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ABSTRACT 

Semiconductor process is one of the most complex processes in the manufacturing 

industries.  In order to meet the high demands of semiconductor components, cycle time 

reduction in semiconductor manufacturing is crucial. One of the factors that can increase 

cycle time is the equipment preventive maintenance activity.  Preventive maintenance 

activity is crucial to maintain or increase the operational efficiency and reliability of the 

equipment and minimises unanticipated failures due to faulty parts.  Despite its criticality, 

preventive maintenance activity requires significantly long hours, thereby increasing cycle 

time.  Therefore, this activity is usually performed when the equipment group is forecasted 

to have low incoming Work-in-Progress.  However, current statistical forecasting approach 

has low accuracy because it lacks the ability to capture the time-dependent behaviour of 

the Work-in-Progress. In this work, we present an approach to Work-in-Progress arrival 

forecasting by using LSTM neural network.  The LSTM forecasting model is trained using 

the historical incoming Work-in-Progress of an equipment group.  The LSTM forecasting 

model is then required to forecast the incoming Work-in-Progress of three consecutive 

weeks to the same equipment group.  The results of this study are compared with the 

results of the statistical method practised by the manufacturing production control 

engineers in the sponsoring company of this research.  The comparison showed that the 

result proposed in this study is superior to the statistical method in the sponsoring 

company.  The proposed model achieved value accuracy of 100%, 100%, 85.7% and trend 

accuracy of 66.7%, 100%, 50%, with respect to the three consecutive weeks of 

comparison. 

Keyword:  Semiconductor, cycle time, preventive maintenance activity, Work-In-

Progress, forecasting, statistical method, LSTM 
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Peramalan Ketibaan Kerja-dalam-Kemajuan di FAB Semikonduktor dengan 

Menggunakan Pembelajaran Mesin 

ABSTRAK 

Proses semikonduktor adalah salah satu proses yang paling kompleks dalam industri 

pembuatan.  Untuk memenuhi permintaan komponen semikonduktor yang tinggi, 

pengurangan kitaran masa (CT) dalam pembuatan semikonduktor adalah penting. Salah 

satu faktor yang boleh meningkatkan CT ialah aktiviti penyelenggaran pencegahan (PM).  

Aktiviti PM adalah penting untuk mengekalkan atau meningkatkan kecekapan operasi, 

kebolehpercayaan peralatan, dan meminimumkan kegagalan peralatan yang tidak 

dijangkakan.  Aktiviti PM boleh meningkatkan CT sebab ia memerlukan masa yang 

panjang.  Oleh itu, aktiviti PM biasanya dilaksanakan apabila ketibaan Kerja-Dalam-

Proses (WIP) ke kumpulan peralatan diramalkan rendah.  Tetapi, cara ramalan statistik 

semasa kurang tepat sebab ia tidak dapat memfaktorkan hubungan WIP terhadap masa. 

Dalam penyelidikan ini, satu cara peramalan ketibaan WIP menggunakan rangkaian saraf 

LSTM adalah dipersembahkan.  Model peramalan LSTM dilatih menggunakan sejarah 

ketibaan WIP ke salah satu kumpulan peralatan.  Kemudian, ia diuji dengan meramalkan 

ketibaan WIP tiga minggu yang berturutan ke kumpulan peralatan tersebut.  Keputusan 

peramalan dibandingkan dengan keputusan peramalan kaedah syarikat penajaan 

penyelidikan ini.  Perbandingan ini menunjukkan kaedah yang dicadangkan adalah lebih 

unggul berbandingkan cara syarikat penaja.  Kaedah yang dicadangkan mencapai 

ketepatan nilai 100%, 100%, 85% dan ketepatan trend 66.7%, 100%, 50% untuk ketiga-

tiga minggu perbandingan yang berkenaan. 

Kata-kunci: Semikonduktor, kitaran masa, aktiviti penyelenggaran pencegahan, Kerja-

Dalam-Kemajuan, peramalan, cara statistik, LSTM 
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CHAPTER 1 
 

INTRODUCTION 

 
 

The semiconductor process is one of the most complex processes in the 

manufacturing industries with unique characteristics such as extremely long manufacturing 

process, complex series of hundreds of sequential processing steps, process steps 

dedication at designated tools, strict process window time frame, and dynamic product 

mix-run environment (Rozen & Byrne, 2016). These processes need to be completed 

almost flawlessly as defects in the manufactured items can bring about costly impacts in 

today’s world of technologies where electronic devices play vital roles in daily living. 

In general, semiconductor fabrication consists of seven major process steps.  These 

process steps are photolithography, etching, chemical mechanical planarization (CMP), 

oxidation, ion implantation and diffusion. Briefly described, photolithography process is 

the process to transfer the pattern from a photomask to the surface of a wafer.  By forming 

a layer of photoresist on the top of the wafer, the wafer is then sent to the etching process 

for the photoresist to be developed.  

An etching mask is applied in this process to define the parts to remain and remove. 

At the deposition process, various layers of different materials is deposited on the wafer as 

part of the fabrication process. CMP process is a process used to plane the wafer surface 

using chemical slurry. This process is necessary because processes such as etching and 

deposition modify the wafer surface, leading to a non-planar surface. Oxidation is a 

process to convert silicon on the wafer into silicon dioxide, which is a layer to be used as 

masks for ion implantation process.  

Ion implantation and diffusion process are used to introduce a controlled amount of 

impurities into the wafers to change their electrical properties. Ion implantation introduce 
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the dopant impurities into the crystalline silicon using electric fields and the diffusion 

process then moves the impurity atoms in the wafer at high temperatures. These steps are 

repeated until the required design is completed. The sequence of steps for the wafer to 

move through is defined by manufacturing execution system (MES). The defined steps are 

commonly called a process flow.   Figure 1.1 further illustrates a non-exhaustive example 

of process flow of semiconductor fabrication process (Quirk & Serda, 2001).  

 

 
Figure 1.1: Example of semiconductor fabrication process flow 

 
 

One of the main goals of semiconductor manufacturing plant, or commonly known 

as fab, is to reduce cycle time (CT) because reduced CT results in lower inventory costs, 

improved quality, and better response to demand changes and shorter time-to-market for 

new products (Rozen & Byrne, 2016). In the context of semiconductor manufacturing, CT 

is the total time it takes for a lot, which is a batch of wafers stored in a single cassette pod 

serve as the transportation means for the wafers production line, to be processed, plus the 

total time spent on waiting. Lots that are waiting to be processed in the production line are 
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commonly referred to as Work-in-Progress (WIP) in the manufacturing industries. The 

measurement unit for CT is Days per Mask Layer, (DPML), which is the number of days 

committed to process one photolithography layer. 

One of the factors that can contribute to long waiting time, thereby increasing CT, 

is the equipment preventive maintenance activity. Preventive Maintenance (PM) is an 

activity that takes the entire machine off-line, or partially off-line, to carry out prescribed 

maintenance activity for maintaining or increasing the operational efficiency and reliability 

of the tool and minimizing unanticipated failures due to faulty parts (Ramirez-Hernandez 

et al., 2010).  An unhealthy machine can cause various defects and chemical 

contaminations on the wafers. An affected wafer may need a rework by re-entering a 

sequence of chemical process steps to remove and fabricate the affected layers.  Major 

defects or contamination could lead to scrapped wafer. Both of these activities incur losses 

to the company in both time and revenue. Most importantly, it affects the trust of the 

customers for potential future businesses.   

In a fab environment, a set of machines is usually allocated for each process step to 

allow the lots to flow through in shorter time.  The set of machines that perform the same 

wafer fabrication process step are commonly grouped logically and termed as equipment 

group. Figure 1.2 illustrates the logical grouping of six machines into an equipment group 

called Group A.  

 

  
 

Figure 1.2: A logical group of equipment into an equipment group 

Eqp 01 Eqp 02 Eqp 03 

Eqp 04 Eqp 05 Eqp 06 

Group A 
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Although PM activities are vital, PM downtime can be costly because it takes 

significantly long hours. As the complexity of the semiconductor manufacturing equipment 

increases, PM activities have also become more complex and would require longer time to 

complete.  If one of the machines is taken offline for PM activities, the equipment group 

will experience insufficient capacity to process the incoming WIP.  This will cause the 

production line to suffer WIP bottleneck that results in non-linear distribution of the WIP 

across the fab.  Non-linear WIP distribution across the fab is highly undesirable because it 

will cause operational losses to the equipment at subsequent process steps as they become 

frequently idle due to the lack of WIP to process.  In addition, WIP bottleneck also brings 

negative impact to the CT.  This is because the CT duration will increase as the total 

waiting time of the impacted lots increases. 

In the terminology of semiconductor manufacturing, the total wafers that each 

machine completed is called total moves of that machine, and the total wafers completed 

by the machines of an equipment group is called the total moves of that equipment group.  

Consider the example of logical group of six machines presented in  

Figure 1.2, the total moves of the six machines in equipment group A on a 

particular day is the total moves of equipment group A for that day.  The completed wafers 

from equipment group A are then moved to their designated process steps in the form of 

cassette pods.  With this wafer movement, the completed wafers from equipment group A 

become the WIP of the next equipment groups.  Figure 1.3 illustrates the typical relation of 

moves and WIP among equipment groups.  In Figure 1.3 , 
�, 
�, 
� and � represents four 

different equipment groups in a fab.  
�, 
� and 
� represents three equipment groups that 

have completed wafers designated to equipment group �. The wafers completed from 
�, 


� and 
� are the moves of 
�, 
� and 
�, respectively.  These completed wafers from 
�, 


� and 
� designated to be processed next at � will become the WIP of �.
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It is also possible that the completed wafers from � becomes the WIP of � again.   

 
 

Figure 1.3: Typical relation of moves and WIP among fab equipment groups 

 

 

In order to prevent long CT during PM activities is to perform the PM when the 

equipment group of the target machine is expected to have low incoming WIP.  Referring 

to Figure 1.3, if one of the machines in � is scheduled for PM activity, it is desirable that 

the expected WIP arriving at � to be low.  It is therefore essential to forecast the arrival of 

WIP to assist in PM activities planning for machines in �. 

In semiconductor manufacturing, the WIP arrival forecasting commonly done by 

manufacturing production control engineers.  A commonly to used approach to forecast the 

WIP arrival is through statistical aggregation based on the turn-around-time (TAT) of the 

wafers per operation step in the process flow.  This is accomplished by first determine the 

product of interest to forecast, followed by retrieving the complete process flow of the 

product.  For each of the process steps in the retrieved process flow, the TAT for an 

operation step is calculated, followed by calculating the rate of wafer flow in the 

MOVES 
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� 

 


� 

 

� 

 

MOVES 
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production. With both TAT and flow rate calculated, the CT for each operation step can be 

estimated.  If a forecast of lot arrival for the next 24 hours is required, the engineer will 

first sum up the CT of each operation step of a lot of the product until it reaches 24 hours, 

and from there, examine the sum of estimated wafer to arrive at the step of interest.    

 

1.1 Problem Statement 

 

Although statistical forecasting method is commonly used to forecast the WIP 

arrival to an equipment group, the current statistical forecasting method contains the 

following limitations. 

i. Statistical forecasting approach lacks the ability to capture the time-

dependent behavior of the WIP in the production lines.  This is because 

statistical approach assumed that an observed series of data is caused by 

random process and each occurrence is independent from each other.  

However, such assumption is not true for WIP behavior in the production 

lines which is time series in nature. 

ii. Statistical forecasting approach is product-specific.  Each product that is 

present in the production line needs to be modelled separately to create its 

forecasting model.  The reason for this specificity is because each product 

has its own process steps sequence, and the statistical forecasting model is 

dependent on these process steps to perform forecasting.  As a result of the 

separate modelling, statistical forecasting approach indirectly assumed that 

each product has dedicated resources such as manpower and equipment to 

cater to its production activity in the production environment.  This 

assumption is not true as both manpower and equipment are shared among 

all the products in the production environment. 
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iii. The assumptions of non-dependency in the time series data and non-

resource sharing production environment reduced the accuracy of statistical 

forecasting model.  The forecast results of most of the statistical forecasting 

models are not within the accuracies level where they are sufficient for 

critical decision making in the production environment, but can only serve 

as general guidelines or references. 

 

1.2 Motivation 

 

Recently, a new approach to arrival forecasting was introduced by using a type of 

recurrent neural network (RNN), called the Long-Short Term Memory (LSTM) neural 

network.  LSTM has been proven to achieve higher accuracy in traffic flow prediction over 

statistical approach by various research works (Vlahogianni et al., 2005; Lv et al., 2015; 

Ma et al., 2015; Tian & Pan, 2015; Duan, Lv, & Wang, 2016; Fu et al., 2016).  Besides 

traffic flow prediction, LSTM is also used in research such as log-driven information 

technology system failure prediction to discover long-range structure in historical data 

(Zhang et al., 2016), gesture recognition (Zhu et al., 2017), voice conversion (Lai et al., 

2016), and aircraft engines excess vibration events predictions (ElSaid et al., 2016).  

Motivated by the cited works, this research work aims to investigate the efficiency of 

LSTM in predicting the incoming WIP arrival for an equipment group of interest as a mean 

to assist in PM activities planning.  With high prediction accuracy, PM activities planning 

could be improved to avoid major obstacle to WIP movement in the production line and 

thus avoid negative impact to the CT of the fab. 

 

1.3 Research Objectives 

 

The main objective of this research is to develop an incoming WIP arrival 

forecasting model that can minimize occurrence of long CT due to PM activities and 


