was studied in [39] showed higher accuracy for the regularized case of relative permittivity. 

Conductivity on the other hand had higher error compared to the nonregularized case as the 

optimization process approaching the convergence criterion.  

Filter is another common tool that can stabilize the FBTS solution under condition 

of contaminated scattered fields. Chebyshev lowpass filter was integrated into FBTS that 

have been discussed in paper [37, 55]. Contaminated model was also analysed with Elliptical 

filtered FBTS in [38]. The geometrical of buried object was successfully characterized and 

missing information on the measured data was not reported. Preliminary study of this 

research work in [58] did not utilize the median filter against noisy condition. However, it 

was analysed under ideal setting to overcome ill-posedness and nonlinearity of inverse 
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problem. The result exhibited great improvement on both relative permittivity and 

conductivity images which verified by mean squared error (MSE) measure. 

In terms of expediting the inversion process of FBTS, researches in [56] employed a 

source group method which uses the concept of multiple transmission of electromagnetic 

fields to reconstruct a three-dimensional air-filled cavity. The research was motivated by 

expensive computational due to the increase number of transmitter to provide more 

information of sought object in a form of total scattered fields. The implementation of FBTS 

with parallel computing was analysed in [57] which found that computational time can be 

greatly reduced compared to the conventional FBTS. Due to the time reduction with parallel 

computing, it was utilized in later study to reconstruct a three-dimensional breast model [1]. 

In [36], researches have introduced a random boundaries concept in which reduces the 

computational time about 22%. 

Iterative Multi Scaling Approach (IMSA) is another technique that was proven able 

to reduce the computational cost [11, 43]. Nevertheless, it also elevates the accuracy of the 

reconstructed profiles by FBTS due to the increment in resolution degree which provide 

more detailed information [11, 43]. The reconstruction process with IMSA is only performed 

on the selected pixels which are identified to be part of the object at higher resolution degree. 

Rationally it would reduce the number of pixels to be processed corresponds to the reduction 

of reconstruction area. Therefore, times taken and memory for storage are reduced 

accordingly. The rescaling process is carried out multiple times until it reached the desired 

target area based on the stationary condition.  

Current advancement made in FBTS was to eliminate the need of information on 

incident fields [21, 24, 42]. It only requires total electric fields that tangential to the surface 

in which the conventional cost functional of FBTS was reformulated. Nonetheless, 
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optimization problem was also solved by using conjugate gradient method and Polak-

Ribière-Polyak search directions which similar to the conventional method. Another recent 

progression made on FBTS algorithm is its integration with an Overset Grid Generation 

(OGG) that overlap static main and sub-mesh as detailed in [59]. The results exhibited 

potential to reconstruct object profiles.   

In terms of expediting the inversion process of FBTS, researches in [56] employed a 

source group method which uses the concept of multiple transmission of electromagnetic 

fields to reconstruct a three-dimensional air-filled cavity. The research was motivated by 

expensive computational due to the increase number of transmitters to provide more 

information of sought object in a form of total scattered fields. The implementation of FBTS 

with parallel computing was analysed in [57] which found that computational time can be 

greatly reduced compared to the conventional FBTS. Due to the time reduction with parallel 

computing, it was utilized in later study to reconstruct a three-dimensional breast model [1]. 

In [36], researches have introduced a random boundaries concept in which reduces the 

computational time about 22%. Table 2.1 summarizes several studies that have incorporate 

adjunct tool(s) to improve the FBTS solution.  

 

Table 2.1: Summary of FBTS evolution  

 

Authors  Tool(s)  Contribution(s) 

Yong et. al. 

[18] 

Edge preserving 

regularization  

Parameters of edge preserving regularization were 

updated automatically which correspond to FBTS 

parameters. The proposed technique was proven 

superior in terms of accuracy level measured by 

MSE than Tikhonov regularization in [40]. 
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Table 2.1 continued 

Authors  Tool(s)  Contribution(s) 

Jamali et. al. 

[39] 

Total variation 

regularization 

The combination of TVR with FBTS was first 

studied in the paper. The results showed that the 

regularized case of conductivity by the combined 

technique was poorly reconstructed than the FBTS.  

Nawawi, 

Sahrani, Ping, 

Awang Mat & 

Abang Zaidel 

[58] 

Median filter  The incorporation of spatial filter into FBTS was first 

studied in the paper. Increment in the accuracy level 

indicates that the applied filter towards the 

reconstructed image profiles has assist the 

optimization in mitigating the nonlinearity problem 

of inverse scattering.  

Moriyama, 

Oliveri, 

Salucci & 

Takenaka [11] 

Chebyshev 

lowpass filter 

and IMSA 

The applied Chebyshev filter was proven robust to 

noisy fields, however did not contribute in enhancing 

the accuracy of reconstructed image with noiseless 

fields. It indicates that the applied analog filter on 

fields does not assist the optimization process in 

mitigating the nonlinearity problem, which contrast 

to finding in [58]. The rescaling of reconstruction 

area by IMSA on the other hand has successfully 

elevates the accuracy of the reconstructed profiles, as 

the number of problems reduced.  
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Table 2.1 continued 

Authors  Tool(s)  Contribution(s) 

Qiu, Zhou, 

Takenaka & 

Tanaka [56] 

Source group 

method 

Source group method is designed to transmit 

multiple signals from several transmitters for image 

reconstruction. It was proven considerably faster 

than the conventional FBTS that only allow single 

signal transmission at a time from fixed antenna 

position. Due to variant in transmitter position, it 

reduces the necessity of increasing the number of 

transmitters to collect detailed information on object 

geometry at various angles.  

Moriyama, 

Yamaguchi, 

Ping, Tanaka 

& Takenaka 

[57] 

Parallel 

computing  

In parallel computing, fields and its respective 

adjoint fields are concurrently calculated by slave 

computers. Groups of fields and adjoint fields are 

evenly distributed among slave computers with 

Message Passing Interface. Consequently, 

computational time is greatly reduced to 16.67% in 

comparison to FBTS that implemented in singe 

computer.  

Zhou & Zhang 

[36] 

Random 

boundaries 

It is designed to process only selected fields and its 

corresponding adjoint fields at random boundaries. 

Reduction in the data has successfully reduce the 

computational time about 22%. However, accuracy 

of the reconstructed object was never discussed.  
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2.2 Finite-Difference Time-Domain  

Finite-Difference Time-Domain (FDTD) is utilized as a solver to a direct problem of 

an FBTS inversion technique that model the electromagnetic scattering process. The 

technique which substitute Maxwell’s curl equations into central finite difference form was 

presented by Yee in 1966 [60]. Computation is performed by calculating electric (𝐸𝑥, 𝐸𝑦 and 

𝐸𝑧) and magnetic (𝐻𝑥, 𝐻𝑦 and 𝐻𝑧) fields of all grid cells in a Cartesian scheme with a 

leapfrog manner. Fields of future time are computed based on prior fields in which simulated 

over finite number of time steps that march on in time.  

All related studies to FBTS were implemented in FDTD. Figure 2.1 illustrates grid 

cells of FDTD in Transverse Electric (TE) and Transverse Magnetic (TM) modes [60]. It 

shows the distribution of electric and magnetic fields along the Cartesian axis. ∆𝑥 and ∆𝑦 

indicate the size of grid cell in the x and y direction. In Maxwell’s equations, time derivative 

for the electric fields relies on the spatial derivative of magnetic fields and vice versa [61]. 

These derivatives are converted into finite differences by discretization, in which the 

discretized fields are shifted by half time and half space.  

 

 

 

 

 

 

 

 

 

(a) Transverse Electric (TE) Mode     (b) Transverse Magnetic (TM) Mode 

Figure 2.1: Two-dimensional Yee grid cell of FDTD [60] 
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The computation of each field is solved with leap-frog method and determined by central 

difference approximation of two adjacent grid cells in spatial domain. TM mode is selected 

in most FBTS research works since dielectric profiles distribution in z-direction is of interest 

to reconstruct the unknown problem. 

 

2.2.1 Cell Size Determination  

According to researchers in [62], resolution degree or a maximum size of FDTD cell 

is commonly ranging from 10 to 15 cells per minimum wavelength. Minimum wavelength 

is referring to a medium wavelength. This requirement is made to obtain optimal accuracy 

of fields calculation on FDTD [63]. Other than standard practise in determine the cell size, 

the selection of cell size is also governed by the geometry features of an object to be 

reconstructed [62]. Geometry features include the dimension of object and its dielectric 

profiles [64].  

Standard formulation to calculate wavelength in a free space 𝜆𝑜 propagation is given 

in Equation (2.1), with 𝑐 and 𝑓 are velocity of light and frequency, respectively. 

 

𝜆𝑜 =
𝑐

𝑓
 (2.1) 

 

Frequency remains unchanged as the electromagnetic waves propagate across varied 

mediums. Speed of electromagnetic waves varies accordingly to the frequency under the 

case of dispersive medium or object.  The wavelength value on the other hand is always 

changes and characterized by the object profiles regardless whether the medium is dispersive 

or non-dispersive.  
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The wavelength value (symbolized as 𝜆𝑚) of a medium in related to dielectric 

profiles (𝜀𝑟 is relative permittivity) at a given frequency of 𝑓 (assumed to be the highest 

frequency applied) is expressed as in Equation (2.2) [64]. 

 

𝜆𝑚 =
𝑐

𝑓√𝜀𝑟
 (2.2) 

 

From the equation, the wavelength value of electromagnetic waves that propagates 

across a medium is inversely proportional to the frequency and relative permittivity. 

Therefore, the wavelength would be small at high frequency or high relative permittivity. 

Based on basic requirement of cell size which has been mentioned earlier, the maximum cell 

dimension in spatial cartesian can be calculated with Equation (2.3) [62].  

 

Δ𝑥 = Δ𝑦 =
𝜆𝑚

10
 (2.3) 

 

The cell size is linearly proportional to the wavelength. Small wavelength therefore 

requires small cell size dimension. In many FBTS studies, spatial cell size of 1mm at 2GHz 

frequency was utilized for reconstructing non-dispersive breast model in locating tumour 

[35, 37, 55], dispersive breast model [41] and dispersive simple object [19] and non-

dispersive simple objects [18, 38, 58]. Similar resolution was also applied in [49] with 1GHz 

frequency. Due to approximate size in phantom models utilized in the mentioned studies and 

similar value of the electromagnetic wave frequency, therefore cell size of 1mm is relevant 

to be applied in this research work.  
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Several FBTS research works have utilized bigger cell size due larger dimension of 

object to search. In [56], the researchers have utilized a cell size of 7.5cm to reconstruct an 

air-filled cavity from radar data. The same application was seen in [43] in which the 

optimization solution was solved by using cell size of 0.15m.  

  

2.2.2 Stability Condition for Time Step Size  

The selection of time step size plays a major role in stabilizing FDTD simulation 

result by means of Courant Friedrichs Lewy (CFL) precondition. The size of time step cannot 

be larger than the prespecified condition to avoid error as the solution marching in time. It 

directly proportional to the size of grid cells utilized for simulation [65]. Conventional time 

step of two-dimensional Yee grid cell to reach stability can be computed with Equation (2.4) 

[66].  

 

Δ𝑡 ≪
1

1

√𝜇𝜀
√

1
(Δ𝑥)2 +

1
(Δ𝑦)2

 
(2.4) 

 

The term 𝜇 denotes magnetic permeability and 𝜀 is the electric permittivity. Another version 

of step size formulation can be referred in [67] which solved by Gerschgorin theorem.  

Research study in [68] have proved that spatial filtering imposed on the unstable 

time-harmonics in the event that time step exceeding the limit can curbed the instability 

problem. It allows several subgrids to run synchronously to main grid in which limitation on 

the time step of main grid can be ignored. Similar approach can be seen in recent study of 

ground penetrating radar (GPR) [69] that also imposed spatial filter on subgridding scheme 

with time step larger than CFL limit. In [67], the researchers have introduced an adaptive 
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time step based on criterion derived from stability analysis of ordinary differential equations 

(ODEs).  

 

2.2.3 Absorbing Boundary Condition 

Absorbing Boundary Condition (ABC) is functional to absorb the outgoing fields in 

an infinite space of FDTD [70]. This is to avoid reflection at the vicinity of FDTD space 

which can disrupts the scattering measuring process within the investigation domain. 

Perfectly Matched Layer (PML) and Convolutional Perfectly Matched Layer (CPML) are 

utilized as an ABC in most FBTS research studies. Rigorous analyses and justification to 

select such ABC layers was never discussed in any FBTS studies.  

PML was introduced by Berenger in 1994 [70]. It is a nonphysical lossy medium that 

has null reflective factor of a plane wave with respect to vacuum layer at varied frequencies 

and incidence angle. It capable to absorb fields without reflection at the solution boundaries 

by splitting certain fields components into its constituent parts that decay within the PML 

medium [71]. 

 

2.2.4 Advancements and Applications of FDTD 

In [72], Maxwell’s equations discretization of the conventional FDTD method was 

upgraded by using Face-Centered-Cubic (FCC). It overcome problem of grid error which 

resulted from plane-waves propagation of dissimilar phase velocity. The same problem 

motivates researchers in [73] to apply the concept of dispersion reduction to gain optimized 

operators of finite difference expressions. The obtained result showed improvement in 

accuracy and computational cost efficiency in which validated by dispersion error.  



30 

 

Models with thin feature in geometry particularly with highly conductive profiles are 

hardly to solve in FDTD as it necessitates fine grids pertaining to CFL conditions. The 

consequence is therefore affected the computational size. In [74], the Hybrid Implicit-

Explicit (HIE) of high aspect ratios was proposed to be applied in subgridding method which 

proven well-suited for thin layered models characterization.  

Several papers [75–78] mentioned of high computational as a major disadvantage of 

conventional FDTD. Nevertheless, the issue can be solved with parallel implementation 

[79]. Alternative Direction Implicit (ADI) was integrated into the conventional FDTD that 

exhibited noteworthy reduction in the computational cost pertaining to the elimination of the 

CFL condition in the time step computation [80].  

Despite having detrimental grid error which can be significant in a large-scale 

problem, unfit for thin features model and high in computational, many recent studies other 

than FBTS research works still simulate inverse scattering problem with the conventional 

FDTD lattice with considerably good results. Research in paper [81] have utilized FDTD to 

reconstruct two-dimensional head model which solved by using stochastic inversion of 

particle swarm optimization. The result showed an increase in speed of computational which 

was compared to Moments of Method (MOM) solver. Potentiality in using large scale of 

parallel FDTD with resolution of 1km was discussed in [63] to characterize the ionosphere 

waveguide of earth executed by petascale and exascale super computers. Evolution of FDTD 

is summarized in Table 2.2.  
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Table 2.2: Summary of FDTD evolution 

 

Authors  Tool(s)  Contribution(s) 

Salmasi & 

Potter [72] 

Face-Centered-

Cubic (FCC) 

FCC is proposed to simulate and discretize 

Maxwell’s equations in 3D FDTD.  It overcome 

anisotropic error aroused in cartesian Yee grid, 

which due to anisotropic phase velocity during 

discretization. The surface of FCC is equipped with 

extra vertices enhances the dispersion characteristics 

of FDTD to allow better object reconstruction.   

Zygiridis, 

Kantartzis & 

Tsiboukis  [73] 

Optimized 

operator  

Finite-difference equations are optimized to reduce 

anisotropic error in Yee grid during discretization 

process. Similarly to [72], an optimized equations 

improve the dispersion characteristics of FDTD.  

Londersele, 

Zutter & Ginste 

[74] 

Hybrid 

Implicit-

Explicit (HIE) 

It is a subgridding technique in 2D FDTD which 

purposeful to reconstruct thin layer or miniscule 

structures. Fields are collocated in subgrids to 

explicitly determine the boundaries of the 

reconstructed object. Cell resolution is significantly 

increased to attain higher precision of reconstruction, 

particularly for skin effect analysis. Nevertheless, it 

still complies to CFL stability condition.  
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Table 2.2 continued 

Authors  Tool(s)  Contribution(s) 

Kourtzanidis, 

Rogier & Boeuf 

[80] 

Alternative 

Direction 

Implicit (ADI) 

ADI is purposeful to discretize the combination of 

Maxwell’s equations and plasma in the current 

source. The technique confiscates the CFL stability 

condition in computing time step size of FDTD. The 

unavailability of CFL allowing coarser time step, in 

which reducing the computational time about 70% as 

coarser time step will accelerate the computations.  

Based on CFL stability condition in the conventional 

FDTD, time step size is directly proportional to cell 

size. Smaller cell size is supposedly required to 

reconstruct fine details of small object. Therefore, 

the proposed technique is useful to characterise 

miniscule structures by reducing the cell resolution 

without reducing the time step.  

 

2.3 Edge Preserving Smoothing Filter 

Filtering process is often suggested to suppress the effect of noise, and some filters 

were found applied to resist the adverse effect of ill-posed and nonlinear problem in inverse 

scattering [11, 21, 55, 82]. Noise is intentionally added to the fields of actual object to imitate 

real situation in which random noise may exists during measurement [55]. Additive white 

Gaussian noise is usually utilized to contaminate the fields in many inversion techniques [4, 
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20, 38, 50]. Noise which arises from the process itself is caused by multiple scattering effect 

for a point-source scatterer which is about the same size of source signal wavelength [83].  

Analogue filter particularly network synthesis filter is normally integrated with 

inversion technique to deal with contaminated measured scattered fields that can leads to 

severe nonlinearity problem. For instance, varied order of Chebyshev [11, 21, 55] and 

Elliptical [38] low-pass filter has been integrated with FBTS, which applied to measured 

fields due to actual object to suppress the effect of noise. Both showed considerably good 

results in locating sought object in contaminated data merely based on subjective evaluation 

of the reconstructed object. Nevertheless, there were substantial loss of data during denoising 

process [55].  

On condition that measured fields are contaminated, the reconstructed object 

deteriorates accordingly [11, 21, 55]. The reconstructed object is also prone to artifacts in 

noise free environment due to ill-posedness and nonlinearity problem [58]. Artifacts is a 

term used to describe unwanted features in the reconstructed image resulted from the 

inversion solution or from the filtering process to aid the solution. Rationally, the application 

of spatial image filter which directly imposed on the dielectric profiles not only enhance the 

profiles, nevertheless would affect the fields in its subsequent iterations, though the relation 

between measured fields and dielectric profiles that constitutes the object is nonlinear [58]. 

This is due to gradients, directions and step size of FBTS to compute current profiles in 

conjugate gradient method are rely on the fields obtained from the reconstructed object of 

its preceding iteration [13, 29]. It is relevant to be applied in an inverse problem that has 

likelihood to incur error resulted from the inversion solution complicacy, which degrades 

the reconstructed image. Filtering in denoising artifacts can be applied as a preprocessing 

before image reconstruction or postprocessing once image is reconstructed. 
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The application of network synthesis filter and spatial image filter serves the same 

purpose to achieve the same goal, except that network synthesis filter and spatial image filter 

applied to fields (signal) and dielectric profiles (image), respectively [11, 21, 38, 55, 58]. 

Overall process of both approaches is conceptually similar that it simply a direct input and 

output process. However, comparison of their performance to aid the inversion technique to 

denoise artifacts in the reconstructed object was never discussed. This section only discusses 

two types of spatial image filter that has potential to aid inversion technique against its 

intrinsic problems with edge preserving and smoothing features.  

 

2.3.1 Median Filter Family  

Median filter is a common nonlinear filter, in which its output is non-intuitive with 

respect to its input without explicit relation between input and output [84]. The process of 

the conventional median filter is fundamentally simple that it computes each pixel by taking 

the median value of a data sequence constructed of neighbourhood pixels clustered with the 

respective pixel to be processed. The obtained median will substitute the initial centre point 

of a window kernel [85]. In other words, current pixel would be substituted by values in its 

neighbourhood. The filtering process is carried for all pixels regardless whether it is 

corrupted by noise or vice versa [86].  

Median filter is used to eliminate impulse noise in image processing which might 

arises from error during image acquisition in related to hardware faulty [87]. The filter is 

also broadly applied to reduce speckle noise [85, 88–90] in Synthetic Aperture Radar (SAR) 

images. It was also proven in [91] that median filter is consistently good in eliminating 

speckle noise indicated by Despeckling Evaluation Index (DEI) measure. It has been 

demonstrated in [92] that median filtered of digital images surpassed the performance of 
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fuzzy filter in eliminating different types of noise such as Gaussian noise, impulse noise, 

speckle noise and Poison noise.  

  Research by [93] have imposed a three-dimensional median filter towards its 

permittivity profile of breast tissue obtained by radar based method. Therefore, in the 

preliminary result of the research work presented in [58], median filter was iteratively 

imposed on the reconstructed object in noiseless environment, since the research aimed at 

mitigating intrinsic problem of inversion technique rather than focusing on impaired 

reconstructed images due to noise. The results showed significant improvement in terms of 

similarity degree in the dielectric profiles (relative permittivity and conductivity) measured 

by MSE between conventional FBTS and iterative median filtered FBTS. Accuracy at the 

edges however, was only evaluated visually. Hence, similarity degree of the image structure 

or boundary is not considered in analyses.  

Despite its ability in eliminating noise and preserve edges of an image with simple 

algorithm, main disadvantage of median filter is that it introduces blurring effect in image 

resolution [86]. This causes some features like thin lines and curve line information missing 

[94] and even exhibit artifacts like rounded sharp corner [95]. Missing important features is 

mainly due to the filter process that treats all pixels as contaminated [85, 96]. Apart from 

that, there is possibility that accurate pixels could be substituted by the contaminated pixels 

[97]. Other drawbacks are data sorting [98] and windowing masking [86] which necessary 

to determine the median value, nevertheless are time consuming as the process is carried for 

each pixel. Several approaches with aim to avoid tendency of missing important features 

have combined the median filter with other filters. For instance, combined hybrid median 

with mean filter [98, 99], combined median with Lee filter [85], combined median with 

Savitzky-Golay filter [88] and combined Gamma with median filter [90]. This shows that 
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median filter alone is insufficient to balance noise elimination and preserve important traits 

of the input image.  

There are several extension methods of median filter to overcome its weaknesses. 

One example is weighted median filter [100] which relatively similar to median filter 

process. It takes the median in term of weight values of sequence data in its local 

neighbourhood. It performs better than median filter according to several researches [85, 

95], however, the filtering concept is similar to conventional median such that each pixel 

incur to be filtered. Hence, weighted median filter also found inherits the same limitation as 

the conventional median filter [96]. Research in [84] stated that median and weighted median 

filters only performs well against low intensity of noise, as all pixels are filtered in a fixed 

size of window kernel. High noise level is suitably solved by large window kernel, however 

minuscule structures would be erased due to over smoothing. In addition to that, pixels are 

not selectively filtered which also cause uncorrupted pixels to be oversmoothed as it is 

treated in the same way as the corrupted pixels.  

One approach to reduce missing important features through filtering is to identify 

corrupted pixels for filtering process that precludes smoothing all pixels available [96] which 

can be found in other median extension family. Filtering on the corrupted pixels not only 

preserve edges and other important traits of the image, nonetheless reduce the computational 

time as well. Contribution from the mentioned research work [96] have proved that the 

conventional median filtering able to preserve details of the image and adept in eliminating 

noise, on condition that corrupted pixels are identified correctly. It detects noise by identify 

pixels with intensity difference of 20 with respect to average value in its neighbourhood 

pixels, as well as through the existence of large variance in each window kernel. The 

obtained results were proven better than the existing median family. 
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Decision based median filter [101] did take into account of specifying corrupted 

pixels prior filtering, however, uncorrupted pixels also can be replaced since it operates in 

fixed window size. This is due to some corrupted pixels may not be present in the specified 

window. Adaptive median filter [102] was developed to tackle the noise detection problem 

by automated varying window size with some extra conditions for filtering process. It can 

handle impulse noise up to 50% density, yet consume more time than the decision based 

median filter [84]. Similar technic can be seen in the method proposed by [103] that 

improved the decision based method by adaptively increase the size of window kernel in 

which proven robust to 90% of noise density.  

Noise or corrupted pixels in both decision based median filter and adaptive median 

filter are identified with condition that the pixel falls either at maximum (255) or minimum 

(0) level of grayscale image intensity. Disadvantage of detecting corrupted pixel merely 

based on maximum or minimum values is that random noise may incident in between the 

range which in turn leads to false filtering [96]. Table 2.3 lists advantages and disadvantages 

of median filter family. 

 

Table 2.3: Comparison of median filter family 

 

Type Advantageous  Disadvantageous 

Median filter The same window kernel is used 

throughout the process. The 

operation is only relying on the 

data ranking, thus less complex 

in the algorithm. 

Uncorrupted pixels are also filtered 

and hence susceptible to lose image 

features which due to invariant 

kernel size. It is time consuming as 

all pixels are involved in the 

filtering process.  
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Table 2.3 continued 

Type Advantageous  Disadvantageous 

Weighted 

median filter 

The operation is steerable by 

datasets ranking along with 

pixels’ weight as well. Hence it 

increases the reliability of the 

filtered value.   

Similar to median filter as window 

kernel size is invariant for each 

pixel.  

Decision based 

median filter 

Filtering is only imposed on 

corrupted pixels that have been 

identified prior filtering. 

Severely affected by noise in 

detecting corrupted pixels which 

incident at maximum and minimum 

value.  

Adaptive 

median filter 

Window kernel size is varied 

accordingly to the filtered 

median value. The median value 

of datasets in a kernel is also 

tested with threshold values. It is 

to determine whether the original 

pixel should be replaced with the 

median or being retained. Hence 

uncorrupted pixels would be 

unaltered and preserved.     

More complicated in algorithm and 

time consuming to test several 

conditions for specifying window 

kernel size and identifying 

corrupted pixels.  

 

In continual to the preliminary work by using conventional median filter, FBTS has 

been tested with another median filter family that compare performance of median, weighted 
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median, adaptive median and adaptive weighted median filter. All filters were tested with 

different size of kernel to find the optimal size for smoothing without eliminating edge 

details. The final results are shown in Chapter 3, which found that adaptive weighted median 

yields the highest accuracy among the tested median family filter. Elaboration on the results 

will be discussed in Chapter 4, Section 4.2. 

 

2.3.2 Anisotropic diffusion  

Anisotropic diffusion is the fundamental of regularization technique, which 

inherently serves as a smoothing and edge preserving filter for image processing. It was 

introduced by Pietro Perona and Jitendra Malik in 1990 [104]. Most research papers 

categorized it as a filter instead of regularization method. Standard anisotropic diffusion 

filter is not formulated to minimize cost functional that is analogous to image reconstruction 

solution. Nonetheless it is usually directly applied to image for enhancement or restoration 

purpose in iterative manner. Regularization on the other hand introduces some penalty term 

towards minimization solution and is frequently imposed to aid solution of inversion 

technique to ameliorate image reconstruction [105]. In this thesis work, regularization in 

FBTS is imposed on both solution and image profiles by means of regularization and non-

iterated anisotropic diffusion, respectively. Rationale of implementing non-iterated instead 

of iterated anisotropic diffusion will be explained in Chapter 3. It has been proven in [82] 

that the filter able to aid inversion solution for tomography seismic model that it has been 

incorporated into conjugate gradient method as a pre-processing process.  

Algorithm of the filter is shown in Equation (2.5), where 𝑓 is an input image, 𝑘 is 

current iteration number, 𝑑𝑖𝑣 is divergence operator and 𝜏 is a relaxation factor ranging 

 0 < 𝜏 < 2 [104]. 
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𝑓𝑘+1 = 𝑓𝑘 +
𝜏

|𝜂|
∙ 𝑑𝑖𝑣[𝑐(‖∇𝑓𝑘‖) ∙ ∇𝑓𝑘] (2.5) 

 

In research study by [106–108], relaxation factor is defined as 0 < 𝜏 < 1 which determines 

the diffusion rate. 𝜂 is the spatial neighbourhood pixels involved to compute image gradients 

or derivatives. On condition that gradient is computed in four directions, in example North, 

East, South and West directions then |𝜂| would be equal to 4 [106]. ∇𝑓 is gradient image 

and 𝑐 denotes edge preserving potential function or diffusion coefficient.  

Two types of edge preserving potential functions in anisotropic diffusion are given 

in Equation (2.6) and Equation (2.7), respectively [109, 110]. 

 

𝑐(‖∇𝑓‖) =
1

1 + (
‖∇𝑓‖

𝐾
)

2 
(2.6) 

𝑐(‖∇𝑓‖) = 𝑒𝑥𝑝 (− (
‖∇𝑓‖

𝐾
)

2

) (2.7) 

 

The first function was taken from Hebert and Leahy function for regularization [50] which 

suitably used for wide region. The second potential function is beneficial for high contrast 

layers [108, 109].    

In the potential function, the term 𝐾 is referring to gradient threshold parameter that 

must be greater than 0 to control the smoothing effect in which manually selected in most 

conventional method. Provided that the gradient threshold 𝐾 is too small, then the smoothing 

effect would be insignificant. However, too large gradient threshold 𝐾 would resulting 

oversmoothed filtered images [104, 106, 107]. Typical range of the gradient threshold stated 

in [108] was defined as 20 < 𝐾 < 100. However, in [107], the value gradient threshold 𝐾 
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was stated as 2 based on empirical experimentations. Correlation between gradient threshold 

and gradient magnitude in related literatures was never discussed. Diffusion or smoothing 

activity is bounded within detected edges, which is comparable to regularization. Small 

value in the gradient magnitude |∇𝑓| signifies that the area is homogenous and that 

smoothing effect should be solider for image denoising. Large value on the other hand 

indicate the presence of edges and therefore smoothing would not be applied within the 

detected vicinity to preserve the edges details [104]. 

The performance of standard anisotropic diffusion in many studies has been proven 

admirable in eliminating noise and preserve edge features. Some of the examples are 

improving the solution for seismic tomography imaging [82], ultrasound [108, 111] and 

computed tomography denoising [112]. Among factors that contribute to the effectiveness 

of the filter is the window size [113]. Too small window would not eliminate the noise and 

too large window would eradicate subtle features of the filtered image. Focus in research 

study by [106] was drawn on the convergence criterion to control number of iterations for 

filtering to avoid oversmoothed result along with improving gradient threshold parameter 

for diffusion.  

Two limitations of anisotropic diffusion highlighted in [113] were smoothing effect 

is isotropic in all directions and the threshold value for the diffusion function is not 

automatically adapted to local features of input images. The threshold value has to be 

manually determined for varied images. Two improvements have been made by the 

researches to solve the problems, which automatically estimate noise in gradient images at 

each iteration as well as converting end result of edge preserving potential function in a 

scalar form into matrix diffusion.  
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Another drawback which emphasized in [107] was finite difference method usually 

involves horizontal and vertical directions. This method could be non-robust to noise and 

hardly distinguish edge and non-edges area due to lack of information on the image features 

that can be obtained with limited number of directions. Therefore, diagonal neighbours were 

included to acquire detail information of the image in computing the diffusion coefficient.    

 

2.4 Regularization 

Regularization method is functionally used for denoising, which has similar purpose 

to filtering process. Main difference between regularization and filter is that it incorporates 

a regularization term which is also known as a penalty term or a prior term into its solution 

by means of cost function minimization. In other words, regularization needs to be solved 

with an iterative minimization process. In related to tomographic image reconstruction with 

inverse scattering, the regularization term is added in the sense to minimize cost functional 

that stabilize scattered fields with respect to dielectric properties involved. Filters on the 

other hand have straightforward algorithm process which can be implemented directly 

towards fields or the reconstructed image. Therefore, it can be assumed that regularization 

can be considered as a filter in a practical viewpoint. However, filters cannot be categorized 

as a regularization process for the reason that it does not require any iterative minimization 

process in its algorithm.  

There are many types of regularization methods, such as edge preserving 

regularization that employed various potential functions, Total Variation, Tikhonov, 

Singular Value Decomposition, Least Mean Squares, etc. Two types of regularization 

method are selected to be discussed in this section due to its potential performance based on 

state of art literatures. Regularization method can be classified into classical (with fixed 
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interval) and local regularization (with varied interval) which based on the interval limit of 

the integral equation to be solved [114].   

Most intrigue subject in related to regularization methods until recent years is the 

regularization parameters, which many agreed that it is tedious to be determined. Most 

researches employed heuristic method through empirical experimentation to find the optimal 

parameter value [49, 50, 115–119]. Advances researches may have upgrade the parameters 

to be adaptive to either local or nonlocal statistics of the observed image. As for instances, 

regularization parameter can be determined from systematic construction model [120], 

adaptive to local noise estimation [91, 121], L-curve criterion [114], and utilized Particle 

Swarm Optimization (PSO) [122]. Authors in [114] stated three types of regularization 

parameter selection, which depends on noise level, existence data and a combination of noise 

and data.  

In a broad sense of protecting important features such as edges or curvy area from 

being removed during denoising with regularization method, correct estimation of 

discontinuities or boundary is the most important measure to ensure effective edge 

preservation. Boundary is a common prior knowledge to be explicitly imposed on 

regularization solution. It was highlighted in [123] that boundary is an important factor in 

denoising process and an edge density estimator was proposed for fine details preservation.  

 

2.4.1 Edge Preserving Regularization  

Edge preserving regularization has been widely applied to overcome ill-posedness 

problem to inversion technique [13, 18, 49, 50]. The edge preserving regularization method 

is conceptually similar to anisotropic diffusion filtering which also has constituent elements 

of edge preserving potential function, gradient threshold as well as regularization coefficient 
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to stabilize the diffusion effect towards the filtered image. Therefore, findings from studies 

in anisotropic diffusion are relevant to be incorporated into this edge preserving 

regularization and vice versa.  

The cost function in the regularization is composed of a data fidelity term 𝑄1(𝜌) and 

regularization term 𝑄2(𝜌), which formulated in Equation (2.8) [50].  

 

𝑄𝑇𝑂𝑇𝐴𝐿(𝜌) = 𝑄1(𝜌) + 𝑄2(𝜌) (2.8) 

 

In the context of this research, the data fidelity term is referring to cost functional of the 

inversion technique FBTS. Regularization term incorporates the element of controlled 

smoothing within the vicinity of the detected object. The regularization term in Equation 

(2.9) can be defined as a summation of potential functions 𝜑(‖. ‖) in terms of image 

gradients ∇𝜌 which is a priori information that confined in a spatial dimension of 𝑁𝑥 × 𝑁𝑦 

[13].   

 

𝑄2(𝜌) = ∑ ∑ 𝜆𝜑 (
‖∇𝜌‖

𝛿
)

𝑁𝑦

𝑦=1

𝑁𝑥

𝑥=1

 (2.9) 

 

Authors in the original work of [50] explicitly mentioned that the level of image 

gradient or derivative is depending on types of sought images, in which second order 

derivative was utilized. However, second order derivative is said to be sensitive to noise 

which requiring preprocessing process [124]. Image derivative itself can be a research topic 

in edge detection.  
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Since the cost functional equation is penalized with a potential function that can be 

varied, therefore main advantage of an edge preserving regularization is its flexibility to be 

incorporated with any relevant weighting function that corresponds to the selected potential 

function [125]. The regularization term can be transformed into half-quadratic regularization 

to simplify the minimization process written in Equation (2.10) which introduces auxiliary 

regularization parameter 𝑏 in Equation (2.11) and its corresponding function 𝜓(𝑏) into the 

solution which given in [50]. 

 

𝑄2𝐻𝑄
(𝜌) = ∑ ∑ 𝜆𝑏 (

‖∇𝜌‖

𝛿
)

𝑁𝑦

𝑦=1

𝑁𝑥

𝑥=1

+ 𝜓(𝑏) (2.10) 

𝑏 =
𝜑′(∇𝜌/𝛿)

2(∇𝜌/𝛿)
 (2.11) 

 

The auxiliary parameters of regularization term and optimization solution are alternately 

minimized. Regularization gradient of reconstructed profile is formed by taking Fréchet 

derivative of the regularization term, in which the function 𝜓(𝑏) is dismissed from the 

gradient equation [18]. Therefore, the function 𝜓(𝑏) shall not be discussed and not of interest 

in this research work. Other parameters involved are regularization coefficient and gradient 

threshold that denoted as 𝜆 and 𝛿, respectively.   

Regularization coefficient which to balance the effect between the data fidelity 

(FBTS term) and regularization term can be retrieved by certain methods depending whether 

the level of noise in known or unknown [121]. Golden Section Search method based on mean 

and variance of noise computed by windowing process was proposed in [121] to determine 

the regularization coefficient. It was postulated in the study that the optimal parameter can 

be estimated on the event that sought image must be approximate to the original. Therefore, 
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Wiener filter was applied as a preprocessing process to the image prior to determine 

regularization parameter process to obtain better estimation.  

L-curve criterion was described in [114] which designed for optimal parameter 

estimation to regularization. It relies on the cost functional values of both data fidelity (in 

this case referring to FBTS) along with regularization. These values, however, only depict 

whether the solution successfully converge or merely trapped in local minima. Based on 

observations, very low cost functional values do not necessarily mean that object’s accuracy 

is elevated. Neither the graph nor the values would describe the accuracy level of the 

reconstructed object.  

In related to solve inverse scattering problem with deterministic algorithm, recent 

work namely as automated regularization technique by [18] has demonstrated excellent 

inversion solution to generate reconstructed images approximate to its actual. The relaxation 

scheme in alternate minimization was comparable to stopping criterion in [115], nevertheless 

the method was applied to determine the need to update the auxiliary parameter of 

regularization term. The same principle is also applied in this research work mainly due to 

its high performance under noiseless environment setting. Its selection is mainly based on 

its large potential to be further explored in its explicit parameters.  

In efforts to ameliorate edge preservation, researchers in [126] have imposed a 

convex weighted median as a prior knowledge into the regularization method and 

exemplified effective in avoiding missing details in the reconstructed image. The method is 

similar to research [121], in which Wiener filter was used in the preprocessing process prior 

regularization. In [119], cumulative of first, second and third order derivatives were 

considered to compute the gradient norm to preserve fine details of sought image.  
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2.4.2 Total Variation Regularization  

Conceptual algorithm of total variation regularization was presented by Rudin, Osher 

and Fatemi in 1992 [127], which commonly known as TVR. It has garnered attention of 

researches in various fields until recent years and has been widely applied as a denoising 

tool in solving inverse problems [115, 128]. It employs the local statistics of the noisy image 

and iteratively imposed towards minimization solution by means of Lagrange multipliers. 

Cost functional of TVR in a spatial framework was formulated as in Equation (2.12) [127]. 

 

∫ √𝜇𝑥
2 + 𝜇𝑦

2  𝑑𝑥𝑑𝑦
Ω

 (2.12) 

 

Parameter 𝜇𝑥 and 𝜇𝑦 are pixel values in x and y direction in a region Ω. Detailed 

explanation on the algorithm and implementation can be referred to the author’s original 

work [127]. It was stated by the authors that the original TVR is computationally faster than 

edge preserving regularization method.  

The application of TVR in assisting the solution of tomographic image reconstruction 

were described in [129]. Most recent work in [39] showed improvement in noiseless image 

reconstruction of dielectric profiles by incorporating TVR into FBTS minimization solution, 

which related to this proposed research. Conventional algorithm of TVR was slightly 

modified by integrating a rounding parameter [130] into the square root function of spatial 

image in the Equation (2.12). The parameter was specified to be in infinitesimal value. It is 

intentionally added to avoid non-zero value of the original term in related to Euler-Lagrange 

equation. The Euler-Lagrange equation can be regards as a potential function for diffusion. 

This method is called smooth 𝜀-regularization which mostly found for TVR minimization 

[129]. However, the method inherits two limitations which the inevitability to solve extra 
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parameter ε as well as ineffectiveness in preserving contrasts and minuscule image structures 

[129].  In comparison to edge preserving regularization, the smoothing degree of TVR is 

only determined by the regularization parameter. Boundaries or gradient image is not 

controlled by any parameter, in which affect the sensitivity level of smoothing on edges and 

non-edges area. Therefore, it is ineffective in preserving contrasts since edges and non-edges 

area are not perfectly distinguished.  

Among weaknesses of total variation is the ineffectiveness to retain slanted edges 

[131] though sharp edges are usually well-preserved. It was also stated in [115, 120, 128] 

that staircase artifacts can be induced from the regularization process itself. In order to solve 

such issues, researchers in [132] exploited higher order of TVR with linear multiple 

regularization of  ℓ1 norm of gradient magnitude and Laplacian of the observed image. It 

showed better restored results than the conventional TVR. The adaptive version of total 

variation was described in [91] with the results showed proficiency in overcome the 

weakness of conventional TVR. The term adaptive in the paper is referring to the capability 

of the algorithm to tune to noise level in the observed image. Nonetheless, these mentioned 

works only employed local statistics of the image for denoising.  

Another way to improve the conventional TVR is to amalgamate local and non-local 

statistics that yields nonlocal convex function of regularization to achieve higher 

performance. One of the examples is Non-Local Means of non-local regularization which 

generalized the concept of Non-Local Means into TVR with the regularization parameters 

are empirically selected [128]. However, the weightage that denotes the similarity degree 

between pixels was determined from the original image. It is irrelevant in a practical 

viewpoint to solve inverse problem as the original information are supposedly unavailable.  
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Introducing a priori information into regularization of an inverse scattering problem 

is commonly found method to upsurge the denoised result. Priori information is not directly 

taken from actual object to search. Nonetheless, it is estimated from the unknown image 

intensities or profiles.  Prior information of the sparsity at vicinity along with the material’s 

discrete values have been utilized in [116] that successfully elevated the reconstructed 

image.  

 

2.5 Reconstruction Region Segmentation  

To the extent of researcher knowledge, none of documented studies involving 

reconstruction region segmentation in related to deterministic nonlinear optimization 

inversion technique has applied Adaptive K-means clustering method to extract desired area 

for reconstruction purpose. Nonetheless boundary of the reconstruction region is required as 

a priori information of deterministic optimization technique [20], in which segmentation 

algorithm has potential to point out object’s peripheral and location [26, 46].  

K-means clustering was utilized to extract patches constitute of pixels with similar 

features that enhanced better estimation of sparse coding coefficients for the restored images 

[133]. Similar clustering method was employed in [134] to construct learning sub 

dictionaries for the purpose of estimating high resolution from low resolution images. Other 

than being applied for image restoration, contaminated pixels were detected with K-means 

clustering in research works [135]. Conventional K-means segmentation had been utilized 

to point out changes in SAR images corrupted by speckle noise [136]. 

This research is motivated by the notion of object segmentation in Iterative Multi 

Scaling Approach (IMSA) that reduce the number of pixels in flat region for better solution. 

Significant amount of the problem unknowns is reduced which providing an increased 
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probability for correct solution [43]. Main difference of this research contribution to IMSA 

is the number of steps required in zooming process and resolution level in defining the 

acquired region containing the unknown object.  

The Automated Scaling Region of Interest (AS-ROI) in this research work is a non-

iterative rescaling process and shall only utilize single scale of resolution for the rescaled 

investigation domain. The new domain is constructed in a circular shape that confines the 

vicinity of the detected object which allows the boundary to be updated iteratively during 

reconstruction. Hence, this would prevent severe distortions in the reconstructed image on 

condition that applied with fixed and erroneous boundaries. External pixels surround the 

detected object shall be replaced with the priori known background medium to amalgamate 

the inversion solution which also mentioned in [31]. 

 

2.5.1 Iterative Multi Scaling Approach   

The concept of Iterative Multi Scaling Approach (IMSA) is virtually similar to 

segmentation process that it zooms in to object’s region inside the initial coarse investigation 

domain for reconstruction purpose. Basically, it eliminates exterior pixels that enclosed the 

detected object by assigning the objective function to zero level [44]. It was originally 

presented in 2002 for dielectric profiles reconstruction [44] in which autonomous from 

minimization solution [45]. It imposes constraints or detected boundary towards the solution 

to achieve better estimation on the located object to search. Zooming procedure is carried 

out iteratively until the desired region is well defined or has reached the stationary criterion. 

The resolution level corresponds to the iteration number of zooming process [44–46]. 

Therefore, the reconstruction process at each newly defined region during the zooming 

process is carried out with higher resolution level. The authors in their extended work [45] 
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specifically mentioned that the proposed method was independent from the minimization 

solution. However, the statement can be argued since the reconstructed profile accuracy 

within the new investigation region has to rely on correct solution of the minimization 

algorithm, which can be in deterministic or stochastic framework. Each of which has its own 

limitations to offer correct solution.  In the context of cost functional algorithm, the similar 

equation is used throughout during reconstruction with and without IMSA.   

The method is still widely used until recent years. In [137], the IMSA method was 

integrated with inexact Newton algorithm to solve inversion technique of second order Born 

approximation. The multi scaling was carried out within the minimization algorithm in 

Transverse Magnetic mode until specified rescaling criterions are met. The reconstructed 

profile then filtered and the inversion technique was resumed by taking the filtered 

reconstructed profiles as its prior in the new investigation domain. In their extended studies 

[138], the authors implemented the IMSA in conjugate gradient method which also falls 

under deterministic solution as the previous work [137]. Since the problem unknowns have 

been reduced, it was proven robust against various level of noise intensity and effective even 

under limited acquired data [138]. Combination of IMSA with conjugate gradient method 

also can be referred in [11], which related to this research. Conceptually similar to [137], the 

multi scaling method was also imposed on the filtered reconstructed profiles in the updated 

reconstruction region. The combination of IMSA with stochastic minimization by means of 

PSO can be referred in [139], which showed superior results than the deterministic approach. 

Table 2.4 summarizes contributions of several research studies in related to 

reconstruction region segmentation in inversion technique for fine image reconstruction with 

IMSA. The table shows comparison in terms of implementation between IMSA against AS-

ROI.
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Table 2.4: Contributions of ROI segmentation with IMSA 

 
Authors Minimization 

technique 

Object  No. of 

Tx3 

No. of 

Rx4 

Segmentation 

technique 

Segmentation 

parametric 

configuration  

Pre-

processing/ 

Post-

processing 

Pre-

processing/ 

Post-

processing 

subjects 

Quality 

Metric 

Caorsi, Donelli, 

Franceschini & 

Massa [44] 

Conjugate 

gradient method 

2D homogenous 

circular cylinder  

4 21 Sub-gridding 

technique  

Heuristic - - Relative error  

Caorsi, Donelli, 

Franceschini & 

Massa [46] 

Conjugate 

gradient based 

Alternate 

Direction 

Implicit method  

2D homogenous 

circular cylinder 

Min – 8 

Max –36 

    

Min – 8 

Max – 

49 

Threshold 

clustering  

Heuristic based 

on image 

histogram  

Thresholding 

filter 

Dielectric 

profiles 

Relative error, 

Euclidean 

distance  

Donelli, 

Franceschini, 

Martini & 

Massa [26] 

PSO  2D homogenous 

square and circular 

cylinders  

Min – 4  

Max –36 

    

Min –21  

Max – 

49 

Threshold 

clustering 

Heuristic based 

on image 

histogram 

Thresholding 

filter 

Dielectric 

profiles 

Relative error, 

Euclidean 

distance and 

dimensional 

error 

                                                 
3 Tx is referring to transmitter  
4 Rx is to denote receiver 
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Table 2.4 continued 

 
Authors Minimization 

technique 

Object  No. of 

Tx 

No. of 

Rx 

Segmentation 

technique 

Segmentation 

parametric 

configuration  

Pre-

processing/ 

Post-

processing 

Pre-

processing/ 

Post-

processing 

subjects 

Quality 

Metric 

Salucci et. al. 

[137] 

 

Inexact Newton 2D homogeneous 

L shaped cylinders 

16 16 Sub-gridding 

technique  

Heuristic  Thresholding 

filter 

Dielectric 

profiles 

Internal pixels 

of object  

Moriyama et. 

al. [11] 

 

Conjugate 

gradient method  

2D homogeneous 

L shaped and 

square cylinders 

16 16 Sub-gridding 

technique  

Heuristic  Chebyshev 

filter  

Scattered 

fields  

Internal pixels 

of object  

Proposed 

method  

Conjugate 

gradient method  

2D homogeneous 

circular cylinder, 

U-shaped cylinder 

and lung(s) model 

12 12 Adaptive K-

Means 

Clustering 

Automated  Regularization 

and 

anisotropic 

diffusion  

Fields 

gradient 

and 

dielectric 

profile  

Internal pixels 

confined by 

circular region 

in object’s 

radius  
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2.6 Concluding Remarks  

The first section in this chapter had elaborated on the deterministic inversion technique 

FBTS which utilized in this research work, which includes its conceptual process, 

applications and algorithm improvements in recent years. The second section discusses on 

the FDTD which a solver to the minimization solution of FBTS.   

In several research works which have been discussed in later sections, edge preserving 

techniques including filter and regularization has been proven able to reduce artifacts, 

preserving important image features and eliminate noise effectively. However, the inclusion 

of such methods in an inversion technique would increase the computational load.  

Segmentation techniques for rescaling purpose by IMSA that generally applied in 

tomographic reconstruction has been studied. It was found that the incorporation of 

segmentation in reducing the number of unknowns involved during object reconstruction 

had augmented the fidelity of the reconstruction technique. The idea of reducing the 

unknowns has been adapted into this research work.  

Conceptual analogy of IMSA is like peeling an onion, which segmenting the object 

in multiple steps with an increased resolution level until predetermined convergence is 

reached. IMSA would eliminate any exterior pixels and only updating the interior pixels of 

detected object. It commonly utilizes hard segmentation method in which each pixel is 

clustered into single class. Comparisons of IMSA against the proposed technique of this 

research work are summarized in a form of table. All listed papers in the tables have 

exhibited positive outcomes towards the reconstructed object. However, fair comparison in 

its performance cannot be evaluated due to distinct inversion settings in simulations.   
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CHAPTER 3  

METHODOLOGY  

 

3.1 Overview of Process Flow  

The flowchart in Figure 3.1 shows the process overview of proposed techniques in this 

research work. Three techniques involved comprises of Forward-Backward Time-Stepping 

(FBTS), Automated Scaling Region of Interest (AS-ROI) and edge preserving techniques. 

The reconstructed profiles are recursively updated with Polak–Ribière Polyak conjugate 

gradient method in FBTS.  

The inversion technique FBTS is improved by embedding AS-ROI and edge 

preserving techniques into the solution. Conventional process of FBTS is carried out until 

the reconstructed image profiles has sufficient details in which suitable for object 

segmentation.  

Dielectric profile segmentation by AS-ROI is initiated at iteration 𝑆, which occurs only 

once during iterative reconstruction. The segmentation process shall exclude exterior pixels 

of detected object. Therefore, only pixels which constitute the detected object shall be 

considered to be updated for image reconstruction.   

Alternate minimization of FBTS is instigated at iteration 𝑅, by means of implementing 

edge preserving regularization on local gradients in even iteration number. In odd iteration 

number, the solution is minimized by conventional FBTS which then followed with 

imposing anisotropic diffusion on the reconstructed relative permittivity.  The whole process 

shall be resumed until the predetermined convergence criterion is reached. 
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Figure 3.1: Flowchart of proposed techniques 
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3.2 Forward-Backward Time-Stepping (FBTS) 

3.2.1 Overview of FBTS process 

The whole process of FBTS can be categorized into two stages: Forward Time-

Stepping and Backward Time-Stepping. Image profiles also divided into two types; actual 

object to be detected and simulated object that imitates the actual. The end result of FBTS is 

the simulated object that resulted from estimation of optimization solution. The 

reconstructing region to simulate the dielectric profiles in this research is defined as region 

of interest (ROI).  

Forward Time-Stepping in Figure 3.2(a) solves direct problem in which generates 

transient scattered fields at the receiving antennas that originated from either actual or 

simulated object. Scattered fields are obtained with the same intensity of current source, 𝐽𝑍𝑀 

and antennas position for both actual and simulated cases. Backward Time-Stepping in 

Figure 3.2(b) on the other hand, employed the difference between total scattered fields 

(𝜈𝑚 − 𝜈𝑚) collected at the receiving antennas due to actual and simulated object as a source 

(𝐽𝑍𝑀
′ ) to irradiate the simulation object.  

The resulting fields in the ROI which known as adjoint fields shall then utilized in 

conjugate gradient method to update gradient and search directions of the estimated 

dielectric profiles. The obtained direction along with variation of total fields in the ROI will 

be utilized as a source illuminating simulation object which in turn used to find step size. 

The value of step size is important to compute estimated image profiles. All measurements 

and calculations in Forward Time-Stepping and Backward Time-Stepping are solved by 

means of Finite-Difference Time-domain (FDTD).  
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(a) Forward Time-Stepping  

 

(b) Backward Time-Stepping  

 

Figure 3.2: Forward and Backward Time-Stepping  

 

Firstly, Forward Time-Stepping is executed to find total scattered fields of actual 

object. In normal operation of FBTS, the measurement process for the actual object only 

occurs once in the whole process. Then to initiate the process of FBTS, homogenous rough 

estimate is assigned to whole ROI which enclosed the sought object. In every iteration of 

optimization, Forward Time-Stepping is again employed to find collected fields scattered by 

the simulation object. Then, it followed by Backward Time-Stepping step which resulting 

the new estimate of dielectric profiles. The estimated profiles will be utilized for subsequent 

iteration that repeats the same the two stages as its preceding iteration.   
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3.2.2 Modelling Setup 

Figure 3.3 illustrates configuration problem in two-dimensional spatial domain for 

analysis setup. The lossy object that confined within a predetermined ROI Ω0 is immersed 

in a free space background. Significant effects of overcoming ill-posedness and nonlinearity 

of inverse problem can be obtained with free space as a background [138]. Object in this 

research is represented by numerical model of dielectric profiles. All layers consisting of 

object and ROI including the background free space are homogenous in values. 𝑀 point 

source antennas which spaced evenly of the same radius at 𝑟𝑚
𝑡  (𝑚 = 1,2, … , 𝑀)irradiate the 

object with Gaussian pulses. The term 𝑟𝑚
𝑡  is referring to the transmitting antennas with radius 

of 170mm [1]. Distance between antenna and ROI should be within radiating near field to 

assume perfect fields propagation. Minimal distance, 𝑑𝑚𝑖𝑛 is within 29mm and 33mm on 

condition that dipole antenna is considered in simulation [1]. However, the distance can be 

adjusted with varied types of antennas of different specifications.  

 

 

Figure 3.3: Configuration of the problem in 2D view 
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The pulses are generated by line current source 𝐽𝑍𝑀(𝑟, 𝑡) which given in Equation 

(3.1) pointing in z-direction that orthogonal to object’s spatial domain [10, 29]. 

 

𝐽𝑍𝑀(𝑟, 𝑡) = 𝐼(𝑡)𝛿(𝑟 − 𝑟𝑚
𝑡 )         ,       𝑟 = [𝑥, 𝑦] (3.1) 

 

Signal source in this research is categorized as soft source since current is impressed to excite 

electromagnetic fields. Each of the antennas successively act as a transmitter at a time. The 

remaining 𝑁 (𝑁 = 𝑀 − 1) antennas located at 𝑟𝑛
𝑟, 𝑛 = 1,2, … , 𝑁 act as receivers to collect 

or measure total scattered fields. Total combination of collected field dataset is 𝑀 × 𝑁.  

The term 𝐼(𝑡) in Equation (3.2) is referring to current excitation function or so 

called as modulated Gaussian pulse. 𝑡0 is the time offset between time zero and the centre 

of Gaussian pulse. 𝑇𝑤 is the Gaussian pulse width which to control the width of Gaussian 

envelope [29].  

𝐼(𝑡) = 𝑒
−[

(𝑡−𝑡0)
𝑇𝑤

]
2

𝑠𝑖𝑛(2𝜋𝑓𝑐(𝑡 − 𝑡0)) 
(3.2) 

 

The centre frequency 𝑓𝑐 = 2GHz is utilized in most analyses, in which determined from 

numerical and subjective observation.  𝛿(𝑟) denotes Dirac delta function which holds zero 

value elsewhere except for 𝑟 = 𝑟𝑚
𝑡 . 𝑟 is a space variation of antennas position in two 

dimensional spatial coordinate of 𝑥 and 𝑦 directions.  

In Equation (3.3), total electromagnetic fields 𝜈𝑚 due to excited current at 𝑚𝑡ℎ 

antenna is equivalent to incident field 𝐽𝑚 which parallel to Maxwell’s equation [10, 29]. 

 

ℒ𝜈𝑚 = 𝐽𝑀 (3.3) 
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Zero initial condition of electromagnetic fields is assumed for the total fields at time 𝑡 = 0 

or before transmitting process, as given in Equation (3.4) [10, 29]. 

 

𝜈𝑚(𝑟, 0) = 0 (3.4) 

 

Equation (3.5) is a matrix representation of electromagnetic fields 𝜈𝑚 and incident field 𝐽𝑚 

[10, 29].  

 

𝜈𝑚 = [

𝐸𝑧𝑚(𝑟, 𝑡)

𝜂𝐻𝑥𝑚(𝑟, 𝑡)

𝜂𝐻𝑦𝑚(𝑟, 𝑡)
 ],            𝐽𝑚 = [

𝐽𝑧𝑚(𝑟, 𝑡)
0
0

] 

(3.5) 

 

𝐸𝑧𝑚 is referring to electric field in z-direction whereas 𝐻𝑥𝑚 and 𝐻𝑦𝑚 are magnetic fields in 

spatial domain. The term 𝜂 in Equation (3.5) is an intrinsic impedance of free space which 

can be calculated with Equation (3.6) [10, 29]. 

 

𝜂 = √
𝜇0

𝜀0
 

(3.6) 

 

whereby 𝜇0 and 𝜀0 are absolute permeability and permittivity of free space, respectively.  

Partial differential operator ℒ is given in Equation (3.7), with 𝑐 in its third term 

denotes speed of light in free space which can be computed using Equation (3.8) [29].  

 

ℒ ≡ 𝐴
𝜕

𝜕𝑥
− 𝐵

𝜕

𝜕𝑦
− 𝐶

𝜕

𝜕𝑐𝑡
− 𝐷 (3.7) 
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𝑐 =
1

√𝜇0𝜀0

 (3.8) 

 

Matrix parameter 𝐴, 𝐵, 𝐶 and 𝐷 that related to the differential operator are given in 

Equation (3.9) [29].   

 

𝐴 = [
0 0 1
0 0 0
1 0 0

] ,            𝐵 = [
0 1 0
1 0 0
0 0 0

] 

𝐶 = [
𝜀(𝑟) 0 0

0 1 0
0 0 1

] ,            𝐷 = [
𝜂𝜎(𝑟) 0 0

0 0 0
0 0 0

] 

(3.9) 

 

In this research, inverse scattering method is employed to reconstruct dielectric 

profiles consisting relative permittivity, 𝜀(𝑟) and conductivity, 𝜎(𝑟). The cost functional 

stated in Equation (3.10) is minimized iteratively by means of conjugate gradient method 

until convergence in order to find the aforementioned dielectric profiles [10, 29, 37]. 

 

𝑄𝐹𝐵𝑇𝑆(𝜌) = ∫ ∑ ∑ 𝐾𝑚𝑛(𝑟𝑛
𝑟, 𝑡)|𝜈𝑚(𝜌, 𝑟𝑛

𝑟, 𝑡) − 𝜈𝑚(𝑟𝑛
𝑟, 𝑡)|2𝑑𝑡

𝑁

𝑛=1

𝑀

𝑚=1

𝑇

0

 (3.10) 

 

Collected total fields in Forward Time-Stepping due to actual object is denoted as measured 

fields 𝜈𝑚(𝑟𝑛
𝑟, 𝑡). Total fields radiated from the estimated object is called calculated scattered 

fields 𝜈𝑚(𝜌(𝑟); 𝑟𝑛
𝑟, 𝑡). These two types of received fields are obtained with the same 

intensity of current excited at 𝑟𝑚
𝑡  antenna and collected by 𝑟𝑛

𝑟 receiver. The difference 

between the two fields would indicates whether the optimization is in correct solution or vice 

versa.  
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The term 𝐾𝑚𝑛(𝑡) in the Equation (3.11) is a nonnegative weighting function that 

holds zero value at time 𝑡 = 𝑇, in which 𝑇 is the duration taken for measurement [29].    

 

𝐾𝑚𝑛(𝑡) = 𝑐𝑜𝑠 (
𝜋𝑡

2𝑇
) (3.11) 

 

The duration time 𝑇 is specified as 2380∆𝑡 with time step size ∆𝑡 = 2.31ps which 

correspond to the stability condition as described in Section 2.2. Parameter 𝜌 in Equation 

(3.12) is a medium vector function of dielectric profiles, consisting relative permittivity 

𝜀𝑟(𝑟) and conductivity 𝜎(𝑟) [29].  

 

𝜌 =  (𝜀(𝑟), 𝜎(𝑟)) (3.12) 

 

Updated set of dielectric profiles are given in Equation (3.13) and Equation (3.14) 

for relative permittivity and conductivity, respectively [29]. 

 

𝜀𝑟
(𝑖𝑡𝑒𝑟+1)(𝑟) = 𝜀𝑟

𝑖𝑡𝑒𝑟(𝑟) + 𝛼𝜀𝑟
𝑖𝑡𝑒𝑟𝑑𝜀𝑟

𝑖𝑡𝑒𝑟(𝑟) (3.13) 

𝜎(𝑖𝑡𝑒𝑟+1)(𝑟) = 𝜎𝑖𝑡𝑒𝑟(𝑟)+ 𝛼𝜎
𝑖𝑡𝑒𝑟𝑑𝜎

𝑖𝑡𝑒𝑟(𝑟) (3.14) 

 

From Equation (3.13) and Equation (3.14), 𝑖𝑡𝑒𝑟 refers to current iteration number of 

optimization and (𝑖𝑡𝑒𝑟 + 1) is the subsequent iteration number. It is a recursive relation that 

current estimates are utilized to compute the succeeding estimates. In other words, it can 

also be described that current estimates are calculated based on prior estimates. Elements of 
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those linear relations to compute updated dielectric profiles are step size 𝛼 and steepest 

descent direction which denoted as 𝑑.  

Previous cost functional function in Equation (3.10) is expressed to be similar to 

the error function defined in Equation (3.15) to find the step size 𝛼.  

 

𝑄𝐹𝐵𝑇𝑆(𝜌) = 𝑄 (𝜌𝑖𝑡𝑒𝑟(𝑟) + 𝛼𝑖𝑡𝑒𝑟𝑑𝑖𝑡𝑒𝑟(𝑟)) (3.15) 

 

In conjugate gradient method, the determined value of step size 𝛼 must be able to minimize 

the cost functional 𝑄𝐹𝐵𝑇𝑆(𝜌) with a given descent direction. The explanation to compute the 

updated dielectric profiles shall begin with finding the steepest descent direction which 

closely related to cost functional gradients. Then it followed with step size 𝛼 estimation. 

Fréchet differential is performed on the cost functional in order to solve iterative 

optimization with conjugate gradient method, which resulting gradients of dielectric profiles 

expressed in Equation (3.16) and Equation (3.17) [37]. 

 

𝑔𝜀𝑟
(𝑟) = 2 ∫ (𝑤𝑚(𝜌; 𝑟, 𝑡)

𝜕𝜈𝑚(𝜌, 𝑟, 𝑡)

𝜕(𝑐𝑡)
)

𝑇

0

𝑑𝑡 (3.16) 

𝑔𝜎(𝑟) = 2 ∫ 𝑤𝑚(𝜌; 𝑟, 𝑡)𝜈𝑚(𝜌, 𝑟, 𝑡)
𝑇

0

𝑑𝑡 (3.17) 

 

The term 𝑤𝑚(𝜌; 𝑟, 𝑡) in the gradient is referring to the resulting adjoint fields due the 

difference between calculated and measured fields utilized as a current source illuminating 

the reconstructed dielectric profiles.  

Intrinsically, steepest ascend occurs when direction and gradient are in parallel. Hence, 

the obtained gradients always point to the direction of steepest ascend or maximum increase 
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in the cost function. However, the purpose of optimization is to find local minimum rather 

than maximum. Therefore, initial steepest descent direction which denoted as 𝑑𝜀𝑟0
(𝑟) for 

relative permittivity and 𝑑𝜎0
(𝑟) for conductivity in the first iteration of optimization are 

taking the negative value of the obtained gradients. Formulation for the initial steepest 

descent direction of each profiles are given in Equation (3.18) and Equation (3.19).  

 

𝑑𝜀𝑟0
(𝑟) = −𝑔𝜀𝑟0

(𝑟) (3.18) 

𝑑𝜎0
(𝑟) = −𝑔𝜎0

(𝑟) (3.19) 

 

The updated directions 𝑑𝜀𝑟

(𝑖𝑡𝑒𝑟+1)(𝑟) for relative permittivity and 𝑑𝜎
(𝑖𝑡𝑒𝑟+1)(𝑟) for 

conductivity are solved by using parameter 𝛽 of Polak–Ribière Polyak formula as shown in 

Equation (3.20) up to Equation (3.23) [13, 29].  

 

𝑑𝜀𝑟

(𝑖𝑡𝑒𝑟+1)(𝑟) = −𝑔𝜀𝑟

(𝑖𝑡𝑒𝑟+1)(𝑟) + 𝛽𝜀𝑟
𝑖𝑡𝑒𝑟𝑑𝜀𝑟

𝑖𝑡𝑒𝑟(𝑟) (3.20) 

𝑑𝜎
(𝑖𝑡𝑒𝑟+1)(𝑟) = −𝑔𝜎

(𝑖𝑡𝑒𝑟+1)(𝑟) + 𝛽𝜎
𝑖𝑡𝑒𝑟𝑑𝜎

𝑖𝑡𝑒𝑟(𝑟) (3.21) 

𝛽𝜀𝑟
𝑖𝑡𝑒𝑟 =

⟨𝑔𝜀𝑟

(𝑖𝑡𝑒𝑟+1)(𝑟) − 𝑔𝜀𝑟

𝑖𝑡𝑒𝑟(𝑟)|𝑔𝜀𝑟

(𝑖𝑡𝑒𝑟+1)(𝑟)⟩

⟨𝑔𝜀𝑟
𝑖𝑡𝑒𝑟(𝑟)|𝑔𝜀𝑟

𝑖𝑡𝑒𝑟(𝑟)⟩
 (3.22) 

𝛽𝜎
𝑖𝑡𝑒𝑟 =

⟨𝑔𝜎
(𝑖𝑡𝑒𝑟+1)(𝑟) − 𝑔𝜎

𝑖𝑡𝑒𝑟(𝑟)|𝑔𝜎
(𝑖𝑡𝑒𝑟+1)(𝑟)⟩

⟨𝑔𝜎
𝑖𝑡𝑒𝑟(𝑟)|𝑔𝜎

𝑖𝑡𝑒𝑟(𝑟)⟩
 (3.23) 

 

Analytical approximation approach is utilized to find the step size 𝛼 value which 

given in Equation (3.24). Its numerator and denominator equations are listed in Equation 

(3.25) and Equation (3.26), respectively.  
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𝛼 = |
𝑏𝑠𝑠

𝑅𝑠𝑠
| (3.24) 

𝑏𝑠𝑠 = ∫ ∑ ∑ 𝐾𝑚𝑛 ∙ 𝑣𝑚
′ (𝑑𝜌) ∙ [𝜈𝑚(𝜌) − 𝜈𝑚]𝑑𝑡

𝑁

𝑛=1

𝑀

𝑚=1

𝑇

0

 (3.25) 

𝑅𝑠𝑠 = ∫ ∑ ∑ 𝐾𝑚𝑛 ∙ (𝑣𝑚
′ (𝑑𝜌))

2

𝑑𝑡

𝑁

𝑛=1

𝑀

𝑚=1

𝑇

0

 (3.26) 

 

The term (𝜈𝑚(𝜌) − 𝜈𝑚) in its numerator is obtained from Backward Time-Stepping 

step, and 𝑣𝑚
′ (𝑑𝜌) is a Fréchet differential of measured field due to the actual object. In FDTD 

simulation, 𝑣𝑚
′ (𝑑𝜌) is computed by taking a multiplication product of descent direction with 

space variation of scattered fields in ROI as a source to illuminate an estimated object. Then 

the total fields at the receiving antennas is regarded as 𝑣𝑚
′ (𝑑𝜌).  

Conjugate gradient method applied in this research work is summarized as follows: 

1: Start, 𝑖𝑡𝑒𝑟 = 0 

2: Assign appropriate initial guess 𝜌0 

3: Calculate gradient 𝑔(0) 

4: Set initial descent direction 𝑑(0) = −𝑔(0) 

5: repeat  

6:  Solve for 𝛼(𝑖𝑡𝑒𝑟) that can minimize 𝑄(𝜌𝑖𝑡𝑒𝑟 + 𝛼𝑖𝑡𝑒𝑟𝑑𝑖𝑡𝑒𝑟) 

7:  Update  𝜌(𝑖𝑡𝑒𝑟+1) = 𝜌(𝑖𝑡𝑒𝑟) + 𝛼𝑖𝑡𝑒𝑟𝑑𝑖𝑡𝑒𝑟 

8:  Find 𝑔(𝑖𝑡𝑒𝑟+1) in related to 𝜌(𝑖𝑡𝑒𝑟+1) 

9:  
Compute 𝛽(𝑖𝑡𝑒𝑟) =

⟨𝑔(𝑖𝑡𝑒𝑟+1) − 𝑔(𝑖𝑡𝑒𝑟)
|𝑔(𝑖𝑡𝑒𝑟+1)

⟩

⟨𝑔(𝑖𝑡𝑒𝑟)
|𝑔(𝑖𝑡𝑒𝑟)

⟩
 

10:  Update 𝑑𝜎
(𝑖𝑡𝑒𝑟+1)(𝑟) = −𝑔𝜎

(𝑖𝑡𝑒𝑟+1)(𝑟) + 𝛽𝜎
𝑖𝑡𝑒𝑟𝑑𝜎

𝑖𝑡𝑒𝑟(𝑟) 

11:  Find 𝑄𝐹𝐵𝑇𝑆(𝜌) 

12:  𝑖𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟 + 1 

13: until convergence  
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3.3 Image segmentation by Automated-Scaling Region of Interest  

Conventional operation of FBTS is carried out until iteration 𝑆, with 𝑆 is the number 

of iteration to initiate the Automated-Scaling Region of Interest (AS-ROI) which determined 

empirically. In condition that segmentation process to define the new ROI started too early, 

the reconstructed output could not give sufficient information of the sought object. This 

would cause the radius and offset values of the object location cannot be determined 

precisely. On the other hand, supposing the segmentation started behindhand, the process 

could not limit the computational cost. Reconstructed image at later iterations number also 

contains spurious edges which affect localization of the object.  

Segmentation method in AS-ROI is interpreted from MATLAB coding written by 

[140], in which adaptive K-means clustering is applied. Advantages of adaptive K-means 

clustering is that the number of centroids and the number of clusters can be determined 

automatically. Therefore, it eliminates the needs of histogram analysis to observe the 

threshold level of distinct layers for segmentation purpose. Thresholding segmentation is 

utilized in most studies for segmentation in IMSA, which requires histogram analysis [11, 

43–45]. In this research, AS-ROI is only applied to relative permittivity as its accuracy is 

much higher than conductivity profiles [54]. Segmentation relies on the ability of the 

algorithm to find distance between centroids and pixels data. Euclidean distance (ED) is 

utilized to find the distance in which considered sufficient for segmentation [141]. The whole 

algorithm of AS-ROI can be categorized into four steps.  

 

Step 1: Finding centroids 

Dataset of relative permittivity (𝜀𝑟) profiles of an unknown object in the initial ROI 

are sorted from maximum to minimum values to form one dimensional array of data 
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(𝜀𝑟1
, 𝜀𝑟2

, … , 𝜀𝑟𝑁𝑃
). The term 𝑁𝑃 is referring to the number of pixels of the original 

reconstruction region. The process started with the selection of centroids 𝜇𝑖 which is the 

mean value of all observation points for clusters set 𝐶𝐿𝑖. Centroids that is the mean value of 

each clusters can be calculated with Equation (3.27).  

 

𝜇𝑖 =
1

𝐶𝐿𝑖
∑ 𝜀𝑟𝑖

𝜀𝑟𝑖∈𝐶𝐿𝑖

    ∀𝑖 = 1,2, … , 𝐾 (3.27) 

 

Total number of centroids is denoted as 𝐾, in which 𝑖 is an integer number that 

increases from 1 to 𝐾. In this research work, maximum number of centroids 𝐾 is defined to 

be 10 which is similar to the original work by [140]. Based on observations, the chosen value 

is optimal for the segmentation purpose of reconstructed image profile. These centroids will 

generate clusters set of 𝐶𝐿𝑖 = 𝐶𝐿1, 𝐶𝐿2, … , 𝐶𝐿𝑘. Note that the maximum number of clusters 

is equivalent to the maximum number of centroids 𝐾. The first centroid 𝜇1 is obtained from 

the mean value of all pixels in the initial ROI. At this stage, the number of elements in 𝐶𝐿𝑖 

is still equivalent to 𝑁𝑃.  

Then, relative distance 𝑑𝑖𝑠𝑡𝐴𝑖𝑗 between centroid and pixels data is calculated with 

Equation (3.28). 

 

𝑑𝑖𝑠𝑡𝐴𝑖𝑗 (𝜀𝑟𝑗  , 𝜇𝑖) = |𝜀𝑟𝑗 − 𝜇𝑖|  ∀1 < 𝑖 < 𝐾, 𝜀𝑟𝑗 ∈ 𝐶𝐿𝑖 (3.28) 
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Qualified pixels 𝜀𝑟𝑞𝑢𝑎𝑙𝑖𝑓𝑖𝑒𝑑 with relative distance that is less than or equal to the 

calculated bandwidth 𝑏𝑤𝑖 for the cluster centroid as in Equation (3.29) will be utilized to 

compute the new centroid.  

 

𝑏𝑤𝑖 = √
1

𝐶𝐿𝑖
∑ ∑ (𝜀𝑟𝑗 − 𝜇𝑖)

2

𝜀𝑟𝑗∈𝐶𝐿𝑖

𝐾

𝑖=1

 (3.29) 

 

On a condition that previous centroid equivalent to the new centroid, or once the 

process has iterated for 𝐾 times, then qualified pixels which has been assigned to cluster 

centroids will be discarded from the dataset. The whole process will be repeated until either 

all pixels has been discarded or the maximum number of clusters is reached.  

Stored centroids are sorted in values accordingly. Then the centroid distance 𝜇𝑑𝑖𝑠𝑡𝑖
 

in Equation (3.30) between adjacent centroid is calculated. 

 

𝜇𝑑𝑖𝑠𝑡𝑖
= {

𝜇(𝑖+1) − 𝜇𝑖 ∀𝑖 = 1,2, … , 𝐾 − 1

𝜇𝑖 𝑖 = 𝐾
 (3.30) 

 

The maximum pixel value which obtained from sorted dataset in earlier process is used 

to determine the minimum distance 𝑑𝑡ℎ𝑟𝑒𝑠 between centroids as a threshold. The threshold 

value can be obtained with Equation (3.31).  

 

𝑑𝑡ℎ𝑟𝑒𝑠 =
𝑚𝑎𝑥(𝜀𝑟𝑖

)

𝐾
 (3.31) 
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Any centroids with adjacent centroid distance that is lower than the specified threshold 

will be discarded to form clusters. Centroids determination process is summarized as 

follows: 

1: Start, sort (𝜀𝑟1, 𝜀𝑟2, … , 𝜀𝑟𝑁𝑃
)   

2: repeat  

3:  Solve Eq. 𝜇𝑖 

4:  repeat  

5:   Solve Eq. 𝑑𝑖𝑠𝑡𝐴𝑖𝑗 

6:   Solve Eq. 𝑏𝑤𝑖 

7:   if  𝑑𝑖𝑠𝑡𝐴𝑖𝑗 <  𝑏𝑤𝑖  

8:    Recalculate new centroid with 𝜀𝑟𝑞𝑢𝑎𝑙𝑖𝑓𝑖𝑒𝑑 

9:   end if 

10:   if (centroid ==  new centroid || iteration > 10 ) 

11:    Remove 𝜀𝑟𝑞𝑢𝑎𝑙𝑖𝑓𝑖𝑒𝑑 

12:    Store centroid 

13:   end if 

14:   Update new centroid = centroid 

15: until convergence  

16: Sort stored centroids 

17: Solve Eq.  𝜇𝑑𝑖𝑠𝑡𝑖
 

18: Solve Eq.  𝑑𝑡ℎ𝑟𝑒𝑠 

19: if  𝜇𝑑𝑖𝑠𝑡𝑖
< 𝑑𝑡ℎ𝑟𝑒𝑠  ∀𝑖 = 1,2, … , 𝐾   

20:  Remove 𝜇𝑖 

21: end if 

 

Step 2: Assign pixels to cluster centroids 

 Distance 𝑑𝑖𝑠𝑡𝐵𝑖𝑗 between each pixel 𝜀𝑟𝑗  and each centroid are calculated with 

Equation (3.32).  

 

𝑑𝑖𝑠𝑡𝐵𝑖𝑗 (𝜀𝑟𝑗  , 𝜇𝑖) = |𝜀𝑟𝑗 − 𝜇𝑖|
2

  ∀1 < 𝑖 < 𝐾, 𝜀𝑟𝑗 ∈ 𝐶𝐿𝑖 (3.32) 
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For instance, if five centroids are detected in Step 1, then five distances should be calculated 

for each pixel. Pixel will be assigned to a cluster which yields the minimum distance. The 

process is exemplified in the following pseudocode: 

1: repeat  

2:  Solve Eq. 𝑑𝑖𝑠𝑡𝐵𝑖𝑗 

3: Find minimum distance between each pixel 𝜀𝑟𝑗  and centroids 𝜇𝑖 

4: if 𝑑𝑖𝑠𝑡𝐵𝑖𝑗 == minimum distance  

5:  Assign 𝜀𝑟𝑗to that 𝐶𝐿𝑖 

6: end if 

 

Step 3: Extract detected object  

Object is extracted from the outermost layer detected. In other words, the first cluster 

detected is discarded with the rest assumed to be object. In this research, object layers are 

arranged according to its dielectric profiles value. The outermost has the lowest and the 

innermost has the highest dielectric profiles. This would ease the scattering process for 

object recognition. On top of that, it also simplifies the process of cluster numbering which 

corresponds to the intensity value. With the outermost layer supposedly assigned with the 

lowest cluster number, therefore it can be easily recognized to be discarded. 

From Figure 3.4, the outermost layer which is layer 0 is removed. Layer 1 and layer 

2 are assumed to be object. Another method to identify the outermost layer is by examining 

each cluster’s pixel coordinates. Shall one of the pixel coordinate from any cluster situated 

in minimum or maximum value in 𝑥 or 𝑦 direction, then the cluster can be categorized as 

the outermost layer. Coordinates of observation points or pixels which declared as object are 

stored. These coordinates are then sorted in values accordingly. It yields maximum and 

minimum values in 𝑥 and 𝑦 axis, namely as 𝑋𝑚𝑎𝑥, 𝑋𝑚𝑖𝑛, 𝑌𝑚𝑎𝑥 and 𝑌𝑚𝑖𝑛.  
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Figure 3.4: Segmented relative permittivity at 30th iteration with its cluster label number 

 

Regardless of object’s geometry, intersection between points 𝑋𝑚𝑎𝑥, 𝑋𝑚𝑖𝑛, 𝑌𝑚𝑎𝑥 and 

𝑌𝑚𝑖𝑛 form a rectangular that confines the detected object as shown in Figure 3.5. Figure 3.5 

shows the object’s centre point (𝑥1, 𝑦1) as well as its distance with respect to FDTD’s centre 

point (𝑥0, 𝑦0).  

 

 

 

 

 

 

 

 

 

Figure 3.5: Segmented object confined within the new ROI 
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Centre coordinate (𝑥1, 𝑦1) of the object can be estimated from the maximum and minimum 

values in x  and y  axis as in Equation (3.33) and Equation (3.34). 

 

𝑥1 = 𝑟𝑜𝑢𝑛𝑑 (
𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛 

2
) (3.33) 

𝑦1 = 𝑟𝑜𝑢𝑛𝑑 (
𝑌𝑚𝑎𝑥 − 𝑌𝑚𝑖𝑛 

2
) (3.34) 

 

Distance in x  and y  directions are referred as 𝑜𝑓𝑓𝑠𝑒𝑡𝑋𝑛𝑒𝑤 and 𝑜𝑓𝑓𝑠𝑒𝑡𝑌𝑛𝑒𝑤, which can be 

obtained with Equation (3.35) and Equation (3.36), respectively. 

 

𝑜𝑓𝑓𝑠𝑒𝑡𝑋𝑛𝑒𝑤 = 𝑥1 − 𝑥0 (3.35) 

𝑜𝑓𝑓𝑠𝑒𝑡𝑌𝑛𝑒𝑤 = 𝑦1 − 𝑦0 (3.36) 

 

These distance values are significant to compute centre point of the newly ROI 

region. In order to avoid losing desired pixels, note that peripheral of detected object which 

initially delimited by a rectangular is circumscribed in a new circular region. Radius of the 

circular or the new ROI region is determined by the maximum distance in four directions as 

shown in Figure 3.6.  

 

 

 

 

 

 

Figure 3.6: Distance in four directions to find radius of the new ROI 

𝑟𝑎𝑑𝑖𝑢𝑠1 

𝑟𝑎𝑑𝑖𝑢𝑠2 𝑟𝑎𝑑𝑖𝑢𝑠3 

𝑟𝑎𝑑𝑖𝑢𝑠4 
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Logically each radius must be of the same distance, since it is computed from the 

centre point of the rectangular. However, in programming there would be slight error 

between these values. Therefore, maximum distance would be considered as the radius of 

the new ROI, which purposely to avoid missing pixels as mentioned earlier.  Each radius 

can be calculated by Equation (3.37) to Equation (3.40).  

 

𝑟𝑎𝑑𝑖𝑢𝑠1 = 𝑟𝑜𝑢𝑛𝑑 (√(𝑋𝑚𝑎𝑥 − 𝑥1)2 + (𝑌𝑚𝑖𝑛 − 𝑦1)2) (3.37) 

𝑟𝑎𝑑𝑖𝑢𝑠2 = 𝑟𝑜𝑢𝑛𝑑 (√(𝑋𝑚𝑎𝑥 − 𝑥1)2 + (𝑌𝑚𝑎𝑥 − 𝑦1)2) (3.38) 

𝑟𝑎𝑑𝑖𝑢𝑠3 = 𝑟𝑜𝑢𝑛𝑑 (√(𝑋𝑚𝑖𝑛 − 𝑥1)2 + (𝑌𝑚𝑎𝑥 − 𝑦1)2) (3.39) 

𝑟𝑎𝑑𝑖𝑢𝑠4 = 𝑟𝑜𝑢𝑛𝑑 (√(𝑋𝑚𝑖𝑛 − 𝑥1)2 + (𝑌𝑚𝑖𝑛 − 𝑦1)2) (3.40) 

 

The following pseudocode summarized all processes involved in Step 3. 

1: Discard the first cluster 

2: Store pixels in other clusters which assumed to be object  

3: Sort the desired pixel coordinates 

4: Solve for object’s centre point (𝑥1, 𝑦1) 

5: Solve for object’s distance 𝑜𝑓𝑓𝑠𝑒𝑡𝑋𝑛𝑒𝑤 and 𝑜𝑓𝑓𝑠𝑒𝑡𝑌𝑛𝑒𝑤 

6: Solve for ROI’s radius  

 

Step 4: Rescale ROI  

Suppose the number of iteration of FBTS 𝑖𝑡𝑒𝑟 has reached a predefined iteration 𝑆 

to initiate segmentation process, number of object’s pixels 𝑁𝑃𝑛𝑒𝑤 are calculated from the 

radius determined in Step 3. In condition that the current number of pixels of segmented 

object is larger or equal to its initial pixel number, then AS-ROI shall be repeated in the next 

iteration number of optimization (𝑖𝑡𝑒𝑟 + 1). Else if the desired pixels are less than the actual, 

then the reconstruction region shall be rescaled down. At this stage, FBTS runs as its first 
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iteration yet with smaller reconstruction region. In order to obtain better result, the number 

of iteration 𝑆 can be empirically determined rather than being randomly chosen.  

Direct scattering with Forward Time-Stepping is implemented to compute new 

measured scattering fields 𝜈𝑚𝑛𝑒𝑤
 of the object in the new ROI. All variables related to the 

initial number of pixels are redeclared accordingly. Initial guess is also redefined to be in the 

new ROI with its pixel values taken from previous iteration number. Then, inverse scattering 

by Backward Time-Stepping is repeated in the new region until convergence.  

Figure 3.7 shows rescaling process from the initial ROI to new ROI, which 

highlighted in the red bold dotted lines. Note that the new reconstruction region analogous 

to object’s location and size.   

 

 

 

 

Figure 3.7: Redefine the new ROI 
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Rescaling process in Step 4 is summarized as follows:     

1: if 𝑖𝑡𝑒𝑟 == 𝑆 

2:  Solve for 𝑁𝑃𝑛𝑒𝑤 

3:  if 𝑁𝑃𝑛𝑒𝑤 ≥ 𝑁𝑃  

4:   Resume FBTS in initial ROI 

5:   𝑆 = 𝑖𝑡𝑒𝑟 + 1 

6:  end if   

7:  else if 𝑁𝑃𝑛𝑒𝑤 < 𝑁𝑃  

8:   Redefine reconstruction region coordinates  

9:   Solve for 𝜈𝑚𝑛𝑒𝑤
 

10:   Redeclare all variables related to 𝑁𝑃 

11:   Redefine initial guess in the new ROI 

12:  end else if   

13: end if 

 

3.4 Regularized FBTS with AS-ROI  

Previous cost functional of FBTS is slightly modified by adding a regularization term 

which only imposed on the rescaled relative permittivity obtained from fused AS-ROI with 

FBTS. This condition is dissimilar to several related research papers that employed 

regularization on all dielectric profiles involved [13, 18]. As a result, it yields 𝑄𝑇𝑂𝑇𝐴𝐿(𝜀𝑟, 𝜎) 

as in Equation (3.41) which a summation of cost functional for the rescaled FBTS 

𝑄′𝐹𝐵𝑇𝑆(𝜀𝑟, 𝜎) and edge preserving regularization 𝑄𝐸𝑃𝑅(𝜀𝑟) [18, 29].  

 

𝑄𝑇𝑂𝑇𝐴𝐿(𝜀𝑟, 𝜎) = 𝑄′𝐹𝐵𝑇𝑆(𝜀𝑟, 𝜎) + 𝑄𝐸𝑃𝑅(𝜀𝑟) (3.41) 

 

Regularization term 𝑄𝐸𝑃𝑅(𝜀𝑟) which written in Equation (3.42) is bounded in the 

new reconstruction region Ω.  
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𝑄𝐸𝑃𝑅(𝜀𝑟) = 𝜆 ∬ 𝜑 (
‖∇𝜀𝑟‖

𝛿
)

Ω

𝑑Ω,   Ω = 𝑁𝑃𝑛𝑒𝑤 (3.42) 

 

The regularization coefficient or weighting parameter 𝜆 in the regularization cost function 

𝑄𝐸𝑃𝑅(𝜀𝑟) will balance the effect between FBTS and regularization data. The potential 

function or regularization function 𝜑 is liable for image diffusion in homogenous area which 

delimited within detected edges.  Edges in this case are made prevalent by using the gradient 

threshold parameter 𝛿, which used to identify boundaries between regions based on the 

dielectric profiles’ intensities contrast.  

In the Equation (3.43), the regularization term is defined in a spatial domain with 

image dimension of 𝑁𝑥 × 𝑁𝑦 [13].  

 

𝑄𝐸𝑃𝑅(𝜀𝑟) = ∑ ∑ 𝜆𝜑 (
‖∇𝜀𝑟‖

𝛿
)

𝑁𝑦

𝑦=1

𝑁𝑥

𝑥=1

,   𝑁𝑥 × 𝑁𝑦 = 𝑁𝑃𝑛𝑒𝑤 (3.43) 

 

Image dimension in this case is referring to an area of a circular region that confined the 

detected object at iteration 𝑆 with AS-ROI. Even though the reconstruction area has been 

reduced, the dimension of discretized search domain on FDTD cells 220 × 220mm2 are still 

maintained.   

Image gradients or edges in Equation (3.44) denoted as ∇𝜀𝑟. Image gradients 

consisting of horizontal and vertical direction ∇𝜀𝑟𝑎 = (∇𝑁, ∇𝐸 , ∇𝑆, ∇𝑊) as well as in diagonal 

direction ∇𝜀𝑟𝑏 = (∇𝑁𝐸, ∇𝑆𝐸, ∇𝑆𝑊, ∇𝑁𝑊) [50].  
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‖∇𝜀𝑟‖ =
𝜕𝜀𝑟𝑎

𝜕𝑥
+

𝜕𝜀𝑟𝑎

𝜕𝑦
+

𝜕𝜀𝑟𝑏

𝜕𝑥
+

𝜕𝜀𝑟𝑏

𝜕𝑦
 (3.44) 

 

 in the Equation (3.44) means discrete derivative or first order gradient operator. Total 

image gradients ‖∇𝜀𝑟‖ is a summation of gradients in all directions involved in the spatial 

domain. Image gradients of relative permittivity with respect to row 𝑥 and column 𝑦 in 8 

directions or 8 neighbourhood pixels are obtained by using first derivative finite differences 

of image pixels  as shown in Equation (3.45) until Equation (3.52) [121].   

 

∇𝑁(𝑥,𝑦)
= 𝜀𝑟(𝑥, 𝑦) − 𝜀𝑟(𝑥 − 1, 𝑦) (3.45) 

∇𝑁𝐸(𝑥,𝑦)
= 𝜀𝑟(𝑥 − 1, 𝑦 + 1) − 𝜀𝑟(𝑥, 𝑦) (3.46) 

∇𝐸(𝑥,𝑦)
= 𝜀𝑟(𝑥, 𝑦 + 1) − 𝜀𝑟(𝑥, 𝑦) (3.47) 

∇𝑆𝐸(𝑥,𝑦)
= 𝜀𝑟(𝑥 + 1, 𝑦 + 1) − 𝜀𝑟(𝑥, 𝑦) (3.48) 

∇𝑆(𝑥,𝑦)
= 𝜀𝑟(𝑥 + 1, 𝑦) − 𝜀𝑟(𝑥, 𝑦) (3.49) 

∇𝑆𝑊(𝑥,𝑦)
= 𝜀𝑟(𝑥 + 1, 𝑦 − 1) − 𝜀𝑟(𝑥, 𝑦) (3.50) 

∇𝑊(𝑥,𝑦)
= 𝜀𝑟(𝑥, 𝑦) − 𝜀𝑟(𝑥, 𝑦 − 1) (3.51) 

∇𝑁𝑊(𝑥,𝑦)
= 𝜀𝑟(𝑥, 𝑦) − 𝜀𝑟(𝑥 − 1, 𝑦 − 1) (3.52) 

 

The initial equation of edge preserving regularization in Equation (3.42) and 

Equation (3.43) are converted into half quadratic regularization to simplify the minimization 

process, which introduces auxiliary regularization parameters with detailed explanation 

given in [18, 50, 125]. The term of half quadratic is due to interrelated quadratic connection 

between the reconstructed image and auxiliary regularization parameters [50].   
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Variable 𝑏𝑎 in Equation (3.53) is an auxiliary regularization parameter in horizontal 

and vertical direction. Variable 𝑏𝑏 which written in Equation (3.54) is used to denote 

auxiliary regularization parameter in diagonal directions [50]. 

 

𝑏𝑎 =
𝜑′(∇𝜀𝑟𝑎

/𝛿)

2(∇𝜀𝑟𝑎/𝛿)
 (3.53) 

𝑏𝑏 =
1

2
[
𝜑′(∇𝜀𝑟𝑏

/𝛿)

2(∇𝜀𝑟𝑏/𝛿)
] (3.54) 

 

Auxiliary regularization parameters 𝑏𝑎 and 𝑏𝑏 are the first derivative of potential 

function 𝜑, which functional for image diffusion or smoothing. These two auxiliary 

regularization parameters are called as weighting functions with the general assumptions 

made on its edge preservations are given in [13]. Parameter 𝛿 in the weighting functions is 

the gradient threshold that control the smoothing degree of regularization which corresponds 

to the presence of image gradient. In the availability of edges or large image gradient, the 

weighting functions approximately becomes zero. In contrast, weighting functions are much 

higher in homogenous areas that led to high smoothing degree.  

By incorporating regularization scheme into FBTS [29], total gradient of relative 

permittivity is written as in Equation (3.55) with the regularization gradient given in 

Equation (3.56).  

 

𝑔𝜀𝑟𝑇𝑂𝑇𝐴𝐿
= 𝑔𝜀𝑟𝐹𝐵𝑇𝑆

+ 𝑔𝜀𝑟𝐸𝑃𝑅
 (3.55) 

𝑔𝜀𝑟𝐸𝑃𝑅
= −2

𝜆

𝛿2
∇ ∙ (𝑏𝑎∇𝜀𝑟𝑎 + 𝑏𝑏∇𝜀𝑟𝑏

) (3.56) 
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Weighting functions and regularization gradient mentioned previously are obtained by 

taking Fréchet derivative of the regularization cost functional term [18, 29]. 

As listed in Table 3.1 [13, 50], three potential functions for edge preserving 

regularizations alongside its associated weighting functions are considered, which are 

utilized in most research papers concerning regularization.  

 

Table 3.1: Edge Preserving Regularization Potential Function with its weighting functions  

 

Potential function 𝝋 𝝋(𝒕) 𝝋′(𝒕) 𝒃𝒂 𝒃𝒃 

Geman & Mc.Clure 𝑡2

1 + 𝑡2 
2𝑡

(1 + 𝑡2)2 
1

(1 + (
∇𝜀𝑟𝑎

𝛿
)

2

)

2

 

 
1

2 (1 + (
∇𝜀𝑟𝑏

𝛿
)

2

)

2

 

 

Hebert & Leahy  

log(1 + 𝑡2) 

2𝑡

1 + 𝑡2 
1

1 + (
∇𝜀𝑟𝑎

𝛿
)

2

 

 
1

2 (1 + (
∇𝜀𝑟𝑏

𝛿
)

2

) 

 

Hyper Surfaces 2√1 + 𝑡2 − 2 
2𝑡

√1 + 𝑡2
 

1

√1 + (
∇𝜀𝑟𝑎

𝛿
)

2

 

 
1

2√1 + (
∇𝜀𝑟𝑏

𝛿
)

2

 

 

 

Both regularization coefficient 𝜆 and gradient threshold parameter 𝛿 are empirically 

determined. The regularization coefficient 𝜆 will be varied from 5.0×10-12 to 5.0×10-9. The 

reason it is small in number is due to gradient values of FBTS falls about the same range, 

and hence the regularization effect can be balanced. The selection of 5.0 as a multiplier by 

considering that it is the middle number between 1.0 and 10.0, as to reduce risk of being too 

low or too high.  Gradient threshold parameter 𝛿 are varied from 0.75 to 1.5, based on 

empirical observations. Optimal result by means of MSE level for both mentioned 

parameters will be generalized for later analysis.  In the event that previous optimal values 
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are considered misfit for the regularization, the whole process of observations shall be 

repeated until good result is obtained.  

Regularization in the rescaled FBTS is started at iteration 𝑅, which determined by 

statistical observation and occurs later than iteration 𝑆. Total cost functional in Equation 

(3.41) is solved by using alternate minimization over weighting functions 𝑏𝑎 and 𝑏𝑏 with 

relative permittivity 𝜀𝑟. At even iteration number which equal or larger than 𝑅, total cost 

functional is minimized over 𝑏𝑎
𝑛+1 and 𝑏𝑏

𝑛+1 with fixed 𝜀𝑟
𝑛, which can be calculated by using 

Equation (3.57) and Equation (3.58) [50]. 

 

𝑏𝑎
𝑛+1 =

𝜑′(∇𝜀𝑟𝑎
𝑛/𝛿)

2(∇𝜀𝑟𝑎
𝑛/𝛿)

 (3.57) 

𝑏𝑏
𝑛+1 =

1

2
[
𝜑′(∇𝜀𝑟𝑏

𝑛/𝛿)

2(∇𝜀𝑟𝑏
𝑛/𝛿)

] (3.58) 

 

The term (𝑛 + 1) in this section refers to current iteration and 𝑛 is the preceding iteration. 

Then for a fixed 𝑏𝑎
𝑛+1 and 𝑏𝑏

𝑛+1, the new image estimate 𝜀𝑟
𝑛+1 within the same iteration is 

obtained by minimizing total cost function in Equation (3.41) with conjugate gradient 

method.  

On the other hand, at odd iteration number, reconstructed image profile 𝜀𝑟
𝑛  is resulted 

from non-regularized FBTS process. Minimization by FBTS and regularized FBTS in AS-

ROI is alternately applied to reconstruct both relative permittivity and conductivity. 

Nonetheless, regularized FBTS only involving relative permittivity in which conductivity is 

only minimized by FBTS. Rationale behind alternate minimization between regularized and 

non-regularized FBTS is to balance the effect of regularization towards FBTS and to avoid 
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consequence from extreme values of regularization parameters. The 𝜀𝑟
𝑛 shall then smoothed 

by using anisotropic diffusion by using Equation (3.59) [104].  

 

𝜕𝜀𝑟(𝑥, 𝑦, 𝑡)

𝜕𝑡
= 𝑑𝑖𝑣[𝑔(‖∇𝜀𝑟(𝑥, 𝑦, 𝑡)‖) ∙ ∇𝜀𝑟(𝑥, 𝑦, 𝑡)] (3.59) 

 

Regularization gradient obtained from even iteration number is imposed to the 

reconstructed image which only iterates once in that respective iteration of optimization to 

avoid over smoothing. Diffusivity function 𝑔(‖∇𝜀𝑟(𝑥, 𝑦, 𝑡)‖) is actually similar to previous 

weighting functions 𝑏𝑎 and 𝑏𝑏 for regularization, nonetheless the term is referring to Hebert 

and Leahy function [50]. The term t  is the time evolution for the filter’s iteration number. 

Deterministic algorithm for regularized FBTS is summarized as follows: 

1: Assign initial guess for 𝜀𝑟
0 , 𝜎0 

2: Repeat  

3:  Compute 𝑏𝑛+1 by means of previous image estimate 𝜀𝑟
𝑛 

4:  if (𝑖𝑡𝑒𝑟 ≥ 𝑅)&&(𝑖𝑡𝑒𝑟%2 == 0) 

5:   Reconstruct dielectric profiles (𝜀𝑟
𝑛+1 , 𝜎) by minimizing 𝑄𝑇𝑂𝑇𝐴𝐿(𝜀𝑟, 𝜎) 

6:  end if   

7:  else if (𝑖𝑡𝑒𝑟 ≥ 𝑅)&&(𝑖𝑡𝑒𝑟%2 == 1) 

8:   Reconstruct dielectric profiles (𝜀𝑟
𝑛 , 𝜎) by minimizing 𝑄𝐹𝐵𝑇𝑆(𝜀𝑟, 𝜎) 

9:   Impose anisotropic diffusion on 𝜀𝑟
𝑛 in spatial domain 

10:  end else if 

11: Until convergence 

 

3.5 Dielectric characterization of lung(s) model  

Grayscale image of transverse CT scan of thoracic wall in Figure 3.8 is utilized as a 

reference to reconstruct lung(s) model in this research. It is referred as slice #00018 under 

test case 𝑅_014, which taken from The Cancer Imaging Archive (TCIA) Public Access 
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[142]. Slice thickness of the lungs images from the database is varied from 3mm to 6mm. 

Initial image resolution is 512 × 512mm2. 

 

Figure 3.8: Transverse CT scan image of thoracic wall in grayscale [142] 

 

Layers of dielectric properties and organs involved in the analysis will be adjusted in 

such a way according to several research papers concerning lung tumour detection, 

consequently the signal can propagate and scatter properly to allow object recognition.  The 

research work emphasizes on studying the proposed technique in FBTS to locate and 

estimate the size of lung(s) tumour based on segmented layers of reconstructed image 

profiles obtained by AS-ROI. Similar to breast model, initial guess utilized for lung(s) 

tumour detection are empirically determined.  

Three models are presented namely as Model #1, Model#2 and Model#3, with 

dielectric profiles values of layers or organs involved are taken from Cole-Cole expression 

for human tissues at 2GHz by Gabriel. [143]. Actual image needs to be rescaled down due 

to limited memory capacity, which only allows object size must be roughly less than 10000 
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pixels based on several simulations on single or even parallel computing. Otherwise, the 

program will halt. Apart from that, large number of pixels would increase the processing 

time. Thresholding segmentation to point out lungs area and rescaling process of the original 

image [142] are implemented in MATLAB.   

Lungs for Model#1 is resized to 40% from the actual image consisting of 8087 pixels. 

Lung model utilized in Model#2 and Model#3 is rescaled to 60% which made of 9135 pixels, 

since it only involves the left lung. After being resized, the original grayscale image is then 

manually segmented based on its intensity values, in which lungs area is extracted out for 

used. Pixels which exterior to lungs are manually segmented out in Microsoft Excel.  The 

selection of left lung over right lung is due to large contrast at the periphery between heart 

and left lung, that ease the segmentation process. Right lung on the other hand is adjacent to 

tracheal lobe which are of the same grayscale pixel intensity.    

In these three models, dielectric values of lungs are calculated from volume ratio of 

best case scenario for normal lungs tissues, consisting of 66% air, 14% blood and 20% 

parenchyma [144]. Parenchyma dielectric value is determined by the assumption made by 

[145] which taking the average of inflated and deflated lungs as the best scenario. 

Calculations for relative permittivity and conductivity for lung(s) denoted as 𝜀𝑙𝑢𝑛𝑔 and 𝜎𝑙𝑢𝑛𝑔 

are given in Equation (3.60) and Equation (3.61). In the equations, air is denoted as 𝑎𝑖𝑟, 

blood as 𝑏𝑙𝑑, inflated lung(s) as 𝑙𝑖𝑛𝑓 and deflated lung(s) is written as 𝑙𝑑𝑒𝑓. 

 

𝜀𝑟𝑙𝑢𝑛𝑔 = 66%(𝜀𝑟𝑎𝑖𝑟
) + 14%(𝜀𝑟𝑏𝑙𝑑

) + 20% (𝜀𝑟𝑙𝑖𝑛𝑓 + 𝜀𝑟𝑙𝑑𝑒𝑓) /2 

= 0.66(1.0) + 0.14(59.0) + 0.2(20.8 + 49.1)/2 

= 15.91 

(3.60) 
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𝜎𝑙𝑢𝑛𝑔 = 66%(𝜎𝑎𝑖𝑟) + 14%(𝜎𝑏𝑙𝑑) + 20%(𝜎𝑙𝑖𝑛𝑓 + 𝜎𝑙𝑑𝑒𝑓)/2 

= 0.66(0.0) + 0.14(2.19) + 0.2(0.69 + 1.39)/2 

= 0.51Sm−1 

(3.61) 

 

Lungs and heart structure in the first model shown in Figure 3.9 is constructed based 

on segmented slice of thoracic area which applied in paper [146]. Heart profile values are 

directly taken from heart muscle in Cole-Cole expression [147] as given in Equation (3.62) 

and Equation (3.63).  

 

𝜀𝑟ℎ𝑒𝑎𝑟𝑡 = 55.80 (3.62) 

𝜎ℎ𝑒𝑎𝑟𝑡 = 1.91Sm−1 (3.63) 

 

  
 

Figure 3.9: Geometrical configuration of Model #1 

 

Constituent of tumour in Model#2  which illustrated in Figure 3.10 is based on 

Camacho and Tjuatja’s study which containing 60% blood, 20% muscle and 20% of blood 
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vessel [148]. Equation (3.64) and Equation (3.65) show the calculation of tumour profiles in 

the model, in which muscle and blood vessel are abbreviated as 𝑚𝑠𝑐𝑙 and 𝑏𝑣, respectively. 

 

𝜀𝑟𝑡𝑢𝑚𝑜𝑢𝑟𝑀𝑜𝑑𝑒𝑙#2  = 60%(𝜀𝑟𝑏𝑙𝑑
) + 20%(𝜀𝑟𝑚𝑠𝑐𝑙

) + 20%(𝜀𝑟𝑏𝑣
) 

= 0.6(59.0) + 0.2(53.3) + 0.2(43.1) 

= 54.68 

(3.64) 

𝜎𝑡𝑢𝑚𝑜𝑢𝑟𝑀𝑜𝑑𝑒𝑙#2  = 60%(𝜎𝑏𝑙𝑑) + 20%(𝜎𝑚𝑠𝑐𝑙) + 20%(𝜎𝑏𝑣) 

= 0.6(2.19) + 0.2(1.45) + 0.2(1.17) 

= 1.84Sm−1 

(3.65) 

 

 

Figure 3.10: Geometrical configuration of Model#2  

 

Dielectric profiles of lung tumour in Model#3  shown in Equation (3.66) and 

Equation (3.67) are determined by generalized the finding of research work by [149]. The 

tumour composition is taken from the mid-range value of ratio for cancerous tissues in 

relative to normal lung tissues with lung profiles obtained from Equation (3.60) and Equation 

(3.61). Geometrical configuration of Model#3 is shown in Figure 3.11. 

 

𝜀𝑟𝑡𝑢𝑚𝑜𝑢𝑟 = 54.68 

𝜎𝑡𝑢𝑚𝑜𝑢𝑟 = 1.84 

𝜀𝑟𝑙𝑢𝑛𝑔 = 15.91 

𝜎𝑙𝑢𝑛𝑔 = 0.51 

107mm 

130mm 
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𝜀𝑟𝑡𝑢𝑚𝑜𝑢𝑟𝑀𝑜𝑑𝑒𝑙#3  = (1.2 + 3)/2 ∙ 𝜀𝑟𝑙𝑢𝑛𝑔 

= (1.2 + 3)/2 ∙ 15.91 

= 33.41 

(3.66) 

𝜎𝑡𝑢𝑚𝑜𝑢𝑟𝑀𝑜𝑑𝑒𝑙#3  = (1.6 + 2)/2 ∙ 𝜎𝑙𝑢𝑛𝑔 

= (1.6 + 2)/2 ∙ 0.51 

= 0.918Sm−1 

(3.67) 

 

 

Figure 3.11: Geometrical configuration of Model#3  

 

3.6 Image Quality Metric 

Image quality metric used throughout in this research are mean squared error (MSE), 

relative error (RE) and Euclidean distance (ED).  MSE is written as in Equation (3.68) [58]. 

 

𝑀𝑆𝐸(𝜀𝑟) =
1

𝑁𝑋𝑁𝑦
∑ ∑[𝜌𝑎𝑐𝑡𝑢𝑎𝑙(𝑥, 𝑦) − 𝜌𝑠𝑝𝑒𝑐(𝑥, 𝑦)]

2
,

𝑁𝑦

𝑦=1

𝑁𝑥

𝑥=1

 

𝜌 ∈ (𝜀𝑟, 𝜎) 

(3.68) 

 

𝜀𝑟𝑡𝑢𝑚𝑜𝑢𝑟 = 33.41 

𝜎𝑡𝑢𝑚𝑜𝑢𝑟 = 0.918 

𝜀𝑟𝑙𝑢𝑛𝑔 = 15.91 

𝜎𝑙𝑢𝑛𝑔 = 0.51 

107mm 

130mm 
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MSE(𝜀𝑟) in this research context is an average to a summation of the difference 

between image pixel values of the reconstructed image profiles 𝜌𝑠𝑝𝑒𝑐 in related to its actual 

synthetic values 𝜌𝑎𝑐𝑡𝑢𝑎𝑙 at coordinate (𝑥, 𝑦) that confined in the region (𝑁𝑋 × 𝑁𝑦). 

Reconstructed image profiles 𝜌 consisting of relative permittivity 𝜀𝑟 and conductivity 𝜎. The 

term 𝑠𝑝𝑒𝑐 is used to denote specified iteration in which image quality metric is performed 

on the reconstructed object.  

MSE has been applied in several related studies  [18, 19, 39, 49, 59] to describe the 

quality of reconstructed profiles. MSE is simple in algorithm, nevertheless based on 

observations thus far [58, 150], it can be said sufficient to explicitly explain the statistical 

precision level that constantly analogous to subjective evaluation of images. The function of 

MSE in this research is not only being a precision index measure of the reconstructed object. 

It is also applied to estimate optimal parameter settings for AS-ROI as well as edge 

preserving regularization by means of its level at the lowest value.  

Since it measures the difference between two pixels at similar coordinates, therefore 

lower MSE would indicates better result in its accuracy. Based on observations that will be 

explicated in Chapter 4, MSE is much lower in conductivity profiles than relative 

permittivity due to its significantly low intensity values. However, it does not imply that the 

reconstructed image of conductivity is more accurate than relative permittivity.  

Relative error (RE) which was also applied in [44–46] is added as the second 

precision index to determine the size accuracy of the reconstructed object. It can be 

calculated as in Equation (3.69).  𝑟𝑎𝑑𝑎𝑐𝑡𝑢𝑎𝑙 is the actual radius of the phantom object and 

𝑟𝑎𝑑𝑠𝑝𝑒𝑐 is to denote radius which estimated by the AS-ROI algorithm.    
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𝑅𝐸 = |
𝑟𝑎𝑑𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑟𝑎𝑑𝑠𝑝𝑒𝑐

𝑟𝑎𝑑𝑎𝑐𝑡𝑢𝑎𝑙
| × 100 (3.69) 

 

The third precision index is a Euclidean distance (ED) to measure localization error 

between the exact centre coordinate and the detected object placement. It has been applied 

in [26, 46] for the same purpose, which also asses localization accuracy. The formula of ED 

is expressed in Equation (3.70).  

 

𝐸𝐷 = √(𝑜𝑓𝑓𝑠𝑒𝑡𝑋𝑎𝑐𝑡 − 𝑜𝑓𝑓𝑠𝑒𝑡𝑋𝑠𝑝𝑒𝑐)
2

+ (𝑜𝑓𝑓𝑠𝑒𝑡𝑌𝑎𝑐𝑡 − 𝑜𝑓𝑓𝑠𝑒𝑡𝑌𝑠𝑝𝑒𝑐)
2
 (3.70) 

 

𝑜𝑓𝑓𝑠𝑒𝑡𝑋𝑎𝑐𝑡 and 𝑜𝑓𝑓𝑠𝑒𝑡𝑌𝑠𝑝𝑒𝑐 are the actual offset values in x and y directions. Meanwhile, 

𝑜𝑓𝑓𝑠𝑒𝑡𝑋𝑠𝑝𝑒𝑐 and 𝑜𝑓𝑓𝑠𝑒𝑡𝑌𝑠𝑝𝑒𝑐 are the detected offset values by the AS-ROI. Offset values 

in this research framework are referring to the distance between object and centre coordinate 

of FDTD at (112,112). 

 

3.7 Concluding Remarks 

This chapter has underlined processes involved in the proposed technique. Summary 

of the overall process flow has been presented in the first section. FBTS algorithm along 

with its modelling setup for simulation was enlightened in the second section. A new 

rescaling approach by AS-ROI which embedded inside FBTS has been presented in the third 

section. The rescaling method is a non-iterative technique with resolution level maintained 

throughout the reconstruction process. The fourth section explicated on the combined 

technique of AS-ROI with edge preserving techniques: edge preserving regularization 

imposed on fields’ gradient and edge preserving filter by means of anisotropic diffusion 
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imposed on the relative permittivity profile.  Characterization of three lung(s) phantom 

model has been described in later section. The last section emphasized on three types of 

image quality metric utilized in this research work. The metrics measure the fidelity of the 

reconstruction technique in terms of pixel accuracy in the investigation domain, object’s size 

and localization accuracy.
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CHAPTER 4  

RESULTS AND DISCUSSION 

 

Focal point of this research is to combine an Automated Scaling Region of Interest 

(AS-ROI) with Forward-Backward Time-Stepping (FBTS) method, to focus on the object’s 

region for image reconstruction. Edge preserving smoothing filter and edge preserving 

regularization were studied as auxiliary values to the research work, which further enhance 

the accuracy of unknown object from the observed fields. The efficiency of the proposed 

work is validated by numerical analysis utilizing several synthetic object models. Analysis 

in this research include edge preserving techniques, AS-ROI in FBTS, followed with hybrid 

AS-ROI with edge preserving regularization in FBTS.  

Analysis are divided into two parts. In the first part in Section 4.1 up to 4.5, 

reconstruction of simple objects which taken after breast dielectrical profiles from Debye 

model are considered. The geometry is made up of two layers which immersed in free space 

as coupling medium, encompasses of fatty tissue and fibroglandular of breast. The object 

geometry however, only consists of simple shapes which does not resemble human breast. 

The second part in Section 4.6 up to 4.7 present findings on lung(s) model, that is also made 

of two layers containing lung(s) tissue and tumour. The observation points will be the entire 

detected region of interest (ROI). Mean squared error (MSE), relative error (RE) and 

Euclidean distance (ED) will be used throughout as an image similarity index to measure the 

accuracy of the reconstructed object. Termination criterion of convergence is predetermined 

at 100th iteration for all analysis except for finding parameter settings of edge preserving 

regularizations. In order to measure computational time difference, the number of antennas 

is maintained at 12 units to encircle the unknown object for all analysis.  
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4.1 Image reconstruction of simple object at varied frequencies  

In the first analysis, reconstruction of simple objects in three geometrical shapes are 

considered, which analysed at different frequencies ranging from 1GHz to 4GHz. All these 

four frequencies (1GHz, 2GHz, 3GHz and 4GHz) correspond to the stability condition of 

FDTD simulation as discussed in Chapter 2, Section 2.2.2. Frequency level of incident waves 

is inversely proportional to the penetration depth that affect the strength of signal passing 

through mediums’ layers of varied dielectric properties [151]. Therefore, simulations in this 

section would analyse an optimal frequency that able to characterize the object’s geometry 

with sufficient penetration level.  In particular, the four frequencies were studied to suit 

object and ROI’s size in 40mm radius with a given dielectric profiles. The finding of optimal 

frequency will be generalized to be used for later analysis, since object and ROI size are 

limited to FDTD fixed size. 

Analysis domain on FDTD cell has a dimension size of 220 × 220mm2 which 

utilized for all analysis in this research. Each layer thickness or dielectric properties of actual 

object and its initial guess are given in Table 4.1. These dielectric values will be used for all 

analysis objects which taken after Debye breast model. All objects to be analysed are shown 

in Figure 4.1, for Shape#1, Shape#2 and Shape#3. Shape#1 has width and length of 39mm 

and 39mm, respectively. Meanwhile, for Shape#2, the width and length are 39mm and 20mm 

respectively. As for Shape#3, the multiple circulars have radius of 3mm, 5mm and 7mm 

(from left to right). Varied shapes were analysed to observe the consistency of the tested 

frequencies.   
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Table 4.1: Dielectric properties settings for breast model  

 

Layer  Actual  Initial guess 

r    
r    

Fat  9.98 0.18 13.70 0.10 

Fibroglandular  21.45 0.45 13.70 0.10 

Background (free space) 1.00 0.00 1.00 0.00 

 

  

(a) Shape#1: Diamond (b) Shape#2: Triangle 

 

(c) Shape#3: Multiple circulars 

 

Figure 4.1: Actual relative permittivity of phantom model in varied shapes 

 

In terms of subjective evaluation, only reconstructed images of Shape#1 are 

presented as the frequency effect on all three models are similar. Figure 4.2 shows cross-

sectional top and side view of relative permittivity images of Shape#1 with various 
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frequency ranging from 1GHz to 4GHz. Cross-sectional top view of relative permittivity 

image which reconstructed at 1GHz in Figure 4.2(a) is blurred at the edges. Nevertheless, 

the lossless background is well reconstructed in which appear to be homogenous in all 

directions. Severe fluctuations can be observed in its corresponding cross-sectional side view 

in Figure 4.2(e). This indicate that the signal penetration was higher at the background layer 

with lower dielectric properties, nonetheless getting weaker inside the object of higher 

dielectric properties. At 2GHz which illustrated in Figure 4.2(b) and 4.2(f), blotches 

appeared inside the reconstructed object. However, the background intensities were fairly 

homogenous. Internal layer of object is not perfectly reconstructed due to similar reason as 

for 1GHz frequency.  

The geometry of Shape#1 generated by FBTS at 3GHz in Figure 4.2(c) is clearly 

close to the actual image, in which blotches appeared in the reconstructed object by 2GHz 

frequency has diminished. Edges line exhibited in Figure 4.2(g) also approximates to the 

actual trail compared to other frequency settings. At 4GHz, distortions in the reconstructed 

image in both background and object’s layers can be seen in Figure 4.2(d). Distortions are 

more notable in the cross-sectional side view in Figure 4.2(h). This finding is analogous to 

related study [54], which also found that 4GHz frequency leads to nonlinearity of the 

inversion solution that deteriorates the reconstructed image.      

MSE levels of relative permittivity images is shown in Figure 4.3. It also reached its 

lowest MSE value of 1.18 at 3GHz which applicable for all three geometrical shapes that 

have been analysed. From Figure 4.2 and 4.3, optimal result for permittivity image for 

Shape#1 is obtained by using the frequency of 3GHz. Numerical evaluations indicated by 

MSE in this analysis are comparable to the subjective evaluations that had been discussed 

earlier.  
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(a) Top view at 1GHz (e) Side view at 1GHz 

  

(b) Top view at 2GHz (f) Side view at 2GHz 

 

 

(c) Top view at 3GHz (g) Side view at 3GHz 

 
 

(d) Top view at 4GHz (h) Side view at 4GHz 

 

Figure 4.2: Cross-sectional view of relative permittivity images (Shape#1) in x-y plane at 

100th iteration obtained at varied frequencies  
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Figure 4.3: MSE values of relative permittivity images of Shape#1, Shape#2 and Shape#3 

reconstructed at varied frequencies 

 

The conductivity profile which analysed at different frequencies are illustrated in 

Figure 4.4. Dissimilar to relative permittivity, conductivity images started to deteriorate and 

yields clear ring objects at 3GHz as shown in Figure 4.4(c). Distortions were visible in the 

cross-sectional side view Figure 4.4(g). From Figure 4.4, optimal results of conductivity 

images can be obtained with frequency lower than 3GHz. It can be said that instability of 

the inversion solution has started at 3GHz for conductivity images. Precise evaluation is 

made by using MSE result, since there is no substantial difference between cross-sectional 

view of reconstructed images at 1GHz and 2GHz. Accuracy level of conductivity is shown 

in Figure 4.5. The MSE level of conductivity in Figure 4.5 reaches the lowest value of 

8.95×10-4 at the frequency of 2GHz for all three shapes.  

In order to have fair result between relative permittivity and conductivity images, 

frequency at 2GHz is suffice to generate considerably good result for both permittivity and 

conductivity of simple objects, based on subjective and quantitative evaluation. On top of 

that, penetration depth is inversely proportional to frequency and relative permittivity [152]. 

Higher frequency or relative permittivity decreases the penetration depth of incident fields 

which attenuate the capability of an inversion technique. Therefore, all subsequent analyses 

shall be investigated with 2GHz frequency considering that later analyses shall utilized 

higher relative permittivity values.  
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(a) Top view at 1GHz (e) Side view at 1GHz 

 
 

(b) Top view at 2GHz (f) Side view at 2GHz 

 

 

(c) Top view at 3GHz (g) Side view at 3GHz 

 
 

(d) Top view at 4GHz 

 
(h) Side view at 4GHz 

 

Figure 4.4: Cross-sectional view of conductivity images (Shape#1) in x-y plane at 100th 

iteration at varied frequencies  
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Figure 4.5: MSE values of conductivity images of Shape#1, Shape#2 and Shape#3 

reconstructed at varied frequencies 

 

4.2 Edge preserving smoothing filter 

In this analysis, several edge preserving smoothing filters were studied. Edge 

preserving smoothing filters is utilized as a pre-processing process prior to regularization 

method. The combined edge preserving smoothing filters and regularization is proven 

effective in preserving image details as discussed in Section 2.4.1. Filters are imposed 

directly on the reconstructed output at each iteration of optimization. This is to eliminate 

artifacts in the reconstructed images due to nonlinearity and ill-posed problems of inverse 

scattering method. Despite being a simple input-output process, the effect on the accuracy 
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anisotropic diffusion to be applied on the reconstructed profiles is mainly due to its algorithm 

[82, 104–110, 112] that is comparably similar to regularization process [13, 50]. This is to 

ensure balance diffusion effect on the scattered fields as well as on the reconstructed profiles.  

Median filter family that are considered in this analysis includes median filter, 

weighted median and Adaptive weighted median filter with optimal size of 3 × 3mm2. 

Kernel size of Adaptive weighted median filter is expanded up to 5 × 5mm2, as larger kernel 

will oversmoothed the object. Kernel size of each filter is empirically determined based on 

its MSE results. In anisotropic diffusion, there are several options of potential function that 

can be used for regularization purpose. In this analysis only Geman & McClure potential 

function is applied. This is to synchronize the weighting function as applied in edge 

preserving regularization for smoothing effect, which will be discussed in Section 4.3. 

Parameters for gradient threshold and weighting for image diffusion are empirically 

determined, which set to 1.25 and 0.1, respectively. These parameters are applied for both 

relative permittivity and conductivity.  

Figure 4.6 shows comparison of cross-sectional top view between reconstructed 

relative permittivity profiles of actual, FBTS and filtered FBTS. The object model to be 

analysed is shown in Figure 4.6(a), which is a U-shaped object in 33mm for both height and 

width dimension. The gap of the U-shaped is in 7mm. The selection of the U-shaped pattern 

is to study the capability of edge preserving smoothing filter and regularization to assist the 

FBTS in detecting depth of the U curve and preserving its multiple edges.  

In terms of relative permittivity values, all filtered images show substantial 

improvement in comparison to the reconstructed image by FBTS. Note that visible artifacts 

or ring objects which exists in FBTS result as in Figure 4.6(b) are vanished as iterative edge 

preserving smoothing filters are applied, which illustrated in Figure 4.6(c) until Figure 4.6(f). 
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From Figure 4.6(f), the U-shaped object becomes more homogenous in its intensities level 

by using anisotropic diffusion, as the smoothing effect is bounded by the detected edges 

unlike median filter family or any other filters. As explained in Section 2.3.2, smoothing by 

anisotropic diffusion is strongly imposed on non-edges area nevertheless has slight effect on 

edges.  

Figure 4.7 shows comparison of cross-sectional side view for the reconstructed 

dielectric profiles at the centre image (112,112) between actual, FBTS and anisotropic 

diffusion filtered FBTS. In Figure 4.7(a), the curve or gap of between two poles for relative 

permittivity which constitute the U-shape is more pronounced for the anisotropic diffusion 

filtered FBTS, as it getting deeper near to the actual line compared to the reconstructed image 

by FBTS. In contrast to relative permittivity, the edges of conductivity image in Figure 4.7(b) 

did not approaching the actual edges. This is due to incorrect estimation of parameter settings 

applied to conductivity, as all parameters are empirically tuned for relative permittivity 

image. Smoothing degree on conductivity images is therefore applied accordingly to the 

availability of gradient in relative permittivity, in spite of some edge pixels of conductivity 

are misclassified as homogeneous area and vice versa. Consequently, some conductivity 

pixels are over smoothed as the cross-sectional line appear higher than the actual.  

Figure 4.8 and Figure 4.9 show accuracy level for dielectric profiles of FBTS and 

filtered FBTS. From Figure 4.8, all filtered relative permittivity achieve lower MSE than 

FBTS, in which the accuracy for all filtered images are enhanced. Correspond to its cross-

sectional top and side view, anisotropic diffusion contributes the highest accuracy for 

relative permittivity with 13.13% decrement in MSE level compared to FBTS as the 

smoothing degree for each pixel is determined by the occurrence of edges and non-edges. 

Median family only contributes about 2.71% decrement in average for relative permittivity. 
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The main reason for inferior results of median family is pixels are treated by windowing 

kernel, in which uncorrupted pixels might be treated in the same way as the corrupted pixels.  

 

 

 

(a) Actual object  (b) FBTS 

 
 

(c) Median filtered FBTS with kernel 

size of 3 × 3mm2 

(d) Weighted median filtered FBTS with 

kernel size of 3 × 3mm2 

  

(e) Adaptive weighted median filtered 

FBTS with kernel size of 3 × 3 to  

5 × 5mm2 

(f) Anisotropic diffusion filtered FBTS 

 

Figure 4.6: Cross-sectional top view of relative permittivity images in x-y plane at 100th 

iteration for various filters in FBTS 
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(a) Relative permittivity  (b) Conductivity  

Figure 4.7: Cross-sectional side view along the x-axis at 100th iteration of the actual image, 

reconstructed image by FBTS and reconstructed image by iterative anisotropic diffusion in 

FBTS  

 

 
Figure 4.8: MSE values of relative permittivity images using (a) FBTS (b) Median filter 

with kernel size of 3 × 3mm2 (c) Weighted median filter with kernel size of 3 × 3mm2  

(d) Adaptive weighted median filter with kernel size of 3 × 3 to 5 × 5mm2 (e) Anisotropic 

diffusion  
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106.58%. Median filtered images of conductivity nevertheless show slight improvement 

with average decrement of 3.71% in MSE. Other than being affected by non-optimal 

parameters of filters, the inefficiency of FBTS in reconstructing conductivity images [54] 

also contribute to inferiority performance of filtering towards conductivity. Table 4.2 
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summarizes the MSE level for the reconstructed object by FBTS and filtered FBTS in which 

the lowest value for each profile were highlighted. 

 
Figure 4.9: MSE values of conductivity images using (a) FBTS (b) Median filter with kernel 

size of 3 × 3mm2 (c) Weighted median filter with kernel size of 3 × 3mm2 (d) Adaptive 

weighted median filter with kernel size of 3 × 3 to 5 × 5mm2 (e) Anisotropic diffusion  

 

Table 4.2: MSE level of unfiltered and filtered FBTS 

 

Reconstructed image obtained by  MSE of r  MSE of   

FBTS 2.444 1.96×10-3 

Median filtered FBTS 2.405 1.887×10-3 

Weighted median filtered FBTS 2.373 1.921×10-3 

Adaptive weighted median filtered FBTS 2.355 1.854×10-3 

Anisotropic diffusion filtered FBTS 2.123 4.049×10-3 

 

4.3 Edge Preserving Regularization 

Edge preserving regularization is an extended version of anisotropic diffusion which 

has been proven remarkable in improving the accuracy of the reconstructed image. It has 
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& McClure, Hebert & Leahy and Hyper Surfaces which acting separately, on relative 

permittivity and conductivity.  

The analysis is started with finding optimal parameter settings for each potential 

function by maintaining the value of gradient threshold for relative permittivity and 

conductivity at 1.0 and 0.32, respectively. Gradient threshold parameter values are 

empirically determined. The value of regularization coefficient is varied from 5.0×10-12 to 

5.0×10-9, which correspond to conjugate gradients of FBTS [18, 49]. Object for edge 

preserving regularization analysis is similar to Section 4.2. Image reconstructions are carried 

out in 51 iterations, which half the process for all other analysis. The rationale behind 

choosing odd number for finding parameter settings of regularization as the regularization 

process was opted to be ended at odd iteration number until convergence criterion is met.  

The MSE results are shown in Figure 4.10 and Figure 4.11. From both figures, 

regularization with Geman & McClure potential function and regularization coefficient of 

5.0×10-10 contributes the highest improvement, in which optimal to the simulation settings.  

The inverse scattering is intrinsically nonlinear and hence volatile to any changes. From the 

MSE results, regularization coefficient higher than 5.0×10-10 can be considered too high that 

cause instability of the FBTS that led to improper estimation of dielectric profiles after the 

regularization process. On the other hand, regularization coefficient which lower than 

5.0×10-10 are considered too low to provide significant regularization effect towards the 

reconstructed image profiles. 

In what follows, only Geman & McClure potential function is considered for both 

regularization purpose and anisotropic diffusion filter in Section 4.2. Therefore, the 

smoothing effect on fields by regularization would be analogous to the smoothing of 

reconstructed image profiles by the anisotropic diffusion filter.   
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Figure 4.10: MSE values of relative permittivity images for various potential functions in 

edge preserving regularization  

 

 

Figure 4.11: MSE values of conductivity images using for various potential functions in 

edge preserving regularization  
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Results of dielectric properties accuracies are illustrated in Figure 4.12 and Figure 

4.13. From Figure 4.12, ideal value for gradient threshold which acted on relative 

permittivity is 1.25. With the threshold parameter imposed on conductivity maintained at the 

same value, Figure 4.13 shows the regularizing effect of varying relative permittivity 

parameters on conductivity image, only to find the best value of regularization coefficient. 

Similar to previous outcome, optimal results for both relative permittivity and conductivity 

in Figure 4.12 and Figure 4.13 are obtained at regularization coefficient of 5.0×10-10. Up to 

this point in this section, MSE values are only used to determine optimal parameter settings 

of regularization and are not compared to the reconstructed image by FBTS.   

 
Figure 4.12: MSE values of relative permittivity images with varied regularization 

coefficient and varied threshold parameter for relative permittivity of (a) 0.75 (b) 1.0 (c) 1.25 

(d) 1.5 

 

 
Figure 4.13: MSE values of conductivity images with varied regularization coefficient and 

varied threshold parameter for relative permittivity of (a) 0.75 (b) 1.0 (c) 1.25 (d) 1.5 
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Figure 4.14 and Figure 4.15 show comparison of accuracy level between regularized 

cases by combined method of edge preserving regularization with FBTS and non-regularized 

cases in FBTS at various starting number of iterations. The MSE values for relative 

permittivity and conductivity images reconstructed by FBTS are 2.44 and 1.96  × 10-3, 

respectively. For relative permittivity images in Figure 4.14, regularization enhance the 

accuracy even it is applied in the first iteration which attains MSE of 2.17 in comparison to 

FBTS at 2.44. However, the effect is more prevalent at 20th iteration, which reaches the 

lowest value at 1.91. Similar to anisotropic diffusion, the smoothing degree by regularization 

is based on the occurrence of edges or gradient. Any deterministic inversion technique 

including FBTS would require some time to converge. At early iteration the reconstructed 

images have not fully developed as the initial guess for image reconstruction is insufficient 

to estimate the unknown object. Therefore, edges are hardly distinguished from non-edges 

area. Imposing regularization towards erroneous pixels would cause solution to be inaptly 

treated. At iteration later than 20th, solution is considered insufficiently regularized, which 

leads to lowering the accuracy level.  

Since only regularization parameters of relative permittivity are varied, note that 

MSE of conductivity images are larger for regularized cases compared to the non-regularized 

with FBTS as in Figure 4.15. Maintaining the regularization gradient threshold value 

imposed to conductivity surely deteriorates its reconstructed image, as there is no effort to 

make it compatible with the object. Despite that, the whole regularization process still able 

enhance the quality image of relative permittivity significantly.  

Based on the results reported in Figure 4.12 up to 4.15, only relative permittivity is 

considered to be regularized for later analysis. Conductivity image on the other hand is only 

optimized by conjugate gradient method in FBTS since it is proven that unregularized 
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conductivity would not affect the regularized relative permittivity. Plus, it would reduce the 

complexity in determine regularization parameter settings. 

 

 

Figure 4.14: MSE values of relative permittivity images with edge preserving regularization 

in FBTS at varied starting number of iterations  

 

 

Figure 4.15: MSE values of conductivity images with edge preserving regularization in 

FBTS at varied starting number of iterations 
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4.4 Automated Scaling in Region of Interest (AS-ROI)  

Similar to analysis for edge preserving regularization, starting number to initiate the 

rescaling process by AS-ROI also affect the quality of image reconstruction. Since relative 

permittivity image is more accurate than conductivity, it is used in AS-ROI process to define 

the new reconstruction area. Therefore, the finding is relied on the accuracy of relative 

permittivity, which makes conductivity less significant in this analysis.  The whole pixels of 

the newly defined ROI would be the test points in all AS-ROI analysis. Figure 4.16 shows 

the accuracy of reconstructed images in terms of MSE level at various starting number of 

iteration for AS-ROI. Cost functional for optimization is shown in Figure 4.17. Both 

suggests that optimal iteration number to start the AS-ROI is at 30th iteration out of 100 

iterations in total for image reconstruction. It is due to similar reason as edge preserving 

regularization in Section 4.3. Providing that when AS-ROI start too early, incorrect area will 

be segmented for reconstruction due to erroneous of edge pixels. On the other hand, the 

rescaled investigation area would insufficiently be optimized as the convergence criterion is 

fixed to 100th iteration in all analyses.  

 

 

Figure 4.16: MSE of relative permittivity with varied starting number of iteration to initiate 

AS-ROI for object at centre coordinate 
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Figure 4.17: Cost functional values with varied starting number of iteration to initiate AS-

ROI for object at centre coordinate 
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Table 4.3: Accuracy in terms of offset and radius detected by AS-ROI for circular object in 

various sizes at two coordinates placement (a) offset at (0,0) from centre coordinate (b) offset 

at (10,10) from centre coordinate 

 

Analysis number 

Offset values 

detected 

Actual 

radius of 

object (mm) 

Detected radius 

(mm) 

(a) (b) (a) (b) 

1 0,0 10,10 3 6 10 

2 0,0 10,10 5 10 10 

3 0,0 10,10 7 11 11 

4 0,0 10,10 9 14 14 

5 0,0 10,10 11 16 16 

6 0,0 10,10 13 18 18 

7 0,0 10,10 15 21 21 

8 0,0 10,10 17 24 24 

9 0,0 10,10 19 27 27 

10 0,0 10,10 21 28 28 

 

The analysis is extended to a U-shaped object as described in Section 4.2. Five 

placement coordinates are considered, with fixed value of object radius size in 24mm. In 

these five cases as in Table 4.4, all coordinates are determined correctly and radius detected 

is slightly differ with RE of 4.17%. The actual ROI is within 40mm, which then rescaled 

down to 25mm by AS-ROI based on the object’s radius. Number of layers detected by 

adaptive K-means clustering in AS-ROI also conform the actual. This imply that the 

geometrical shape of object influences the capability of AS-ROI as well as FBTS itself for 

image optimization, as the finding on radius detection is considerably different between 

circular and U-shaped object.  
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Table 4.4: Accuracy in terms of offset and radius detected by AS-ROI which initiated at 

30th   iteration for U-shape object 

 

Analysis 

number 

Actual 

offset 

values 

Offset values 

detected  

Initial radius 

of ROI (mm) 

Actual 

radius of 

object (mm) 

New radius 

of ROI 

(mm) 

1 0,0 0,0 40 24 25 

2 10,10 10,10 40 24 25 

3 5,-5 5,-5 40 24 25 

4 -5,5 -5,5 40 24 25 

5 -10,-10 -10,-10 40 24 25 

 

Figure 4.18 and Figure 4.19 show the capability of AS-ROI in improving accuracy of 

reconstructed images for all five coordinates stated in Table 4.4. In the rescaled ROI case, 

note that both relative permittivity and conductivity images in mentioned figures are 

improved in terms of its intensities level, compared to the non-rescaled ROI by FBTS. This 

can be seen in the reduction of MSE values in both figures for the rescaled cases in all five 

coordinate settings. Average MSE of relative permittivity images by AS-ROI in FBTS is at 

5.41, that is lower than the average MSE of FBTS at 6.03. As for conductivity images, the 

average MSE are 3.16×10-3 and 4.14×10-3 for AS-ROI and FBTS, respectively.  

In the rescaling process by AS-ROI, initial pixels that exterior to the detected object 

shall be replaced with background pixels in which considerably lower than the object’s 

profiles. The incident fields are therefore can easily penetrate through background layer 

toward the object due to low profiles’ values, thus mitigate the inverse scattering process. 

The results is comparable to findings obtained by IMSA [11, 44–46], in which reducing the 

number of pixels for reconstruction had increase the accuracy of reconstructed profiles. 
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Hence, it supported the fact that nonlinearity of inversion solution such as FBTS is 

proportional to the number of pixels for reconstruction [11, 21].  

 

 

Figure 4.18: MSE values of relative permittivity images between AS-ROI and FBTS  

 

 
Figure 4.19: MSE values of conductivity images between AS-ROI and FBTS 
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Object to be analysed is a U-shaped object, similar to analysis in Section 4.2. Five coordinate 

settings are employed as described in Table 4.4. Rescaling process is implemented at 30th 

iterations and regularization started 20 iterations after redefining the new ROI area. Starting 

iteration number of regularization which runs synchronous to AS-ROI process are analysed. 

The empirical result showed that the best result can be obtained at 20th iteration after the 

newly ROI is defined.  

Cross-sectional top view of relative permittivity images from the combined methods 

are illustrated in Figure 4.20. Note that the quality of the combined rescaled and regularized 

case in Figure 4.20(b) is far better than Figure 4.20(a). Figure 4.21 shows relative change in 

MSE level of relative permittivity to compare the performance of non-regularized FBTS 

with AS-ROI and regularized FBTS with AS-ROI. Based on quantitative measure in Figure 

4.21, by combining both mentioned methods to assist the optimization solution, it further 

reduced the MSE level in all analysis settings. Relative change is measured with respect to 

accuracy by FBTS. The relative change is intentionally presented in negative values as it 

means decrement in MSE. As for the MSE, the lower means accuracy of sought measured 

values is improved. The average of relative change by AS-ROI is -0.1 or equivalent to 

10.33% increment. The combined methods achieved even lower average value of relative 

change, which is at -0.19 or improved about 18.58%. Each method of edge preserving 

smoothing filter, regularization and AS-ROI has been proven able elevate the efficiency of 

FBTS solution, which can be referred from Section 4.2 up to 4.4. In a double fold process of 

the combined rescaled and regularized method in FBTS, edge preserving smoothing filter 

and regularization are alternately imposed on the improved reconstructed profiles by AS-

ROI. Thus, it rationalizes higher precision level as indicated by lower MSE.  
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(a) AS-ROI (b) AS-ROI with edge preserving techniques 

 

Figure 4.20: Cross-sectional top view of relative permittivity images in x-y plane at 100th 

iteration in the new ROI between AS-ROI and AS-ROI with edge preserving techniques 

 

 

Figure 4.21: Relative change in MSE of relative permittivity with respect to FBTS values 

between AS-ROI and AS-ROI with edge preserving for five coordinate placements settings  
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30442s.  Incorporating AS-ROI in FBTS only consumes 86.94% of average time required 

for FBTS in reconstructing all five cases, which is equivalent to 26467s due to reduction in 

the number of pixels. The time difference between the two approaches is about 3976s. 
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Integrating regularization into FBTS with AS-ROI though consumes more time to reach the 

convergence criterion. It requires 32228s in average, that is 5.87% more time consuming 

than FBTS, as more parameters and processes involved.  

However, to achieve accuracy level as the combined method of FBTS, AS-ROI and 

regularization, FBTS and FBTS with AS-ROI might need more iterations of optimization 

for image reconstruction. More iterations clearly mean that computational time and memory 

allocation will be increased. Thus, it can be concluded that the combined method of FBTS, 

AS-ROI and regularization able to compensate computational cost for image reconstruction.  

 

 

Figure 4.22: Comparison in computational time between three different approaches  
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analysed. Therefore, three models are studied with its dielectric properties’ settings are 

described as in Table 4.5 up to Table 4.7. 

In the first model that illustrated in Figure 4.23, thoracic wall comprising lungs and 

mediastinum was considered as the object. Mediastinum takes dielectric values of human 

heart. Other organs like thorax, blood vessels, esophagus however, are not included, which 

makes the dielectric properties of the object still in two layers. Due to limited memory and 

to reduce the nonlinearity of FBTS, object is resized down to 40% of the actual as discussed 

in Chapter 3.   

Results for the reconstructed images of Model#1 are presented in Figure 4.24. Even 

that the dielectrical property values is not of interest, object’s shape and location in both 

relative permittivity and conductivity are still not well defined. Accuracy in terms of 

intensity values for the first model is quite low, which attained substantially high MSE level 

at 172.05 and 0.19 for permittivity and conductivity, respectively. This is due to mediastinum 

area is considered too large that disrupts the scattered waves back to receiving antenna. 

Therefore, for later analysis, only the left lung will be analysed as an object instead of taking 

the whole thoracic area to reduce errors. 

 

Table 4.5: Dielectric properties settings for lungs Model#1 

 

Layer  Actual  Initial guess 

r    r    

Lungs  15.91 0.51 19.00 0.50 

Mediastinum (heart) 55.80 1.91 19.00 0.50 

Background (free space) 1.00 0.00 1.00 0.00 
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(a) Relative permittivity (b) Conductivity 

Figure 4.23: Actual image of lungs Model#1  

 

 

 

(a) Relative permittivity (b) Conductivity 

Figure 4.24: Reconstructed image of lungs Model#1 by FBTS  

 

For the second model as in Figure 4.25, only left lung area is considered to be 

analysed. It is rescaled to 60% from the actual image and embedded with a single circular 

tumour in 8mm radius. The 8mm radius is a threshold size to determine the positivity of the 

tumour which require additional diagnostic [153]. From the result in Figure 4.26, the tumour 

is quite apparent from the background. Location and shape of the tumour also resemble its 

original image. Permittivity’s accuracy level is at 6.92 and conductivity is at 2.34×10-2, 

which far better than the first model.   

0 50 100 150 200
0

20

40

60

80

100

120

140

160

180

200

220  

X [mm]

Relative permittivity

Actual image of lungs

 

Y
 [

m
m

]

20

25

30

35

40

45

50

55

0 50 100 150 200
0

20

40

60

80

100

120

140

160

180

200

220  

X [mm]

Conductivity

Actual image of lungs

 

Y
 [

m
m

]

0.6

0.8

1

1.2

1.4

1.6

1.8

0 50 100 150 200
0

20

40

60

80

100

120

140

160

180

200

220  

X [mm]

Relative permittivity of thoracic wall with FBTS

using 12 antennas at the freq of 2.00GHz in 100 iterations

 

Y
 [

m
m

]

5

10

15

20

25

30

35

40

45

0 50 100 150 200
0

20

40

60

80

100

120

140

160

180

200

220  

X [mm]

Conductivity of thoracic wall with FBTS

using 12 antennas at the freq of 2.00GHz in 100 iterations

 

Y
 [

m
m

]

0.5

1

1.5

2

2.5



119 

 

Table 4.6: Dielectric properties settings for lung Model#2  

 

Layer  Actual  Initial guess 

r    
r    

Lung 15.91 0.51 19.00 0.50 

Tumour  54.68 1.84 19.0 0.50 

Background (free space) 1.00 0.00 1.00 0.00 

 

 

 

(a) Relative permittivity (b) Conductivity 

Figure 4.25: Actual image of lung Model#2   

 

  

(a) Relative permittivity (b) Conductivity 

Figure 4.26: Reconstructed image of lung Model#2 by FBTS  
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Model#3 is illustrated in Figure 4.27, which almost equivalent to Model#2 in shape 

and size. However, it has smaller dielectric values of tumour as given in Table 4.7. Similar 

to previous result for Model#2, location of the tumour also corresponds to the actual. 

Tumour’s outline is more rounded in shape compared to Model#2. From the three lung(s) 

models that have been analysed, Model#3 shows the highest accuracy that achieved MSE of 

1.15 for relative permittivity and 1.75×10-3 for conductivity. In previous models, there is 

large difference between dielectric property values for each layer compared to Model#3. 

This proves that, other than object’s area, too high contrast between layers also suppress the 

scattering process which leads to inaccuracy in reconstructing image profiles.   

 

Table 4.7: Dielectric properties settings for lung Model#3  

 

Layer Actual  Initial guess 

r    
r    

Lung 15.91 0.51 18.70 0.50 

Tumour  33.41 0.92 18.70 0.50 

Background (free space) 1.00 0.00 1.00 0.00 

 

 

 

(a) Relative permittivity (b) Conductivity 

Figure 4.27: Actual image of lung Model#3   
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(a) Relative permittivity (b) Conductivity 

Figure 4.28: Reconstructed image of lung Model#3 by FBTS  

 

4.7 Application of AS-ROI and edge preserving regularization for lung(s) tumour 

detection  

4.7.1 Single tumour detection in lung model by AS-ROI 

In this section, Model#2 and Model#3 are analysed to investigate the efficiency of 

AS-ROI in pointing out location and size of an embedded tumour in five different 

coordinates. The results are shown in Table 4.8. As in Section 4.4, offset values mentioned 

in Table 4.8 denotes distance between the tumour and FDTD’s centre point which located at 

coordinate (112,112). In all five settings, the algorithm accurately locates only one 

coordinate for Model#2 and two coordinates for Model#3. Figure 4.29 shows error of offset 

values which measured in Euclidean distance (ED) for both models. From the figure, it is 

obviously seen that Model#2 has larger error than Model#3 in terms of object location 

detection, with average distance of 3.91 and 0.68, respectively. It is due to accuracy level of 

Model#2 is considerably lower than Model#3, which discussed in Section 4.6.  

As for radius approximation, the algorithm shows consistency in estimating radius 

for Model#3 with average error of 0.63. It is noticeably lower than average error of Model#2 

which at 2.0. Average error in estimating object’s radius is analogous to accuracy level 
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measured in MSE for lung image reconstruction by FBTS. This indicates that efficiency of 

AS-ROI is highly relied upon the accuracy of FBTS estimation in reconstructing image 

profiles prior to rescaling process. AS-ROI is designed to slightly overestimate the size of 

the object in order to avoid missing pixels.  However, providing that AS-ROI started at 

iteration with reconstructed image is not fully developed, the size of object could be overly 

estimated. As mentioned in Section 4.4, nonlinearity of inverse problem is proportional to 

the number of unknowns. Therefore, an overly estimated size of object would not alleviate 

the nonlinearity problem in which degrade the efficiency of AS-ROI.   

 

Table 4.8: Accuracy of Model#2 and Model#3 for single tumour detection by AS-ROI  

 

Coordinate 

setting 

Actual 

offset 

values 

Offset values detected  Initial 

radius of 

object 

(mm) 

New radius of ROI 

(mm) 

Model#2  Model#3  Model#2  Model#3  

1 0,0 0,0 0,0 8 13 13 

2 10,10 8,9 9,9 8 14 13 

3 5,-5 -3,-13 4,-5 8 66 13 

4 -5,5 -6,4 -5,5 8 14 13 

5 -10,-10 -10,-9 -9,-10 8 13 13 
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Figure 4.29: Euclidean distance with respect to centre coordinate of Model#2 and Model#3 

for 5 coordinate settings of single tumour  

 

4.7.2 Multi tumours detection in lung model by AS-ROI with edge preserving 

regularization 

The analysis utilizes Model#3 as an object analysis due to its high accuracy of the 

reconstructed image profiles by FBTS. Lung area is embedded with two tumours of similar 

radius in 8mm, which offset at (0,0) and (25,25) from centre coordinate (112,112) as in 

Figure 4.30(a). Reconstructed images by three methods, FBTS, FBTS with AS-ROI and 

regularized FBTS with AS-ROI are illustrated in Figure 4.30(b) up to 4.30(d). Cross-

sectional top view between Figure 4.30(b) and Figure 4.30(c) do not show much difference, 

however, Figure 4.30(c) shows slight improvement in terms of its shape due to higher signal 

penetration by eliminating the exterior pixels. Figure 4.30(d) is found more homogeneous in 

its layers compared to FBTS and rescaled FBTS by AS-ROI, as artifacts which appears as 

ring objects are considered vanished. Artifacts are eliminated with smoothing effect by edge 

preserving regularization on the solution and anisotropic diffusion filter of the reconstructed 

image. Therefore, non-edges area becomes more homogeneous in pixel intensities.  

Cross-sectional side view of object#1 and object#2 are shown in Figure 4.31 and 

Figure 4.32. Note that the implementation of AS-ROI in FBTS helps the image profiles 
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values approaching the actual object’s peripheral in both Figure 4.31(a) and Figure 4.32(a). 

Regularizing the rescaled FBTS in Figure 4.31(b) and Figure 4.32(b) even show remarkable 

improvement that the regularized edges approximately overlapped with the actual edges, as 

the pixel values are homogenous in non-edges area which benefited from the smoothing 

effect. 

 

  

(a) Actual object (b) FBTS extracted in the new ROI 

  

(c) AS-ROI in FBTS (d) AS-ROI with edge preserving 

techniques in FBTS 

Figure 4.30: Cross-sectional of relative permittivity top view in x-y plane at 100th iteration 

for the segmented area  
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(a) AS-ROI in FBTS (b) AS-ROI with edge preserving 

techniques in FBTS 

Figure 4.31: Cross-sectional side view of object#1 which offset at (0,0) from centre 

coordinate in Model#3  

  

  

(a) AS-ROI in FBTS (b) AS-ROI with edge preserving 

techniques in FBTS 

Figure 4.32: Cross-sectional side view of object#2 which offset at (25,25) from centre 

coordinate in Model#3   

 

Quantitative measure of accuracy level is presented in Figure 4.33. AS-ROI in 

FBTS elevates the accuracy about 25.17% for this particular model. The precision in image 

pixels or intensity levels has increased about 40.68% by integrating AS-ROI and edge 

preserving regularization inside FBTS compared to FBTS alone.   
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Figure 4.33: MSE of relative permittivity images of Model#3 embedded with two tumours 

which reconstructed by FBTS, AS-ROI in FBTS and AS-ROI with edge preserving applied 

in FBTS  

 

Computational time results for three cases (FBTS, the rescaled FBTS and the 

regularized of rescaled FBTS) as shown in Figure 4.34 corresponds to the results presented 

in Figure 4.24. A left lung which embedded with two tumours is reconstructed by FBTS in 

31198 seconds. The reduction of pixels by AS-ROI which only focusing on tumours area for 

image reconstruction has successfully reduced the computational time to 22232s or about 

28.74% decrement with respect to the FBTS. The inclusion of edge preserving regularization 

and anisotropic diffusion filter which alternately applied on solution and relative permittivity 

image however has increased the time to 32662s or about 4.69% increment in comparison 

to the FBTS. The increment in the computational time resulted from edge preserving 

techniques is expected as it entailing more parameters and processes of the rescaled 

reconstruction area.  
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Figure 4.34: Comparison in computational time 

 

4.8 Concluding Remarks  

Based on preliminary findings, signal frequency for electromagnetic radiation was set 

to 2GHz and the number of utilized antennas to encircle the embedded object were 

maintained at 12 units throughout all simulations. Termination criterion was predetermined 

at 100 iterations which also based on subjective evaluation on the preliminary simulations. 

Analyses were categorized into two parts to study the proposed techniques in breast and 

lung(s) phantom model, respectively. The first part of analyses was divided into another four 

sections in which each section was incorporated with FBTS. It includes edge preserving 

smoothing filter, edge preserving regularization, AS-ROI as well as a combined method of 

edge preserving smoothing filter, regularization and AS-ROI. Analyses were evaluated 

subjectively and numerically (MSE, RE and ED as a performance metric indicator) by means 

of comparison between the original object, reconstructed object by FBTS and the proposed 

techniques. Analyses were then resumed in the second part to test the consistency of the 

proposed techniques with lung(s) phantom model.  

In the first section of analyses from part one, anisotropic diffusion contributed the 

highest accuracy improvement of 13.13% in the reconstructed object of permittivity profile. 
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High accuracy of anisotropic diffusion is due to the smoothing effect which only significant 

on homogenous areas nonetheless insignificant on the detected edges. The smoothing degree 

imposed on pixel is evaluated pixelwise based on the occurrence of edges. Therefore, it is 

efficient in eliminating artifacts without removing essential structures of an image. 

Nevertheless, all tested filters (median filter family) have elevated the accuracy level of at 

least 1.6% with respect to FBTS. The application of anisotropic diffusion towards 

conductivity however, have worsen the reconstructed object compared to the other tested 

filters that increased the MSE level about 106.58% due to improper parameter settings. 

Adaptive weighted median filter showed the highest accuracy of the filtered conductivity 

with 5.41% enhancement and second highest for relative permittivity with increment of 

3.64%. High performance of the adaptive weighted median filter may due to its capability 

in identifying corrupted pixels prior filtering process. Only selected pixels are smoothed and 

important structures can be preserved without being eliminated.  

The second section of analyses was to test various potential functions of edge 

preserving regularization to eliminate artifacts in the reconstructed object. Geman & 

McClure potential function exhibited the highest accuracy with MSE level at 2.33 of relative 

permittivity and 3.63×10-3 of conductivity profile in 51 iterations to reconstruct the phantom 

model. Therefore, it was chosen to be generalized for later analyses. Ideal threshold 

parameter for relative permittivity was found at 1.25 and regularization coefficient attained 

the optimal result at 5.0×10-10. Regularization coefficient which higher than 5.0×10-10 are 

too high that disrupt the FBTS solution, hence resulting higher MSE. Meanwhile coefficient 

which lower than 5.0×10-10 provide insignificant regularization effect toward the FBTS, 

which also resulting higher MSE values. As for the starting iteration number to initiate the 
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regularization, it was found that ideal result was obtained under initiation at 20th iteration of 

the inversion technique out of 100 iterations in total.  

The third section emphasize on the implementation effect of AS-ROI towards the 

inversion technique with relative permittivity utilized as a prior information. Analyses were 

carried out to detect geometrical position and size of the detected object in a circular and U-

shaped pattern. As mentioned earlier, the resolution level in the rescaled reconstruction 

region was maintained as its original resolution. It was found that rescaling initiated at 30th 

iteration contribute the optimal accuracy level for image reconstruction with 100 iterations 

as a stopping criterion. Position placements were detected correctly for all simulations 

regardless of its shapes. Average RE of radius estimation for circular shape of varied sizes 

at offset distance (0,0) and (10,10) were 55.32% and 68.66%, respectively. Average RE of 

radius estimation for a U-shape pattern at fixed size and varied offset was only 4.17%. 

Intensity values for relative permittivity was significantly improved which reached an 

average enhancement of 10.33% and conductivity profile only elevated about 3.07% in 

average. The finding is comparable to the implementation of edge preserving smoothing 

filter towards the reconstructed image in which the filtering effect is less pronounced for 

conductivity images than relative permittivity. As discussed in Section 4.1, reconstructed 

conductivity profiles are less accurate than relative permittivity, which similar to findings in 

[54]. This could be the major cause of trivial effect of filtering and AS-ROI towards 

conductivity images.  

The last section in the first part was to analyse the combined method of AS-ROI and 

edge preserving in FBTS. Empirical results showed that regularization should be initiated 

20 iterations after the new reconstruction region was defined. Improvement in accuracy was 

indicated by relative change of MSE in negative number, in which the lower relative change 
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signifies better result. The regularized AS-ROI in FBTS attained -0.19 in average of relative 

change. The non-regularized AS-ROI in FBTS only reached a relative change of -0.11 in 

average. In related to computational time analyses, the rescaling process by AS-ROI in FBTS 

had reduce the computational time about 13.06%. Implementation of regularization into AS-

ROI in FBTS however, increased the computational time about 5.87%. 

In the first section of the second part, three lung(s) phantom models with difference 

object sizes and profiles contrast were analysed with an inversion technique FBTS. Model#1 

had the highest contrast profiles compared to the other two tested models consisting of 8087 

image pixels. Contrast difference was computed by relative change between layer 1 (lung(s)) 

and layer 2 (mediastinum or tumour) with layer 2 as a reference. Accuracy indicated by MSE 

for Model#1 were 172.05 for relative permittivity (71.49% contrast difference) and 0.19 for 

conductivity profile (73.3% contrast difference). Model#2 which constitutes of 9135 pixels 

attained the accuracy level of 6.92 and 2.34×10-2 for relative permittivity (70.9% contrast 

difference) and conductivity (72.28% contrast difference), respectively. Model#3 had the 

same dimension as Model#2 exhibited even better accuracy at 1.15 for relative permittivity 

(52.38% contrast difference) and 1.75×10-3 for conductivity (44.57% contrast difference). 

Condition for the minimal distance between antenna and object has been violated for all 

three lung(s) phantom models that has been tested. It is due to reactive coupling effect is not 

observable for the synthetic analysis.  

In the second section of part two, object (single tumour) with radius of 8mm was 

localized by using combined method of AS-ROI and FBTS in which the accuracy in 

localization was indicated by ED calculated between the original and the reconstructed 

object placements. Average distance for the embedded tumour in Model#2 at five coordinate 

placement settings was 3.91. Object in Model#3 had an average distance of 0.68 with respect 
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to its actual coordinate. Average error of radius estimation for the embedded tumour in 

Model#2 and Model#3 were 2.0 and 0.63, respectively.  

Multi objects (two tumours) of similar radius 8mm separated in 35.36 ED embedded 

in lung phantom Model#3 were analysed by FBTS, AS-ROI in FBTS along with the 

regularized AS-ROI in FBTS. The results showed substantial improvements in the 

regularized AS-ROI in FBTS which subjectively evaluated from top and side cross-sectional 

views. It was numerically proven by MSE in which the accuracy by FBTS was 5.23, AS-

ROI in FBTS attained 3.91 and the regularized AS-ROI in FBTS reached the lowest level at 

3.1. Improvement in the accuracy level provided by AS-ROI in FBTS was 25.17% and the 

regularized AS-ROI in FBTS successfully increased to 40.68%. 
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CHAPTER 5  

SUMMARY, CONCLUSIONS & RECOMMENDATIONS 

 

The aim of this research work is to reconstruct an unknown object within its detected 

peripheral region in high accuracy with similar resolution degree throughout the 

reconstruction process. Essentially it is accomplished by combining a deterministic 

inversion technique of Forward-Backward Time-Stepping (FBTS) with an Automated 

Scaling Region of Interest (AS-ROI) and edge preserving techniques. Main motivation of 

this research work is the nonlinearity problem of the FBTS in which volatile to changes or 

error in the solution. In addition to that, the research is also inspired by the computational 

cost which particularly expensive on condition that FBTS is combined with additional tools 

to mitigate the nonlinearity problem. This chapter shall conclude all findings from this 

research work accordingly to the prespecified objectives in achieving the research aim. 

Suggestions based on limitations of this research work are also discussed for future works.  

 

5.1 Conclusions 

In order to achieve the research aim, the first objective is to formulate a method which 

can zoom into object’s region for reconstruction providing that geometrical of the object has 

been estimated from FBTS algorithm. This method namely as AS-ROI is functional to 

rescale the reconstruction region in order to reduce the nonlinearity problem and compensate 

the computational cost. Conclusion for the first objective can be drawn from analyses from 

Section 4.4 up to 4.7.2. AS-ROI relied on correct estimation of reconstructed profiles for 

segmentation purpose. Therefore, the initiation of AS-ROI should be carried out at certain 

iteration number at which the reconstruction profiles have sufficient details on the sought 
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object. Optimal iteration number is found at 30th iteration from 100 iterations of convergence 

criterion. It is based on observations on MSE values and cost functional graph of various 

iteration number to instigate the AS-ROI, which can be referred in Section 4.4. Apart from 

that, the segmentation process in AS-ROI only utilizes relative permittivity due to its 

accuracy is higher than conductivity images.  

Accuracy in object localization by AS-ROI in Section 4.4 is 100% for all tested objects 

in two type of shapes (circular and U-shaped object), in various sizes and at various 

locations. However, there is large difference in size estimation between circular and U-

shaped object. For the circular shape, the average relative error (RE) between actual and 

detected radius size is 55.32% for object which placed at centre coordinate and 68.66% for 

object with offset distance of (10,10) from the centre coordinate. Meanwhile the U-shape 

object only attains RE of 4.17% in size estimation. Noteworthy difference in size estimation 

for varied shapes by AS-ROI may due to the incorrect pixels’ values at the boundary of an 

object. Segmentation process in AS-ROI only relies on four pixels; uppermost, lowermost, 

rightmost and leftmost pixels. For a circular shape, only a few pixels are available in the 

respective directions. On condition that these pixels of a circular shape are incorrectly 

estimated during reconstruction, rationally it will be misclassified to incorrect cluster layer. 

Internal pixels of object could be misinterpreted as the background layer. Consequently, it 

lowers the accuracy of size estimation for a circular shape object. As for the U-shaped object 

analysed in this research, each side constituted of 33 connected pixels. Therefore, it lowers 

down the error in approximating the size supposing that several pixels in each side are 

incorrectly estimated.   

In terms of mitigating the nonlinearity problem in FBTS, the rescaling process by AS-

ROI has exhibited higher accuracy in the profiles’ intensities than the FBTS. It can be 
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observed in the reduction of MSE values for both relative permittivity and conductivity 

profile as well as based on subjective evaluations on the reconstructed images. It is due to 

better fields penetration as exterior pixels are replaced with background layer which are low 

in its intensities. The findings on the implementation of AS-ROI have shown great 

agreement with IMSA [11, 44–46]. The reduction in the number of pixels for reconstruction 

has successfully increase the precision level of pixels’ intensity. However, rescaling in 

multiple stages by IMSA in FBTS has increased the cost functional and total reconstruction 

error at the third stage of rescaling process [11]. The increment in cost functional and total 

reconstruction error in [11] indicates that changing the investigation area multiple times has 

disrupts the solution of the FBTS. AS-ROI on the other hand has exhibited consistency in 

improving the accuracy of image profiles in all analyses, which can be referred from Section 

4.4 up to Section 4.7.2.  

It has been mentioned earlier that the research is also inspired by high computational 

cost which resulting from combining FBTS with additional tools to alleviate the effect of 

nonlinearity. Comparison of computational time taken by FBTS, rescaled FBTS by AS-ROI 

and regularized of rescaled FBTS has been discussed in Section 4.5 and Section 4.7.2. As 

anticipated, the reduction of pixels to be reconstructed by AS-ROI has reduced the 

computational time significantly. In Section 4.5, the combined AS-ROI with FBTS only 

consumes 86.94% of average time required for the FBTS. Reduction in the computational 

time is equivalent to 13.06%. Meanwhile in Section 4.7.2, AS-ROI reduces the 

computational time about 28.74% with respect to the FBTS. The inclusion of edge 

preserving techniques into the combined AS-ROI with FBTS however has slightly increase 

the computational time. In Section 4.5, it is 5.87% more time consuming than FBTS. The 

same outcome also can be seen in Section 4.7.2, in which shows 4.69% time increment in 
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comparison to the FBTS. The increment in the computational time is due to more parameters 

and processes imposed towards the rescaled reconstruction area. Nevertheless, the combined 

method of FBTS, AS-ROI and edge preserving techniques compensates the computational 

cost for image reconstruction for achieving higher accuracy of image profiles.  

The second objective of this research is to evaluate the combined algorithm of the 

FBTS, AS-ROI and edge preserving techniques in minimizing relative change of mean 

squared error (MSE) between dielectric properties in actual and reconstructed object. From 

discussion in Section 4.3, edge preserving regularization does not necessarily imposed on all 

profiles available. In contrast to common practise as applied in [13, 18, 29, 50], edge 

preserving regularization in this research work is only applied towards relative permittivity. 

It is proven that unregularized conductivity would not affect the regularized relative 

permittivity in its precision level. Plus, it would reduce the complexity in determine 

regularization parameter settings.  

Edge preserving filter and regularization method are alternately applied into a 

combined method of FBTS and AS-ROI to elevate the precision of the reconstructed object. 

In Section 4.5, analyses were carried out on phantom model which based on breast dielectric 

profiles. Accuracy of the reconstructed dielectric profiles is further increased with the 

implementation of edge preserving techniques. The increment in accuracy is shown in the 

decrement of relative change. From results in Section 4.5, the average of relative change by 

AS-ROI in relative to FBTS is -0.1. The edge preserving techniques contribute even lower 

average value of relative change, which is at -0.19. The improvement is consistent to findings 

of lung phantom model presented in Section 4.7.2. The decrement in relative change by AS-

ROI is -0.25 in comparison to edge preserving technique in the combined AS-ROI with 

FBTS has attained relative change of -0.41.   
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Meanwhile the third objective is to validate the consistency of the combined algorithm 

of the FBTS, AS-ROI and edge preserving techniques in improving the accuracy of 

reconstructed object with respect to the actual in lung(s) model. Results in Section 4.7.1 

(lung phantom model) is analogous to findings discussed in Section 4.4 (breast phantom 

model). AS-ROI successfully extracts the tumour from the background layer, in which the 

initial lung(s) area is rescaled down to tumour’s size and location.  Localization of tumour 

in lung phantom model in 4.7.1 and 4.7.2 is slightly inaccurate in comparison to object 

localization in Section 4.4, which due to difference in precision level of the reconstructed 

lung and breast phantom model by FBTS.  

Object in Model#3 discussed in Section 4.7.1 is better localized in which average 

Euclidean distance (ED) of Model#3 is considerably lower than Model#2. Average error of 

radius estimation for Model#3 also significantly lower than Model#2 as the efficiency of 

AS-ROI relies on correct estimation by FBTS. Due to high accuracy of Model#3, it is utilized 

to be tested with regularized AS-ROI and FBTS in Section 4.7.2. Results in cross-sectional 

top and side views showed that artifacts which appear as ring objects in the results obtained 

by FBTS and the combined AS-ROI with FBTS were successfully eliminated by the 

alternate integration of edge preserving smoothing filter and regularization into the 

combined AS-ROI and FBTS. The regularized AS-ROI with FBTS attained the highest 

accuracy level in pixel intensities (40.68% increment in relative to FBTS) compared to the 

combined AS-ROI and FBTS (25.17% increment with respect to FBTS). The decrement of 

MSE values in lung phantom model by AS-ROI and regularized AS-ROI in FBTS are 

comparable to findings obtained in analyses from Section 4.5.  

It can be concluded that all three prespecified objectives for this research work have 

been successfully realized. The formulated AS-ROI effectively pointing out object’s 
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geometry in ROI. Nonlinearity problem assessed by profiles’ precision level and 

computational cost are significantly reduced with rescaling process by AS-ROI. Each 

method of edge preserving smoothing filter, edge preserving smoothing regularization and 

AS-ROI has been proven can elevate the precision of profiles intensity reconstructed by the 

FBTS. The combined method of the three mentioned techniques in FBTS showed even better 

outcomes which lowering the relative change of MSE. Additionally, the combined method 

of FBTS, AS-ROI and edge preserving techniques have shown consistency in results for 

both breast and lung(s) model.  

 

5.2 Recommendations for future works 

FBTS is a deterministic inversion technique which needs proper estimation of initial 

guess to guide the solution. An effective and reliable inversion technique to detect an 

unknown embedded object should be equipped with a solution that capable to solve the 

inverse problem globally rather than locally converge. This would eliminate the needs of 

proper initial guess which supposedly unavailable and unknown. Therefore, it is highly 

recommended that the deterministic inversion technique FBTS should be integrated with any 

stochastic solution for example Particle Swarm Optimization (PSO) and Differential 

Evolution (DE), particularly in its early iterations.     

The results shown high dependency of AS-ROI technique upon the efficacy of FBTS 

in estimating the reconstructed object profiles to point out object location correctly. Similar 

to the recommendation in regards to implement stochastic optimization into the FBTS 

inversion solution for future work, AS-ROI too should be integrated with stochastic search 

approach in its segmentation algorithm. Inaccurate patterns could be adjusted since global 

solution is robust to outliers that can risk the selection of cluster centroids in segmenting 
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profiles layers. This can reduce the dependency on the inversion technique as a prior 

knowledge and thus AS-ROI can be initiated at any iteration number of FBTS.  

Limitation of AS-ROI is delimiting the reconstruction area to object’s size with the 

exterior pixels are replaced with free space profiles values. This is analogous to the concept 

of Iterative Multi Scaling Approach (IMSA) as discussed in Chapter 2. However, this 

approach may contradict to real life imaging scenario in which the bombarded signals still 

have to penetrate the exterior layers or substances that encircled the sought object to search. 

This issue can be tackled in future work by adapting the concept of Discrete Algebraic 

Reconstruction Technique (DART) in which the exterior pixels can be regulated with 

threshold values [116].  

Present research work only concerning the implementation of the proposed works in 

noise-free environment which merely focusing on tackling intrinsic issues of inverse 

problem. All parameters involved in the research works were determined by empirical 

analyses which is a formidable task to obtain optimal values.  Based on review of related 

literatures in denoising purpose, most effective techniques require the algorithm being 

adaptive to local features or noise sensitivity level. It is anticipated that the algorithm of 

regularized AS-ROI in FBTS can be upgraded in future works that its optimal parameters 

can be automatically determined from noiseless and noisy spatial information.  

Accuracy in distinguish contaminated pixels in an image or signal can provide 

substantial improvement in the denoising process. Corrupted pixels have to be identified 

prior smoothing, regularization as well as segmentation in order for these processes only 

implemented towards the selected noisy area. Thus, not only it would alleviate the 

computational process nevertheless this technique able to avoid missing information 

particularly at the edges. Successful in determining these corrupted pixels would make the 
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overall system robust to ill-posed and nonlinearity of inverse problem as well as against the 

added noise in effort to preserve important features during denoising.  

Edge detection plays vital role in image filtering and regularization to ensure image 

structures are retained in eliminating noise or artifacts. It would be ideal analyses on 

condition that several edge operators are employed and tested against varied conditions. It is 

also intriguing to know the effect of introducing non-local features from neighbourhood 

patches as a priori knowledge into the combined method of edge preserving filter and 

regularization. The concept which taken from Non-Local Means filtering has been adapted 

in many research studies that exhibited promising outcomes.  

Accuracy of the reconstructed profiles in this research is only validated by using MSE 

index which taking an average of squared error for the whole profile image. It is 

recommended to compute the accuracy at the vicinity to improve the reliability of precision 

evaluation particularly in edge detection analyses. Other image quality metrics should also 

be considered in future works which not only able to assess the accuracy in terms of image 

pixels nevertheless the quality in image structure as well.  

Time-effective is among efficiency measure of an inversion system. Parallel 

computing is often suggested to reduce significant amount of time and memory efficiently 

in computational process. However, it is even better to revise the whole optimization 

algorithm of regularized AS-ROI into fast algorithm. Incorporating parallel with fast 

algorithm of regularized AS-ROI surely will elevates the time efficiency in achieving 

convergence criterion. Integrate a stochastic search optimization into both FBTS and AS-

ROI is also one factor that can improve computational cost as the solution is searched in 

several points in single iteration. On top of that, stochastic implementation would reduce the 

probability of facing false solution in inversion technique as well as in segmentation.  
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