
 
 

 
 

Smartphone-based GPS-integrated Location Prediction Model for        
OBD-II-Equipped Land Vehicle Localization  

 
 
 
 
 
 

Chai Nee Ping 
 
 
 
 
 
 
 
 

Doctor of Philosophy  
2018 

 
 
 
 
 
 
 
 
 
 
 
 
 
 Faculty of Engineering 



 

Smartphone-based GPS-integrated Location Prediction Model for               
OBD-II-Equipped Land Vehicle Localization 

 

 

 

 

 

 

Chai Nee Ping 
 

 

 

 

 

A thesis submitted  

In fulfillment of the requirements for the degree of Doctor of Philosophy  

(Electrical and Electronics Engineering)  

 

 

 

 

 

 

 
 

Faculty of Engineering 
UNIVERSITI MALAYSIA SARAWAK 

2018 



i 
 

DECLARATION 
 
 
 
 
I, Chai Nee Ping (11011557) from Faculty of Engineering UNIMAS hereby declare that 

the work entitled, Smartphone-based GPS-integrated Location Prediction Model for   

OBD-II-Equipped Land Vehicle Localization is my original work. I have not copied from 

any other students’ work or from any other sources except where due reference or 

acknowledgement is made explicitly in the text, nor has any part been written for me by 

another person. The thesis has not been previously accepted for any degree and is not 

concurrently submitted in candidature for any other degree. 

 

 

 
 

          
______________________                                          
Chai Nee Ping (11011557) 

Date:                        

 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 



ii 
 

ACKNOWLEDGEMENT 

 

First of all, I would like to dedicate thousands of thank to my supervisor, Assoc. 

Prof. Dr. Wan Azlan Bin Wan Zainal Abidin for his supervision, guidance, advices and 

encouragement throughout the progress of this research work. Dr. Wan has always been 

patient in giving motivation during the hard time of research and he is patient in discussing 

about the problems and the solutions for the research work. His efforts and contributions 

are highly appreciated.  

Furthermore, I would like to thank all the lecturers of the Faculty of Engineering, 

UNIMAS and all my colleagues in postgraduate room for their patient knowledge sharing, 

advices and guidance throughout the time of research work being carried on. They are 

always helpful and their help contributed towards the actualization of this thesis. 

Last but not least, a grateful appreciation is dedicated to my beloved family and 

dearest friends for their help and support. Their endless love, patience, understanding and 

encouragement never fail to motivate me to work harder in completing this research. Their 

mental support and financial support are significant along the completion of this thesis. 

 

 

 

 

 



iii 
 

ABSTRACT 

 

Vehicle localization is important to track the movement of a particular land vehicle 

especially company vehicle. Global Positioning System (GPS) is commonly utilized in 

current vehicle localization applications. However, GPS has the issues of                      

Non-Line-of-Sight (NLOS). Tremendous of research works had been carried out to remedy 

the shortcoming. Most of the research works deployed off-the-shelf Inertial Measurement 

Unit (IMU) to support GPS positioning when GPS signal lost. However, the IMU that can 

provide high accuracy positioning is usually expensive and the size is bulky. These make it 

not user-friendly and not applicable for civilian users. Thus, the objective of the study is to 

develop affordable smartphone-based GPS-integrated location prediction model for    

OBD-II-equipped vehicle localization to track the real-time location of vehicle. The focus 

of this study is the development of location prediction model which can perform 

integration of GPS data, OBD-II data and the vehicle’s heading direction to present the 

location of vehicle with high continuity and reasonable accuracy. To validate the findings, 

experimental works were carried out for 5 different scenarios, involving straight road, 

right-angle-turning, non-right-angle-turning, roundabout and U-turn. The results are 

presented in the graphical form to show its continuity and in the form of Root Mean Square 

Error (RMSE) to show its accuracy. The accuracy shows that the GPS-integrated location 

prediction model is within an accuracy range of 5.2 to 15.8 meters while the cost is 

affordable and the size is small. 

Keywords: Smartphone-based, GPS; OBD-II, Vehicle’s Heading Direction, Location 

Prediction Model 
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Penentuan Lokasi Kenderaan Darat yang Mempunyai OBD-II dan Berasaskan Telefon 
Pintar dengan Integrasi GPS dan Ramalan Algoritma 

 

ABSTRAK 

 

Penentuan lokasi kenderaan adalah penting untuk mengesan pergerakan kenderaan darat 

terutamanya kenderaan syarikat. Sistem Kedudukan Global (GPS) biasanya digunakan 

dalam aplikasi penentuan lokasi kenderaan semasa. Walau bagaimanapun, GPS 

mempunyai isu Bukan Dalam Garis Penglihatan (NLOS). Banyak kerja-kerja penyelidikan 

telah dilakukan untuk membetulkan kelemahan tersebut. Kebanyakan kerja-kerja 

penyelidikan menggunakan Unit Pengukuran Inersia (IMU) untuk menyokong penentuan 

kedudukan GPS apabila isyarat GPS hilang. Walau bagaimanapun, IMU yang boleh 

memberikan kedudukan dengan ketepatan yang tinggi biasanya mahal dan bersaiz besar. 

Ini menjadikannya tidak sesuai diguna oleh pengguna awam. Oleh itu, objektif kajian 

adalah untuk membangunkan model ramalan lokasi bersepadu dengan GPS berasaskan 

telefon pintar yang mampu dimiliki oleh pengguna awam untuk memantau lokasi 

kenderaan yang mempunyai OBD-II. Tumpuan kajian ini adalah pembentukan model 

ramalan lokasi yang boleh melakukan integrasi data GPS, data OBD-II dan arah 

pergerakan kenderaan untuk membentangkan lokasi kenderaan dengan kesinambungan 

yang tinggi dan ketepatan yang munasabah. Demi mengesahkan penemuan kerja ini, 

eksperimen dijalankan bagi 5 senario yang berbeza, melibatkan jalan lurus, putaran 

bersudut tegak, putaran bukan bersudut tegak, bulatan dan pusingan U. Hasilnya 

dibentangkan dalam bentuk graf untuk menunjukkan kesinambungannya dan dalam bentuk 

Kesilapan Punca Kuasa Min (RMSE) untuk menunjukkan ketepatannya. Ketepatan 



v 
 

menunjukkan bahawa model ramalan lokasi bersepadu dengan GPS adalah  berada dalam 

lingkungan 5.2 hingga 15.8 meter manakala kosnya berpatutan dan saiz adalah kecil. 

Kata kunci: Berasaskan telefon pintar, GPS, OBD-II, Arah Pergerakan Kenderaan, Model 

Ramalan Lokasi  



vi 
 

TABLE OF CONTENTS 

 

  Page 

DECLARATION  i 

ACKNOWLEDGEMENT  ii 

ABSTRACT  iii 

ABSTRAK  iv 

TABLE OF CONTENTS  vi 

LIST OF TABLES  x 

LIST OF FIGURES   xii 

LIST OF ABBREVIATIONS   xviii 

 

CHAPTER 1:   INTRODUCTION 1 

1.1 Background of the Study 1 

1.2 Research Problem Statement 3 

1.3 Aim and Objectives of the Study 6 

1.4 Research Novelty and Expected Outcomes 6 

1.5 Outline of Thesis 7 

    

CHAPTER 2:   LITERATURE REVIEW 9 

2.1 Overview 9 

2.2 Satellite-based Positioning 9 

 2.2.1 Global Navigation Satellite System (GNSS)  10 

 2.2.2 Regional Navigation System (RNS)  12 



vii 
 

 2.2.3 Satellite-based Augmentation System (SBAS) 15 

2.3 Network-based Positioning 16 

 2.3.1 Cellular Network (CN) 17 

 2.3.2 Wireless Local Area Network (WLAN) 21 

 2.3.3 Vehicular Ad Hoc Network (VaNet)  24 

2.4 Location Prediction 26 

 2.4.1 Dead Reckoning (DR) 27 

 2.4.2 Inertial Navigation System (INS) 27 

 2.4.3 Kalman Filter (KF) 29 

 2.4.4 Artificial Intelligence (AI)  36 

2.5 Previous Works  38 

 2.5.1 Non Real-Time Vehicle Positioning  39 

 2.5.2 Real-Time Vehicle Positioning/Monitoring  45 

 2.5.3 On-Board Diagnostic (OBD)-II 49 

 2.5.4 Antenna 53 

2.6 Performance Assessment 57 

 2.6.1 Root Mean Square Error (RMSE) 58 

 2.6.2 Circular Error Probability (CEP) 61 

 2.6.3 Horizontal Positioning Error (HPE) 63 

2.7 Chapter Summary 64 

    

CHAPTER 3:   METHODOLOGY 67 

3.1 Overview 67 

3.2 System Architecture 67 



viii 
 

3.3 Conceptual Framework 71 

 3.3.1 Data Retrieval and Manipulation 73 

 3.3.2 Prediction Algorithm 77 

 3.3.3 GPS-integrated Location Prediction Model 79 

3.4 System Evaluation and Validation 79 

 3.4.1 Data Collection 79 

 3.4.2 Data Analysis 81 

3.5 Chapter Summary 83 

    

CHAPTER 4:   RESULTS AND DISCUSSION 84 

4.1 Overview 84 

4.2 Validation of Functionality of Prediction Algorithm 84 

4.3 Validation of Functionality of Prediction Model 89 

4.4 Performance Assessment of GPS-Integrated Prediction Model 95 

 4.4.1 Scenario 1 97 

 4.4.2 Scenario 2 103 

 4.4.3 Scenario 3 108 

 4.4.4 Scenario 4 114 

 4.4.5 Scenario 5 119 

4.5 Comparison with Other Methods 125 

4.6 Chapter Summary 131 

    

CHAPTER 5:   CONCLUSION 133 

5.1 Research Summary  133 



ix 
 

5.2 Significant Findings and Research Contributions 135 

5.3 Future Research 135 

    

REFERENCES 137 

APPENDICES 152 

 

 

 

 

 

 

  



x 
 

LIST OF TABLES 

  Page  

Table 1.1 Horizontal Position Error of Different Grade of Accelerometer  4 

Table 1.2 Horizontal Position Error of Different Grade of Gyrometer  5 

Table 2.1 GNSS  10 

Table 2.2 RNS  12 

Table 2.3 SBAS  16 

Table 2.4 CN-based Positioning Approaches  18 

Table 2.5 VaNet Communication Technologies 24 

Table 2.6 Time Update and Measurement Update Equations 31 

Table 2.7 Summary of Position Errors for 100 s GPS Outages 41 

Table 2.8 Positioning Errors of KF/FOS and KF-only Methods during 120s 

Outages 

42 

Table 2.9 Example of OBD-II Command and its Description  50 

Table 2.10 Communication Protocols and Signaling Protocols of OBD II  50 

Table 2.11 Vehicle Connector Contact Allocation of OBD-II  51 

Table 3.1 Location Predictions and Parameters 69 

Table 3.2 ELM 327 Bluetooth Specifications 74 

Table 3.3 OPPO F1 Plus Specifications 75 

Table 3.4 Samsung Galaxy S2 Specifications 76 

Table 4.1 Performance of Prediction Algorithm 89 

Table 4.2 Performance of GPS-integrated Location Prediction Model 93 

Table 4.3 Comparison of RMSE in Scenario 1 102 

Table 4.4 Comparison of RMSE in Scenario 2 108 



xi 
 

Table 4.5 Comparison of RMSE in Scenario 3 113 

Table 4.6 Comparison of RMSE in Scenario 4 119 

Table 4.7 Comparison of RMSE in Scenario 5 125 

Table 4.8 Comparison of the RMSE of Formulas (Scenario 1) 127 

Table 4.9 Comparison of the RMSE of Formulas (Scenario 2) 128 

Table 4.10 Comparison of the RMSE of Formulas (Scenario 3) 129 

Table 4.11 Comparison of the RMSE of Formulas (Scenario 4) 130 

Table 4.12 Comparison of the RMSE of Formulas (Scenario 5) 131 

  



xii 
 

LIST OF FIGURES 

  Page  

Figure 2.1 QZSS Constellation  13 

Figure 2.2 QZSS Ground Track  13 

Figure 2.3 IRNSS Satellite Constellation  14 

Figure 2.4 SBAS Coverage Area  16 

Figure 2.5 CN-based Positioning Approaches  21 

Figure 2.6 Comparison of Performance by Kang & Han 27 

Figure 2.7 The Iteration Process of Kalman Filter 32 

Figure 2.8 RMSE in Horizontal Position for INS, LC and TC 32 

Figure 2.9 Loosely Coupled Position Aided Closed Loop Implementation of a 

GPS Aided INS System 

34 

Figure 2.10 Estimated and True Trajectory of a Typical Driving Sequence 34 

Figure 2.11 Contrast Diagram of Error of the Original GPS Data and INS 

Data, Error of GPS Data and Optimal Estimated Data  

35 

Figure 2.12 Architecture of RBFNN  37 

Figure 2.13 Architecture of IDNN  37 

Figure 2.14 INS/GPS System  39 

Figure 2.15 GPS Outages  40 

Figure 2.16 Position Error Distribution along GPS Outages  41 

Figure 2.17 Test Vehicle and Setup of the IMU Systems  43 

Figure 2.18 Result Trajectory (a) Result of WBNN (b) Result of KF  44 

Figure 2.19 Mean Positioning Errors in 10 Outage Segments  44 

Figure 2.20 Block Diagram Illustrating the Concept of System  46 



xiii 
 

Figure 2.21 Server System Interface Display  48 

Figure 2.22 The Interface of OBD-II Port  51 

Figure 2.23 Bluetooth OBD-II Scanner  52 

Figure 2.24 Data Flow of Data Acquisition  52 

Figure 2.25 Design of Electrically Small Three-Band Multi-polarization Cross 

Spiral Antenna  

55 

Figure 2.26 Proposed Antenna Structure (a) Overall View (b) Front View (c) 

Bottom View  

56 

Figure 2.27 Dimensions of Metal Pattern in Antenna Area  57 

Figure 2.28 Performance Assessment 58 

Figure 3.1 Methodology Flow Chart 68 

Figure 3.2 Proposed System Architecture 70 

Figure 3.3 Android Studio 71 

Figure 3.4 Conceptual Framework 72 

Figure 3.5 OBD-II Adaptor ELM 327 73 

Figure 3.6 OPPO F1 Plus 74 

Figure 3.7 Samsung Galaxy S2 75 

Figure 3.8 Honda City 76 

Figure 3.9 Distance between Two Locations 77 

Figure 3.10 Area of Data Collection (Kuching, Sarawak, Malaysia) 80 

Figure 3.11 Flow Chart to Obtain RMSE 82 

Figure 4.1 Prediction Algorithm Validation 1 85 

Figure 4.2 Prediction Algorithm Validation 2 86 

Figure 4.3 Prediction Algorithm Validation 3 86 



xiv 
 

Figure 4.4 Prediction Algorithm Validation 4 87 

Figure 4.5 Prediction Algorithm Validation 5 87 

Figure 4.6 Average and Standard Deviation of RMSE of Prediction 

Algorithm 

89 

Figure 4.7 Prediction Model Validation 1 90 

Figure 4.8 Prediction Model Validation 2 91 

Figure 4.9 Prediction Model Validation 3 91 

Figure 4.10 Prediction Model Validation 4 92 

Figure 4.11 Prediction Model Validation 5 92 

Figure 4.12 Standard Deviation of RMSE versus Number of Prediction 94 

Figure 4.13 Average and Standard Deviation of RMSE of Prediction Model 94 

Figure 4.14 Torque Installed in OPPO F1 Plus 95 

Figure 4.15 Data Logged via Torque (Lite) 96 

Figure 4.16 Icon and Name of Apps 96 

Figure 4.17 Interface of Apps 96 

Figure 4.18 Logged Compass Values with Date and Time 97 

Figure 4.19 First Test Trajectory Plotted on Google Map 98 

Figure 4.20 Comparison between Reference and Location Prediction (Scenario 

1 Set 1) 

99 

Figure 4.21 RMSE versus Time (Scenario 1 Set 1) 99 

Figure 4.22 Comparison between Reference and Location Prediction (Scenario 

1 Set 2) 

100 

Figure 4.23 RMSE versus Time (Scenario 1 Set 2) 100 

   



xv 
 

Figure 4.24 Comparison between Reference and Location Prediction (Scenario 

1 Set 3) 

101 

Figure 4.25 RMSE versus Time (Scenario 1 Set 3) 101 

Figure 4.26 Comparison of RMSE in Scenario 1 102 

Figure 4.27 Second Test Trajectory Plotted on Google Map 104 

Figure 4.28 Comparison between Reference and Location Prediction (Scenario 

2 Set 1) 

104 

Figure 4.29 RMSE versus Time (Scenario 2 Set 1) 105 

Figure 4.30 Comparison between Reference and Location Prediction (Scenario 

2 Set 2) 

105 

Figure 4.31 RMSE versus Time (Scenario 2 Set 2) 106 

Figure 4.32 Comparison between Reference and Location Prediction (Scenario 

2 Set 3) 

106 

Figure 4.33 RMSE versus Time (Scenario 2 Set 3) 107 

Figure 4.34 Comparison of RMSE in Scenario 2 107 

Figure 4.35 Third Test Trajectory Plotted on Google Map 109 

Figure 4.36 Comparison between Reference and Location Prediction (Scenario 

3 Set 1) 

110 

Figure 4.37 RMSE versus Time (Scenario 3 Set 1) 110 

Figure 4.38 Comparison between Reference and Location Prediction (Scenario 

3 Set 2) 

111 

Figure 4.39 RMSE versus Time (Scenario 3 Set 2) 111 

Figure 4.40 Comparison between Reference and Location Prediction (Scenario 

3 Set 3) 

112 



xvi 
 

Figure 4.41 RMSE versus Time (Scenario 3 Set 3) 112 

Figure 4.42 Comparison of RMSE in Scenario 3 113 

Figure 4.43 Forth Test Trajectory Plotted on Google Map 114 

Figure 4.44 Comparison between Reference and Location Prediction (Scenario 

4 Set 1) 

115 

Figure 4.45 RMSE versus Time (Scenario 4 Set 1) 115 

Figure 4.46 Comparison between Reference and Location Prediction (Scenario 

4 Set 2) 

116 

Figure 4.47 RMSE versus Time (Scenario 4 Set 2) 117 

Figure 4.48 Comparison between Reference and Location Prediction (Scenario 

4 Set 3) 

117 

Figure 4.49 RMSE versus Time (Scenario 4 Set 3) 118 

Figure 4.50 Comparison of RMSE in Scenario 4 118 

Figure 4.51 Fifth Test Trajectory Plotted on Google Map 120 

Figure 4.52 Comparison between Reference and Location Prediction (Scenario 

5 Set 1) 

121 

Figure 4.53 RMSE versus Time (Scenario 5 Set 1) 121 

Figure 4.54 Comparison between Reference and Location Prediction (Scenario 

5 Set 2) 

122 

Figure 4.55 RMSE versus Time (Scenario 5 Set 2) 122 

Figure 4.56 Comparison between Reference and Location Prediction (Scenario 

5 Set 3) 

123 

Figure 4.57 RMSE versus Time (Scenario 5 Set 3) 123 

Figure 4.58 Comparison of RMSE in Scenario 5 124 



xvii 
 

Figure 4.59 Comparison of the RMSE of Formulas (Scenario 1) 127 

Figure 4.60 Comparison of the RMSE of Formulas (Scenario 2) 128 

Figure 4.61 Comparison of the RMSE of Formulas (Scenario 3) 129 

Figure 4.62 Comparison of the RMSE of Formulas (Scenario 4) 130 

Figure 4.63 Comparison of the RMSE of Formulas (Scenario 5) 131 



xviii 
 

LIST OF ABBREVIATIONS 

 

4G Fourth Generation of GSM 

5G Fifth Generation of GSM 

ABAS Aircraft-based Augmentation System 

AI  Artificial Intelligence 

ANFIS Adaptive Neuro-Fuzzy Inference System 

AOA Angle of Arrival 

AP Access Point 

AR Auto Regression 

AR Axial Ratio 

ASFP  AI-based Segmented Forward Predictor 

ASFP AI-based Segmented Forward Predictor 

BDS BeiDou Navigation Satellite System 

BKF Backward Kalman Filtering 

BS Base Station 

CDKF Central Difference Kalman Filter 

CEP  Circular Error Probability 

CGI  Cell Global Identity 

CI Cell Identity 

CKF Cubature Kalman Filter 

CN Cellular Network 

CR Circular Polarization 

dB Decibel 



xix 
 

dBic Decibel (measurement unit for circular polarization) 

DF-CSA Dipole-Fed Cross Spiral Antenna 

DoD Department of Defense 

DOP Dilution of Precision 

DR Dead Reckoning 

DTC Diagnostic Trouble Code 

ECU Engine Control Unit 

EKF Extended Kalman Filter 

EOBD European On-Board Diagnostic systems 

ETCS Electronic Toll Collection System 

EU European Union 

FKF Forward Kalman Filtering 

FOG Fiber Optical Gyro 

FOS  Fast Orthogonal Search 

GBAS Ground-based Augmentation System 

GEO Geostationary Orbit 

GHz Giga Hertz 

GIS  Geographic Information System 

GLONASS Global Navigation Satellite System 

GM Gauss Markov 

GNSS Global Navigation Satellite System 

GPRS   General Packet Radio Service 

GPS  Global Positioning System 

GSM Global System for Mobile Communication 



xx 
 

GSO Geosynchronous Orbit 

HDCKF High Degree Cubature Kalman Filter 

HPE Horizontal Positioning Error 

IDNN Input-Delayed Neural Network 

IMM-EKF  Interactive Multi Model Extended Kalman Filter 

IMU Inertial Measurement Unit 

INS Inertial Navigation System 

IRNSS Indian Regional Navigation Satellite System 

ISO International Standardization Organization 

ITS  Intelligent Transportation System 

IVC Inter-Vehicle Communication 

kbps Kilobyte per second 

KF Kalman Filter 

km Kilometre 

km/h Kilometre per hour 

LAC  Local Area Code 

LMA  Levenberg-Marquardt Algorithm 

LMU  Location Measurement Unit 

LOS Line-of-Sight 

LP Linear Polarization 

m  Meter 

Mbps  Megabyte per second 

MCC Mobile Country Code 

MEMS Micro-Mechanical System 



xxi 
 

MHz Mega Hertz 

MNC  Mobile Network Code 

MS Mobile Station 

NLOS Non-Line-of-Sight 

NN Neural Network 

OBD-II On-board Diagnostics-II 

PDF  Probability Density Function 

PDR Pedestrian Dead Reckoning 

PF Particle Filter 

PID  Parameter Identification Number 

PIFA Planar Inverted-F Antenna 

PPS Precise Positioning Service 

QZSS Quasi Zenith Satellite System 

RBFNN Radial Basis Function Neural Network 

RFID  Radio Frequency Identification 

RHCP Right-hand Circular Polarization 

RMSE Root Mean Square Error 

RNS Regional Navigation System 

RSS Received Signal Strength 

RTSS  Rauch–Tung–Striebel Smoother 

RTW Real Time Workshop 

s Second 

SA Selective Availability 

SAE Society of Automotive Engineers 



xxii 
 

SAR Specific Absorption Rate 

SBAS Satellite-based Augmentation System 

SINS Strapdown Inertial Navigation System 

SM-EKF Single Model Extended Kalman Filter 

SPS Standard Positioning Service 

STCKF Strong Tracking Cubature Kalman Filter 

TA Timing Advance 

TDOA Time Difference of Arrival 

TFS Two-Filter Smoother 

TOA Time of Arrival 

UKF Unscented Kalman Filter 

US United States 

UTM   Universal Transverse Mercator 

V Speed/Velocity 

V2V Vehicle-to-Vehicle 

VaNet Vehicular Ad Hoc 

VUT Vehicle Under Test 

WAVE Wireless Access Vehicular Environment 

WBNN Wavelet-based Neural Network 

WLAN Wireless Local Area Network 

ZUPT Zero Velocity Update 

 



1 
 

CHAPTER 1 

INTRODUCTION 

1.1 Background of the Study 

Country development and population growth have increased mobility demand globally. 

Apart from smartphone, land vehicle is another significant representative of mobility 

which is highly demanded by civilians. The number of vehicles in the world is rising 

drastically from year to year. The average annual percentage change of the world car 

registration from 1960 to 2013 is 2.6% and the average annual increment is calculated as 

approximately 13 million [1]. The highest increment is hitting up to 25 million per annum. 

The significantly increasing number of land vehicles creates many challenges, such as 

safety, mobility and environmental issues. 

 Land vehicles include bicycle, motorcycle, car, van, bus, truck, lorry, and so on. In 

terms of safety issue, the company vehicle need to be kept track and monitored to ensure 

the driver is on the correct route/path and on time. In the existing vehicle monitoring 

system, Global Positioning System (GPS) is commonly used for the localization purpose. 

GPS is the well-known positioning approach with high accuracy global availability [2]. 

GPS technology is getting common and is extensively utilized due to its improvement in 

term of accuracy, price and size [3].  

The successfulness of GPS by the United States (US) motivated Russian Federation 

to develop Global Navigation Satellite System (GLONASS), Europe countries to develop 

Galileo and China to develop BeiDou Navigation Satellite System (BDS), which formerly 

was known as COMPASS. Regional Navigation System (RNS) is then introduced to 

improve the performance of existing Global Navigation Satellite System (GNSS) over 
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limited geographical area [4]. In addition, there are Satellite-based Augmentation System 

(SBAS), Ground-based Augmentation System (GBAS) and Aircraft-based Augmentation 

System (ABAS) that are developed to improve the performance of GNSS as well [5]. 

While the above-mentioned GNSS offers significant benefits, the technology has its 

errors which are contributed by different sources. The error sources include Selective 

Availability (SA), atmospheric effects, orbital errors, clock errors, multipath effects and 

noise issues as well as Dilution of Precision (DOP) [6]. The major drawback of GNSS is 

the Non-Line-of-Sight (NLOS) problem in buildings, tunnels, jungles or urban canyons. 

NLOS occurs when the satellite signal transmissions are totally blocked by obstacles [7-8]. 

GPS receiver cannot perform positioning under NLOS condition as no satellite signals can 

be received.  

Since GNSS has NLOS issue, investigation on other positioning technologies is 

necessitated to remedy the shortcomings to meet the goal of continuous positioning. The 

positioning technologies can be categorized into two major kinds, which are network-based 

positioning and location prediction [9].  

The network-based positioning performs with the signals of cellular network or 

Wireless Local Area Network (WLAN) by employing the techniques of Received Signal 

Strength (RSS), Angle of Arrival (AOA), Time of Arrival (TOA), and Time Difference of 

Arrival (TDOA) to compute the location of receiver [10]. The accuracy of these techniques 

ranges from 50 meter to 500 meter [2]. The relatively low accuracy results in lower 

application rate of this type of positioning. 

Another to be mentioned network-based positioning is Vehicular Ad Hoc Network 

(VaNet), which is also known as Inter-Vehicle Communications (IVC) or                



3 
 

Vehicle-to-Vehicle (V2V) [11]. There is a range of communication technologies that can 

be incorporated in VANet, such as WiFi, WiMax, WAVE, cellular, Bluetooth and RFID. 

These communication technologies have different performance in terms of range and data 

rate. This technology is not commonly implemented due to the widespread adoption is 

needed while the privacy and security issue is a concern to public. 

The integration of GPS and Inertial Navigation System (INS) is not a new 

phenomenon. GPS/INS has been used in the last decade in wide span of applications     

[12-22]. The integration is typically carried out through Kalman Filter (KF) [23-31], which 

has been proven to be the benchmark and the best solution of integration. KF has been 

highly applied in GPS/INS schemes either loosely-coupled mode or tightly couple mode. 

However, the sensor errors and random errors might occur thus degrade the accuracy of 

this complementary system. 

 

1.2 Research Problem Statement 

The main topic discussed in this dissertation is about the integration of GPS and 

location prediction technique. Researchers have investigated this topic especially 

integration of GPS and INS [28-35], considering high-end and low-end inertial sensors. 

The high-end inertial sensors include navigation grade and tactical grade, which allow  

sub-metric position accuracy during GPS signal blockage. The high-end inertial sensors are 

more applicable to technical high accuracy application owing to their price and size. The 

price can be up to hundred thousand or 1 million dollars while the size is about                 

6-inch x 6-inch x 6-inch. The smaller size low-end inertial sensors include industrial grade 

and automotive grade, which provide relatively low positioning accuracy and affordable to 
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civilians. The low-cost sensors might range from $7 and above, up to few hundred dollars 

[36].  

The automotive grade is typically known as the lowest grade of inertial sensor. 

Previously, they are often sold as individual accelerometers or gyroscopes. Currently, they 

are mostly combined to form a self-contained Inertial Measurement Unit (IMU) unit. This 

grade of inertial sensor is considered as insufficient to provide accurate positioning 

information even integrated with other navigation systems such as GPS. A reasonable 

calibration after installation can upgrade it to industrial grade but its accuracy still far apart 

from tactical and navigation grade.  

The accelerometer bias error and gyro angle random walk cause the horizontal 

position error from millimeter up to several thousand kilometers. Based on Table 1.1 and 

Table 1.2, it can be observed that accelerometer is much more sensitive and create 

significant change in horizontal position error as the time is extended. The horizontal 

position error causes by industrial and automotive grade sensors within one hour is very 

high if compared to navigation and tactical sensors. 

Table 1.1: Horizontal Position Error of Different Grade of Accelerometer [36] 

 Accelerometer Bias 
Error 

Horizontal Position Error [m] 

Grade [mg] 1 s 10 s 60 s 1 hr 
Navigation 0.025 0.13 mm 12 mm 0.44 m 1.6 km 
Tactical 0.3 1.5 mm 150 mm 5.3 m 19 km 
Industrial 3 15 mm 1.5 m 53 m 190 km 
Automotive 125 620 mm 60 m 2.2 km 7900 km 
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Table 1.2: Horizontal Position Error of Different Grade of Gyrometer [36] 

 Gyro Angle Random 
Walk (ARW) 

Horizontal Position Error [m] 

Grade [deg/hr] 1 s 10 s 60 s 1 hr 
Navigation 0.002 0.01 mm 0.1 mm 1.3 mm 620 m 
Tactical 0.07 0.1 mm 3.2 mm 46 m 22 km 
Industrial 3 10 mm 0.23 m 3.3 m 1500 km 
Automotive 5 20 mm 0.45 m 6.6 m 3100 km 
  

In the past few years, tremendous research works about integration of GNSS with 

low cost inertial sensor are carried out, especially the focus on GPS/INS integration with 

the aid of Kalman Filter (KF) [30-34]. Apart from Extended Kalman Filter (EKF) and 

Unscented Kalman Filter (UKF), the techniques involved in research include artificial 

intelligence, both the fuzzy and neural network (NN) [37-41]. However, most of the 

research works are limited to simulations (C/C++, Matlab, Simulink) and do not implement 

to the real-life applications [38-41]. Moreover, they are not practical to be used in real-life 

due to the size of the inertial sensors in the investigated work are normally bulky [32, 42]. 

Some works do not present the exact accuracy improvement in the conclusion [33, 43-44]. 

 Another matter that is worth to be mentioned is the research in the         

smartphone-based dead reckoning which the researchers focus on the application on 

pedestrians [45-46] instead of vehicles. Both smartphone and vehicle are items with high 

mobility function and they are essential to be located in real-time. Therefore, the 

smartphone-based GPS-integrated location prediction model for OBD-II-equipped land 

vehicle localization should be investigated and developed to improve the convenience of 

civilian users.  
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1.3 Aim and Objectives of the Study 

To address the problems under investigation, the current

research work aims to study about the GPS-integrated location prediction technique. This 

can be achieved through the following objectives: 

i. To compile, categorize and evaluate current positioning techniques 

ii. To analyze and identify key parameters of location prediction algorithm 

iii. To formulate and validate location prediction algorithm   

iv. To propose and develop smartphone-based GPS-integrated location prediction 

model  

v. To define portability, applicability, continuity, accuracy and price of     

smartphone-based GPS-integrated location prediction model 

 

1.4 Research Novelty and Expected Outcomes 

The primary motivation of current research work is to develop a new                

GPS-integrated location prediction model. At the end of the research, the following 

outcomes are expected: 

i. Current positioning techniques are compiled, categorized and evaluated 

ii. Key parameters of location prediction algorithm are analyzed and identified 

iii. Location prediction algorithm is formulated and validated 

iv. Smartphone-based GPS-integrated location prediction model is proposed and 

developed 

v. Portability, applicability, continuity, accuracy and price of smartphone-based   

GPS-integrated location prediction model is defined 
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1.5 Outline of Thesis 

The thesis consists of five chapters and the structure is organized as following:  

Chapter 1: This chapter describes the background of the study and focuses on the research 

problem statement. Furthermore, it presents the aim and objectives of the study as well as 

research novelty and expected outcomes. 

Chapter 2: This chapter introduces the fundamentals of positioning technologies and 

provides a basic understanding of the research background. The satellite-based positioning, 

network-based positioning and location prediction techniques are also presented. The 

previous works about non-real-time and real-time vehicle positioning are discussed. The 

previous works about On Board Diagnostic-II (OBD-II) and antenna are also being studied. 

Moreover, the performance assessment methods for the positioning technologies are 

described. 

Chapter 3: This chapter presents the system architecture of integrating two different types 

of measurements, which are GPS and location prediction. The conceptual framework is 

illustrated, showing the data retrieval and manipulation, prediction algorithm and the   

GPS-integrated location prediction model. Apart from that, the system evaluation and 

validation methods are clarified by showing the way of data collection and data analysis. 

Chapter 4: This chapter addresses the validation of functionality of prediction algorithm 

and prediction model. The results of the new GPS-integrated location prediction model in 

five scenarios are presented and evaluated based on the discussed performance assessment 

method. Moreover, the comparison of this original work with other works is carried out 

and shown in this chapter. The analysis and discussion is also presented. 
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Chapter 5: This chapter provides conclusions of the research work and recommendations 

for future works. The significant finding and main contributions are highlighted. In 

addition, some suggestions for the future research are also given. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Overview 

This chapter introduces the fundamentals of positioning technologies and provides 

a basic understanding of the research background. The satellite-based positioning, 

network-based positioning and location prediction techniques are also presented. The 

previous works about non-real-time and real-time vehicle positioning are studied and 

discussed. The previous works about On Board Diagnostic-II (OBD-II) and antenna are 

also being studied.  Moreover, the performance assessment methods for the positioning 

technologies are described. 

 

2.2 Satellite-based Positioning 

Satellite-based positioning is a technology that can provide the location and 

position of a device with the computation of information provided by the satellites which 

are readily installed in the space. The main and major satellite-based system is Global 

Navigation Satellite System (GNSS).  

The later emerging systems include Regional Navigation System (RNS) and 

Satellite-based Augmentation System (SBAS). These two systems are present to provide 

aid to GNSS at certain region or country, which is not globally. 
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2.2.1 Global Navigation Satellite System (GNSS) 

GNSS is a navigation satellite system which can provide location information with 

global coverage. Satellite receiver can identify its location through mathematical 

calculations involving the orbit and time information from a number of satellites of GNSS.  

Table 2.1: GNSS [47-52] 

Country GNSS Satellites 
United States GPS 32 
Russia GLONASS 25 
Europe Galileo 22 
China BDS 28 

 

The first GNSS in the world is GPS, which is developed by the United State (US) 

in early 1970 [50]. GPS was initially conceived by Department of Defense (DoD) to 

provide accurate navigation in military [51]. In the beginning of 1980s, US committed to 

make GPS available for civilian users and become the pioneer of civilian navigation [51].  

GPS provides Standard Positioning Service (SPS) to civilian users and Precise 

Positioning Service (PPS) to authorized users in the field of military [5]. Although civilian 

users can navigate with SPS, the implementation of Selective Availability (SA) degraded 

the GPS accuracy intentionally [52]. SA was ceased on May 1, 2000 and the SA removal 

has greatly improved the accuracy from 100 m to 10-20 m [47-49]. 

 Widespread adoption of GPS in civilian navigation has attracted attention of other 

countries and has raised their intention to develop own GNSS. Russia was triggered and 

becomes the second country that has own GNSS, namely GLONASS. GLONASS 

launched its first satellite in October 1982 and peaking at 24 satellites in 1995 [5].  
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However, GLONASS satellites constellation started to decay due to short design 

life. In 2008, there are only 13 operational satellites available [5]. Fortunately, 

reinvigoration of GLONASS constellation since 2001 [5] had recovered the capability of 

GLONASS navigation and its full-constellation operational was restarted in 2011 [49]. 

 Other than Russia, Europe countries and China realize the significance to have 

their own GNSS. Thus, European Galileo and China BDS are approaching to contribute to 

worldwide navigation.   

GPS has 31 operational satellites and 1 in maintenance while GLONASS has 24 

operational satellites and 1 in flight test phase. Galileo has 14 operational satellites, 2 under 

testing, 2 unavailable and 4 under commissioning whereas BDS has 15 in operation and 13 

not in operational orbital constellation. 

Apart from fulfilling large demand of civilian users on navigation and its potential 

commercial market, GLONASS, Galileo and BDS are developed to improve the accuracy 

of positioning system and reduce the dependency on GPS. Moreover, the integration of at 

least 2 GNSSs can improve the performance of navigation. For example, the combination 

of GPS and GLONASS is a solution to the issue of limited visible satellites. 

Interoperation of the GNSS systems makes more satellites available and visible to 

satellite receiver with additional signals selection function to increase accuracy, stability, 

reliability, and operation speed. A dual-channel reconfigurable GNSS receiver is required 

to be reconfigurable to support all possible GNSS signals and incorporate two independent 

channels to receive incoming signals simultaneously [53].  

With clear sky view, the accuracy of GNSS is promising. The only challenges of 

GNSS are NLOS of satellite signals and multipath effect. These challenges promote the 
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innovation of implementing the Regional Navigation System (RNS) and Satellite-based 

Augmentation System (SBAS). 

 

2.2.2 Regional Navigation System (RNS) 

Regional Navigation System is an additional satellite constellation to improve the 

performance of existing GNSS over limited geographical area. It helps to increase the 

visibility of satellites in the view of receiver by the installation of Geosynchronous Orbit 

(GSO) satellites or combination of Geostationary Orbit (GEO) and GSO satellites.  

Table 2.2: RNS [54] 

Country RNS No. of satellites 
Japan QZSS 3 
India IRNSS 7 

 

There are two major RNSs, which are Japan’s Quasi Zenith Satellite System (QZSS) 

and India’s Indian Regional Navigation Satellite System (IRNSS) [54]. As shown in Table 

2.2, QZSS will have 3 satellites while IRNSS will have 7 satellites. 

The 3 QZSS satellites are installed on 3 GEOs which are 45 degree inclined to the 

equatorial plane with altitude of 35786 km from the surface of the Earth [5]. QZSS GSOs 

are highly elliptical (Figure 2.1) and they are orbiting around the Earth with the same speed 

as the Earth orbits. The orbiting of 3 satellites on GSOs forms a special figure-eight-pattern 

ground track on the earth, as illustrated in Figure 2.2.  
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The asymmetric figure-eight-pattern ground track covered Japan with much smaller 

northern loop meanwhile Australia and New Guinea are widely covered by the larger 

southern loop. The ground track has a central line at 135º E in longitude [5].  

The QZSS is unique as at least 1 out of the 3 GSO satellites will be near the zenith 

over Japan all the time [55]. High elliptical characteristic of QZSS GSOs with high altitude 

makes the satellites to be further away from the Earth if compared to any other GNSS 

satellite constellations. These can raise the elevation angle of QZSS above 70º in Japan 

[56]. Larger elevation angle reduces the probability of NLOS occurrence and thus 

improves the availability of positioning system. 

  

Figure 2.1: QZSS Constellation [56] Figure 2.2: QZSS Ground Track [56] 

 

In contrast, IRNSS planned to combine the use of GEO and GSOs by installing 3 

satellites on GEO and 4 satellites on GSOs. GEO is a kind of GSO which orbits around the 

equator. Satellite on GEO supposes to be at the same point over the sky in the point of 

view of people on the Earth as they both orbits the identical center point with the equal 

speed and direction. 
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The GEO satellites are anticipated to be placed on 34ºE, 83ºE and 132ºE while the 

other four satellites are planned to be sited on GSOs which are inclined 29º to the 

equatorial plane [57]. The location of GEO satellites and ground tracks (figure-eight 

pattern) of GSO satellites are presented in Figure 2.3. 

The intended coverage area is bounded by red dot line in Figure 2.3 with the center 

point at 90º E on equator. IRNSS is expected to provide absolute position accuracy better 

than 20 m throughout India [58]. 

 

Figure 2.3: IRNSS Satellite Constellation [57] 

 

With the IRNSS satellite constellation, seven satellites are assured to be visible 

throughout India. Positioning performance can be significantly improved by combining 

IRNSS with existing fully operational GNSS (GPS and GLONASS) as the number of 

visible satellites is raised up to at least 26 [57]. The higher visibility improves the 

availability, accuracy and reliability of positioning. 
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2.2.3 Satellite-based Augmentation System (SBAS) 

The capabilities of GNSS are well known as it provides worldwide navigation 

service with adequate accuracy for the use of civilians. However, some shortfalls such as 

lack of civil international control and inadequate accuracy for aviation purpose prompted 

the need for GNSS performance enhancement [59].  

In spite of RNS, SBAS is a suitable approach to improve the performance of GNSS. 

The major difference between RNS and SBAS is that SBAS has satellite constellation on 

GEO only. SBAS installs GEO satellites on equator to provide differential corrections, 

integrity parameters and ionosphere data over a region spanned by a network of ground 

reference stations [59].  

Reference stations are strategically positioned to monitor and measure satellite 

signals to be backhauled to master stations for error and correction calculations [60]. The 

generated correction message is sent to GEO satellites by uplink stations. Lastly, GEO 

satellites broadcast the SBAS correction message on GPS frequency to improve the 

accuracy of GNSS positioning. 

The seven countries listed in Table 2.3 have put their initiative on developing 

SBASs to supplement to existing GNSS. It also shows that current established SBASs and 

planned SBASs. American WAAS, Japanese MSAS and European EGNOS are operational 

SBASs while Indian GAGAN, Russian SDCM, African ASAS and Chinese SNAS are still 

in development [61].   

These SBASs at least has 2 satellites or at most 5 satellites on GEO. The total 

number of satellites that will be installed on GEO is estimated to be 20. The locations of 

GEO satellites are clearly revealed in Table 2.3.  
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Table 2.3: SBAS [59-61] 

Country SBAS GEO Longitude on Equator 
US WAAS 2 133 ºW, 107ºW 
Japan MSAS 2 140 ºE, 145 ºE 
Europe EGNOS 3 15.5ºW, 21.5ºE, 64.5ºE 
India GAGAN 2 55ºE, 83ºE 
Russia SDCM 3 16ºW, 95ºE, 167ºE 
Africa ASAS 3 15.5ºW, 15ºE, 65.6ºE 
China SNAS 5 58.75ºE, 80ºE, 110.5ºE, 140ºE, 160ºE 

 

The estimated coverage area of each SBAS is presented in Figure 2.4. It is seen that 

MSAS and GAGAN with the least number of GEO satellites have the smallest coverage 

area. Although WAAS has the same number of satellites, the installation of more reference 

stations extends the coverage area. Other SBAS has wider service area with 3 or 5 GEO 

satellites and more reference stations. 

 
Figure 2.4: SBAS Coverage Area [61] 

 

2.3 Network-based Positioning 

Network-based positioning is different from satellite-based positioning because it 

does not involve any satellite. It involves other signals that form a network on ground such 
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as cellular Network (CN), Wireless Local Area Network (WLAN) and Vehicular Ad Hoc 

Network (VaNet). Network-based positioning is able to provide location information 

within the network coverage area but not globally. 

 

2.3.1 Cellular Network (CN) 

  Cellular Network (CN) has been extensively extended because of its reliability and 

commercial potential in the field of communication. This leads to the tremendous research 

interest in mobile positioning.  

   Mobile positioning using cellular network is a newsworthy technology as the 

location unknown mobile station (MS) can be calculated with the existence of known 

position base stations (BSs) [62].  In addition, its availability and reliability provides this 

technology with added value.   

  With the well-founded cellular network and existing Global System for Mobile 

Communication (GSM) infrastructures, the investigation in CN-based positioning is 

simpler than the installation of any satellite-based positioning system. However, this kind 

of positioning method is location estimation with less accuracy if compared to GNSS, RNS 

and SBAS.  

  The location estimation is done through computation on the parameters of signal 

transmission between BS and MS. The signal transmission parameters that can help in 

location computation are Cell-ID, Received Signal Strength (RSS), Angle of Arrival 

(AOA), Time of Arrival (TOA), and Time Difference of Arrival (TDOA) [63].  
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  The performance of each CN-based approach is presented in Table 2.4. The Cell-ID 

and RSS approaches have advantages of high reliability, high applicability, low cost, and 

low latency but the greatest shortcoming is low accuracy. The other 3 methods have 

medium reliability, low applicability and higher latency. AOA requires higher cost with 

moderate accuracy while TOA and TDOA need medium cost for higher accuracy.  

  The reliability and applicability of Cell-ID and RSS are high due to the reason that 

no further modification is needed for their implementation. Cell-ID approach is supported 

by all current smartphone while signal strength is always available because it is forwarded 

regularly for the handoff purpose [2]. Therefore, no extra installation cost is required.  

  On the other hand, AOA, TOA and TDOA techniques required the installation of 

additional hardware named Location Measurement Unit (LMU) at BS. For TOA and 

TDOA, LMUs must have a shared common clock reference with MS to achieve strict time 

synchronization between LMUs and MS.  

  As network modification is required, the reliability is medium since the 

modification must be implemented at all BSs. However, this will increase the overall cost. 

The inability to implement modification at all BSs will contribute to low applicability.  

Moreover, the latency is higher because of the synchronization process. The major benefit 

of these 3 approaches is the improved accuracy if compared to Cell-ID and RSS. 

Table 2.4: CN-based Positioning Approaches [64] 

Techniques Reliability Applicability Cost Latency Accuracy 
Cell-ID High High Low <5s 100-1500m 
RSS High High Low <5s 200-500m 
AOA Medium Low High <10s 100-200m 
TOA Medium Low Medium <10s 50-200m 
TDOA Medium Low Medium <10s 50-150m 

 



19 
 

  Figure 2.5 shows the structure of CN-based positioning approaches. Cell-ID is the 

simplest technique as only 1 BS is required to estimate the location. The location 

estimation is according to the Cell Global Identity (CGI) of MS such as Mobile Country 

Code (MCC), Mobile Network Code (MNC), Location Area Code (LAC), and Cell 

Identity (CI) [2]. 

  Despite its simplicity, Cell-ID approach has the worst accuracy where the accuracy 

can be up to 1.5 km. To enhance its accuracy, Timing Advance (TA) that measures the 

distance between MS and BS can reduce the positioning error. TA is a number range from 

0 to 63 and each increment represents 554 m from BS [2]. Thus, TA helps narrow down 

the estimation range to a ring with radius of 554 m.  

Both RSS and TOA require 3 BSs for triangulation computation (Figure 2.5), 

whereas the MS location can be estimated by finding the intersection point of 3 signals 

from nearby BSs. The only difference is the computational parameters.  

  RSS calculates the location with signal strength while TOA uses the time of arrival 

from BSs to MS. RSS is less accurate as compared to TOA owing to the fact that signal 

strength is highly affected by the obstacles along the signal transmissions. The signal 

strength attenuation occurs as the results of path loss, multipath fading, and shadowing [65]. 

  TOA requires the time of arrival to calculate the distance between the MS and 3 

BSs respectively. The timing error strongly affects the distance calculation, which in turns 

will affect the precision of location estimation. The timing error may be caused by the 

clock synchronization error or propagation delay.     

   AOA approach can estimate the location with the signal elevation angle to 2 BSs. 

Though the number of BSs required is reduced, this method involves the use of specialized 
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antenna arrays [66]. The requirement of this specialized hardware causes the AOA to be 

costly and not attractive to be widely implemented. Furthermore, a minor error in angle 

measurement would result in severe error in positioning. The condition is even worse if the 

NLOS problem occurs and angle measurement is unavailable. 

  TDOA has similar performance to TOA but with slight improved accuracy. The 

higher accuracy credited to the removal of timing error in TOA. The difference in the time 

of arrival of the signal at multiple LMUs is calculated respectively to determine the 

hyperbolic curves. The best intersection of hyperbolic curves is the estimated MS location. 

  Obviously, there are pros and cons of each CN-based positioning technology. 

Consequently, the integration of different techniques is investigated by researchers to 

complement the limitations for better positioning performance. There are various hybrid 

CN-based positioning systems such as RSS/TOA, RSS/AOA, AOA/TOA, AOA/TDOA, 

and TOA/TDOA [67-71]. 

  Since it is difficult to measure Line-of-Sight (LOS) signals from 3 BSs 

simultaneously, AOA algorithm that utilizes signals from 2 BS antenna arrays can be used 

to solve the problem of TOA and TDOA. When 3 or more BSs can be detected, TOA 

algorithm will be dynamically adjusted to perform positioning [72]. The implementation of 

AOA to augment RSS, TOA or TDOA is proved to perform better. 

  According to the simulation by Laaraiedh et al., the performance of standalone is 

worse than the RSS/TDOA, RSS/TOA, TOA/TDOA and RSS/TOA/TDOA cooperative 

models [73]. Chen and Abedi also stated that the hybrid localization 

RSS/AOA/TOA/TDOA scheme in cellular network shows a high improvement if 
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compared to standalone technique [74]. The accuracy of the hybrid localization can be 

improved up to 73.6%. 

  

(a) Cell-ID 

 

(b) RSS/TOA 

 

(c) AOA 

 

(d) TDOA 

Figure 2.5: CN-based Positioning Approaches [2] 

 

2.3.2 Wireless Local Area Network (WLAN) 

  In recent year, Wireless Local Area Network (WLAN) has become popular in the 

field of communication apart from cellular network [75]. The rapid development of WLAN 

has drawn researchers’ attention towards positioning based on WLAN infrastructure as it 

has existing infrastructure that needs no further installation and investment. This would 

make the system cheaper and easier to be implemented.  

  WLAN-based positioning uses the similar approaches as CN-based positioning. It 

performs position estimation by calculating the signal strength, time of arrival, angle of 
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arrival, time difference of arrival of WLAN transmission to/from WLAN Access Points 

(APs) [76]. The difference between WLAN and CN is the signal transmission 

characteristics. 

  WLAN-based positioning is more common in indoor positioning applications, 

where satellite-based positioning has limitation of NLOS. The success of WLAN indoor 

positioning has attracted attention of researchers to implement this technology to outdoor 

positioning in order to overcome the limitations of other existing positioning technology.   

  Both of the indoor and outdoor positioning techniques require a large number 

installation of WLAN APs with well-planned allocation of each AP in order to optimize 

the estimation results. The more APs can cover wider area of positioning and the exact 

location of APs helps in the positioning estimation. 

  Among the WLAN-based positioning techniques, RSS is the simplest as no 

modification is needed yet it is difficult to have an ideal signal propagation medium. NLOS 

or multipath signal propagation causes error in RSS positioning, resulting in poor accuracy.  

  Hence, location fingerprinting is designed to enhance the RSS approach. The key 

idea of this approach is approximating the location by comparing the RSS measured to a 

set of premeasured RSS values that is being store in the fingerprint database. The location 

fingerprinting is outperforming the standalone RSS because it can address some of the RSS 

problems.  

  The main difficulties of this system are the development and maintenance of the 

fingerprint database. The process of collecting the RSS data at calibration points and 

updating the database from time to time is a challenging task. The survey procedure of this 

method is time consuming as well [77]. 
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  Instead of traditional fingerprint database, there is a new design with added value of 

directional RSS information which can improve the average positioning error from 35.8 m 

to 23.5 m [78]. The test results presented by Li et al. [78] also shows that the fingerprinting 

can perform well in outdoor environment with positioning error of the tens of meter. 

  Despite the fact that WLAN has stronger signal in outdoor environment, the     

ever-changing environment with buildings, vehicles and people makes the signal 

transmission complex and affects the RSS. The slightly outdated traditional or directional 

fingerprint database can estimate the location with larger error. 

  The other techniques such as AOA, TOA, and TDOA are not preferred in    

WLAN-based positioning as a lot of efforts are needed in the modification on software and 

hardware of WLAN infrastructure. They are considered to have better accuracy in indoor 

environment.  

  An indoor AOA-based WLAN positioning can have accuracy better than 2 m but 

its accuracy degrade as the distance between mobile receiver and WLAN infrastructure 

increases [79]. This shows its suitability to be indoor positioning scheme but not for 

complicated outdoor environment. 

  In addition, TOA and TDOA technique is good for indoor positioning because it 

gets rid of the multipath issue. Thereby, a WLAN positioning based on joint RSS and TOA 

system is proposed [76]. This system is claimed that the accuracy is improved with no 

extra cost of firmware or hardware. Nevertheless, it performs better in indoor instead of 

outdoor.   
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2.3.3 Vehicular Ad Hoc Network (VaNet) 

  Vehicular Ad Hoc Network (VaNet) is also called Inter-Vehicle Communications 

(IVC) or Vehicle-to-Vehicle (V2V), with the objective of enhancing the road safety [11]. 

VANet becomes a key for future Intelligent Transportation System (ITS) services. The 

advancement of communication technologies in VANet promotes the investigation of 

positioning using VANet.  

  There is a range of communication technologies that can be incorporated in VANet, 

such as WiFi, WiMax, WAVE, cellular, Bluetooth and RFID. These communication 

technologies have different performance in terms of range, and data rate as shown in Table 

2.5. Subsequently, different technology is deployed in different VANet applications. 

Table 2.5: VaNet Communication Technologies [80-82] 

Technologies Protocol Frequency Band (GHz) Range 
(m) 

Data Rate 
(Mbps) 

Cellular GSM/GPRS/3G 0.85/0.9/1.7/1.8/1.9/2.1 15000 2.0 
WiFi IEEE 802.11 2.4/5 100 54.0 
Bluetooth IEEE 802.15.1 2.45 100 1.0 
RFID IEEE 802.15.4 2.45 10 0.1 
WiMax IEEE 802.16 2.5/3.5/5.8 50 72.0 
WAVE IEEE 1609 5.9 1 27.0 

   

  Since VANet applications are for vehicles with high mobility, the data transmission 

rate is crucial factor in consideration of communication channel implementation. Delivery 

latency also highly affects the reliability of the VANet positioning system. 

  Though cellular, WiFi, and WiMax have the location computation ability, the 

process of computation and communication between vehicles is time consuming and power 

consuming. Therefore, these technologies are not suitable for positioning in VANet but can 
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be used as communication between vehicle and road infrastructure to obtain the location 

information.  

  Among the VANet communication technologies, cellular network has the lowest 

frequency bands (850/900/1700/1800/1900/2100 MHz). However, it has good BS coverage 

range up to 15 km with reasonable data rate up to 2 Mbps. It is not suitable as the 

communication medium in VANet is due to the burdening data charge rate of real-time 

transmission. 

  WiFi and WiMax have outstanding data rate than other communication 

technologies but Wireless Access Vehicular Environment (WAVE) is the most mature 

wireless technology that potentially meets the extremely short latency and high data rate 

requirement of VANet positioning [83]. Nevertheless, these technologies require 

continuous service fees for constant positioning.  

  Bluetooth and Radio Frequency Identification (RFID) are developed under IEEE 

802.15 protocol with the same bandwidth of 2.45 GHz. These two communication 

technologies offer the smallest coverage range and lowest data rate. As the Bluetooth data 

transmission needs signal synchronization between two terminals, it is not qualified in the 

high mobility vehicular environment.  

  On the other hand, RFID has the potential to be the primary tool in vehicular 

communication service as it is implemented successfully and effectively in similar 

transportation application. The examples are RFID implementation in intelligent traffic 

management expert system [84], bus monitoring system [85], Electronic Toll Collection 

System (ETCS) [86] and public transit smart card [87]. 



26 
 

  RFID tags can be installed at the roadside with the exact coordinates respectively 

and the vehicle that is embedded with RFID reader can update its current location 

whenever it passes the tag. The small coverage range is sufficient to disseminate the 

location data from roadside infrastructure to approaching vehicles. Moreover, 100 kbps 

data rate is adequate to transmit the instant location data to the reader.   

  Besides, RFID is exploited to a RF-GPS localization system to calibrate the GPS 

error and improve the accuracy [88]. This system also allows the location data 

broadcasting to nearby vehicles that do not have GPS receiver, enabling non-GPS vehicles 

to estimate the location through single peer localization scheme. 

  The advantages of RFID technology is its free service after device installation 

meanwhile the installation is cheaper than others especially the RFID passive tags that are 

to be installed at the roadside. Furthermore, no synchronization or encryption process is 

needed. This makes the system so simple to be executed. The added value is its 

extendibility whereas the system can be implemented with the adoption of RFID reader in 

vehicle. 

 

2.4 Location Prediction 

Location prediction is a technique to provide an estimation of a location by using 

the appropriate parameters or data. There are several ways of location prediction such as 

Dead Reckoning (DR), Inertial Navigation System (INS), Kalman Filter (KF), and 

Artificial Intelligence (AI). Some of the techniques suitable to be implemented in outdoor 

while some suitable for indoor. Besides the applicability, they also differ at the point of 

accuracy. Thus, each technique is discussed below as well as the key parameters involved. 
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2.4.1 Dead Reckoning (DR) 

Dead Reckoning (DR) is claimed as the simplest method to determine the location 

but also been declared as a low accuracy method [89]. Dead Reckoning for pedestrian 

tracking is widely investigated by researchers [73-79]. Among the DR applications for 

pedestrian, indoor localization [73, 76, 77, 79, 80] and outdoor navigation [74, 75, 78] 

studies were carried out. The applications of DR are normally carried out with the aid of 

smartphone. 

A smart Pedestrian Dead Reckoning (PDR) was developed and tested in an office 

environment with a total distance of 168.55 m, duration of 2 minutes and walk step of 215 

steps [90]. The authors compared the performance between magnetometer-based PDR, 

gyroscope-based PDR and proposed SmartPDR. The comparison of performance is shown 

in Figure 2.6. The magnetometer-based PDR shows the localization error of 10 m while the 

gyroscope-based PDR shows the error of 13 m. The proposed smartPDR is outperforming 

by giving 1.62 m of error.  

 

Figure 2.6: Comparison of Performance by Kang & Han [90] 
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A proposed smartphone-based dead reckoning and 3D map-aided GNSS is proved to 

be able to provide positioning error in a range of 1.5 m to 5.5 m in middle class or deep 

urban canyon [45]. The authors used step detection, stride length estimation, and direction 

estimation before fusing the information with a total state closed loop Kalman Filter to 

estimate the position of pedestrian. 

Ojeda and Borenstein [94] implemented a technique namely “Zero Velocity Update” 

(ZUPT) in the Personal Dead Reckoning System to reduce the significant errors caused by 

the Inertial Measurement Unit (IMU) [94]. Along the 104 m rectangle-shaped path, the test 

was carried out with 5 rounds clockwise and 5 rounds anti-clockwise. The absolute return 

position errors are 3.85 m and 1.83 m respectively.  

 

2.4.2 Inertial Navigation System (INS) 

 The earliest location prediction system is Inertial Navigation System (INS) which 

deploys accelerometers, gyroscopes, and odometers to obtain acceleration, angular rate, 

and heading angle measurements for next location prediction [97]. The acceleration, 

angular rate, and heading angle are the key parameters for INS. 

 Although INS is a self-contained system with a set of mathematical algorithms to 

forecast position information, it is not an ideal standalone system [21]. It is always 

incorporating with GPS to support the continuity of navigation especially during the GPS 

signal outages. 
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INS provides high short term accuracy, high positioning update rate and immunity 

to external interference yet it has the limitation of accuracy degradation in long term due to 

deterministic and random error [40].  

 The deterministic errors occur due to uncompensated sensors’ error, scale factor 

instability and misalignment. These errors can be minimized with calibration procedure but 

the random errors that happen naturally cannot be avoided or removed. 

 The errors mentioned above make the standalone INS being claimed as inaccurate. 

The RMS error in horizontal position grows up to 2000 m in 20 minutes and 3500 m in 30 

minutes [98]. Therefore, GPS/INS always needs to be aided by other filtering method to 

rectify the errors, giving positioning with better accuracy. The most common filter in the 

area of positioning is Kalman Filter (KF), which will be discussed in following section. 

 

2.4.3 Kalman Filter (KF) 

  Kalman Filter (KF) is a mature data fusion model that uses a series of 

measurements to estimate an unknown variable with certain precision and accuracy. 

Kalman Filter is over 50 years but is still one of the most important and common data 

fusion algorithms in use today [99]. KF can be considered as a benchmark for GPS/INS 

integration [15]. It is a set of mathematical equations that provides recursive solution to the 

discrete data linear problem by minimizes the mean of the squared error. It has been highly 

applied in GPS/INS schemes either loosely-coupled mode or tightly couple mode [38]. 

  The general KF equation is presented as  
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X�k = Kk ∙ Zk + (1 − Kk) ∙ X�k−1 (2.1) 

  where X�k is the current estimation, Kk is the kalman gain, Zkis the measured value 

while X�k−1 is the previous estimation. 

  A linear system can be described by the following two equations: 

State equation: 

xk = Axk−1 + Buk + wk−1 (2.2) 

Output equation: 

zk = Hxk + vk (2.3) 

  where entities A, B and H are in general form matrices, k is the time index, xk is the 

state of the system, uk is the known input to the system, zk is the measured output,  wk−1 is 

the process noise and vk is the measurement noise.  

  The process noise and measurement noise are both considered as Gaussians and 

they are statistically independent. Even though the Gaussian noise parameters might not be 

perfectly estimated, Kalman Filter minimizes the errors and converges the estimations to 

the nearest values. The noises, wk−1 and vk are with normal probability distributions as 

below: 

p(w)~N(0, Q) (2.4) 

p(v)~N(0, R) (2.5) 

  where Q is the process noise covariance while R is the measurement noise 

covariance. 
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  The process noise covariance can be found through equation: 

Q = E(wkwk
T) (2.6) 

  where wk
T  is transpose of w random noise vectors and E(·) means the expected 

value. 

  The measurement noise covariance can be found through equation: 

R = E(zkzkT) (2.7) 

  where zkT is transpose of z random noise vectors and E(·) means the expected value. 

  There are two distinct sets of equations, which are Time Update and Measurement 

Update. Time Update functions as prediction while Measurement Update functions as 

correction. The equations are shown in Table 2.6 and the iteration process of Kalman Filter 

is shown in Figure 2.7. 

  In Time Update equations, x�k−  is the prior estimate and  Pk−  is the prior error 

covariance. In Measurement Update equations,  x�k is the estimate of x at time k while Pk is 

necessary for next prediction step. The values from Time Update equations are prior values 

while the values from Measurement Update equations are posterior values. Through the 

iteration process of KF, the variance of estimation error can be minimized [101].  

Table 2.6: Time Update and Measurement Update Equations 

Time Update (Prediction) Measurement Update (Correction) 

x�k− = ax�k−1 + Buk Kk = Pk−HT(HPk−HT + R)−1 

Pk− = APk−1AT + Q x�k = x�k− + Kk(zk − Hx�k−) 

 Pk = (1 − KkH)Pk− 
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Figure 2.7: The Iteration Process of Kalman Filter [100] 

 

  The authors in [98] evaluated the performance of two types of KFs, which are 

loosely coupled KF and tightly coupled KF. Loosely coupled KF is with small size of error 

state model and with less computation complexity while tightly coupled KF is large in 

error state model and with more complex processing [98]. From Figure 2.8, it can be 

observed that tightly coupled KF and loosely coupled KF reduce the RMSE significantly. 

Besides, tightly coupled KF performs better than loosely coupled KF. Tightly coupled KF 

is claimed as an optimal solution and more accurate with faster ambiguity estimation if 

compared with loosely coupled KF [98]. 

 

Figure 2.8: RMSE in Horizontal Position for INS, LC and TC [98] 
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  Apart from aforementioned KF, there are extensions named Extended Kalman 

Filter (EKF) and Unscented Kalman Filter (UKF) which can work on non-linear system. 

EKF has the largest ratio of precision and computational cost. In comparison, UKF which 

avoids the use of the Jacobian Matrix of uncertainty and realized the modeling uncertainty 

by manipulation of sigma points slightly increases the computational cost [102].  There is 

another kind of modification of KF, named Particle Filter (PF) [103]. 

  Toledo-Moreo et al. [104] proposed Interactive Multi Model-Extended Kalman 

Filter (IMM-EKF) for the integrity of low cost GPS/SBAS/INS. IMM-EKF was suggested 

to mitigate the provoked unrealistic noise during the high dynamic state of vehicles [104]. 

Tests were carried out to verify that IMM-EKF has better performance than Single Model-

Extended Kalman Filter (SM-EKF) [105]. The position error is reduced and the level of 

confidence on the solutions is increased.  

  A 15-state EKF for INS/GPS navigation system was designed by Van et al. [23]. 

The simulation model was developed using Simulink in Matlab environment. According to 

the accuracy evaluation, the deviation between the GPS and the proposed system is 

fluctuating from 0 to 18 m. When it was further tested with fast turning point with a 50 s 

GPS outage, the error could rise to about 700 m [23].  

  Skog [106] presented loosely coupled position aided closed loop implementation of 

a GPS aided INS system, as shown in Figure 2.9. The KF denotes EKF and H the map 

between navigation output and GPS data. The result of test trajectory is presented in Figure 

2.10. The RMSE of standalone GPS is 13.7987 m and this error can be reduced to 2.0948 

m with the aid of INS and EKF. 
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Figure 2.9: Loosely Coupled Position Aided Closed Loop Implementation of a GPS Aided 
INS System [106] 

 

 

Figure 2.10: Estimated and True Trajectory of a Typical Driving Sequence [106] 

 

  UKF algorithm is utilized in GPS/INS navigation and the simulation results 

indicate that UKF can maintain better filter stability than KF [107]. From Figure 2.11, it 

can be observed that the error of estimated data can be improved from 500 m to 100 m. 

The position error is able to be maintained in a range of 100 m. 
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Figure 2.11: Contrast Diagram of Error of the Original GPS Data and INS Data, Error of 
GPS Data and Optimal Estimated Data [107] 

 

  There is another kind of Kalman Filter (KF), namely Cubature Kalman Filter 

(CKF). To be more advanced, there are Strong Tracking Cubature Kalman Filter (STCKF) 

[28], Central Difference Kalman Filter (CDKF) and High Degree Cubature Kalman Filter 

(HDCKF) [108]. STCFK is presented for simulation and the results show that it is 

outperforming if compared to EKF. The author also claimed that STCKF has the 

advantages of high reliability, low sensitivity, strong robustness and strong stability and 

convergence [28]. The simulation results in [108] show that HDCKF gives superior 

performance for all navigation states if compared to non-linear filters such as EKF, UKF, 

CKF and CDKF. 

  KF has some restrictions such as requisite of predefined accurate stochastic model 

as well as prior information of measurement covariance matrices for each new sensor [37]. 

During the system linearization process or system mismodeling, divergence of 

approximation results is possible. Consequently, the systems based on Artificial 

Intelligence (AI) have been suggested as solution. 
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2.4.4 Artificial Intelligence (AI) 

Currently, comprehensive research has been done in the field of Artificial 

Intelligence due to its potential to be implemented in every single application in life. 

Among AI, fuzzy and neural network are commonly used and investigated.  

The Adaptive Neuro-Fuzzy Inference System (ANFIS) is an AI-based system that 

is proposed to improve the performance of KF-based GPS/INS with fuzzy correction 

algorithm in the absence of GPS signals [109]. The ANFIS has a set of trained data about 

the evolution of INS errors in several scenarios to provide adaptive positioning. 

  The ANFIS fuzzy correction system calculates the variation between INS data with 

the trained data to compute a location with minimized error probability. This system can 

execute a result with 7 times better accuracy through the implementation of fuzzy 

correction [38]. The accuracy for position, velocity and angle are greatly enhanced. 

   In past few years, inertial sensor based on Micro-Electro-Mechanical System 

(MEMS) has been considered to be implemented in INS/GPS navigation applications as it 

is commercially available at lower cost [15]. The performance enhancement with first 

order Gauss Markov (GM), second order Auto Regression (AR) and ANFIS is performed 

and compared. KF-ANFIS shows its outperforming over KF-GM and KF-AR with better 

accuracy and consistency over the trajectory [15].   

  Besides ANFIS, more systems based on Artificial Intelligence (AI) have been 

suggested as solution to KF-based GPS/INS scheme. The AI-based systems to assist KF 

include Radial Basis Function Neural Network (RBFNN) [110], Input-Delayed Neural 

Network (IDNN) [111] and so forth. 
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Figure 2.12: Architecture of RBFNN [112] 

 

 

Figure 2.13: Architecture of IDNN [37] 

   

  GPS/INS scheme that uses RBFNN as improvement solution is because of its 

simple architecture, universal approximation and fast training [113]. RBFNN is a feed 

forward three layers network, which comprises input layer, hidden layer and output layer 

[114]. The architecture of RBFNN is as shown in Figure 2.12. Mapping is nonlinear from 

input to output while the output is linear to adjustable parameters. Even if RBFNN has 
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been claimed as has fixed topology and lack of dynamicity, it does show accuracy 

improvement [111]. 

  In contrast, IDNN has high complexity with higher accuracy. The IDNN method 

holds the input data at the input layer through the input delay elements, allowing the output 

INS position to be modeled based on present and past samples [37]. From the architecture 

of IDNN shown in Figure 2.13, the complexity can be seen if compared to RBFNN. 

According to Noureldin et al., IDNN has superior performance during short term and long 

term GPS signal outages if compared to other conventional and recent AI-based systems 

[15].  

  Another recent AI-based approach in KF-based GPS/INS is Wavelet-based Neural 

Network (WBNN). The wavelet de-noising is able to remove the noise and disturbance of 

the signal before it is sent to neural network. This method is claimed to have better 

performance than standalone KF as the de-noised information allows neural network to 

provide better approximation [32]. 

 

2.5 Previous Works 

 Researchers are putting efforts in studies on positioning due to the high demand of 

civilians especially when vehicles’ mobility is getting significant in the developed areas. 

There are two major categories of vehicle positioning, which are non-real-time vehicle 

positioning and real-time vehicle positioning.  

 Non-real-time vehicle positioning indicates the location of vehicle is logged and 

stored in database for reference purpose while real-time vehicle positioning means the 
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location of vehicle can be observed in real-time by driver and even by the control center in 

a distance away. The real-time vehicle positioning system can record the location of 

vehicle as well.  

 In addition, there are researchers who investigated into OBD-II and antenna to 

improve positioning technologies. Thus, the previous work of these researchers will be 

mentioned in sub-topics in the following section. 

 

2.5.1 Non-Real-Time Vehicle Positioning 

Generally, researchers carry out experiments or road tests of non-real-time vehicle 

positioning due to observation purpose and the recorded data can be further analysis better. 

Franca and Morgado [42] proposed a real-time implementation of integrated INS/GPS 

algorithm by using Real Time Workshop (RTW) and xPC Target toolboxes. According to 

the paper, the INS/GPS system (Figure 2.14) was mounted on a vehicle which traveled a 

georeferenced path with the results recorded and evaluated later. The results are not 

displayed in real-time or sent to monitoring center in real-time so it is categorized as     

non-real-time vehicle positioning.  

 

Figure 2.14: INS/GPS System [42] 
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The test results show that the signal appears to be available and unavailable along 

the trajectory in between 300th second to 1000th second, as shown in Figure 2.15. The time 

of signal outages is random and the duration of signal outages is considered as short. The 

results show that the latitude error maintains in the range of 25 m while the longitude error 

stays in the range of 20 m. The size of the Inertial Measurement Unit (IMU) deployed in 

this experiment is bulky (as seen in Figure 2.14) and is not practical for civilian users’  

real-time positioning. Moreover, the accuracy of the system should be further improved. 

 
Figure 2.15: GPS Outages [42] 

 

 For IMM-EKF based Vehicle Navigation with low cost GPS/INS mentioned in 

[105], observation models were implemented for data fusion of raw measurements from 

sensors. The Single Model EKF(SM-EKF) provides a RMSE of 1.703 m and the 

Interactive Multi Model EKF (IMM-EKF) provides a RMSE of 1.219 m in a 45 second test 

drive on trajectory of 390 m [105]. The RMSE which is lower than 2 m is considered as 

great accuracy but the test drive time and test trajectory is too short.  

 A GPS/INS integration utilizing Dynamic Neural Network for vehicular navigation 

was introduced in [37]. The performance of IDNN module was examined during the 

artificial 100 s GPS outages which were intentionally introduced in order to test its ability 
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to perform prediction. The 100 s GPS outages were selected at different time slots and 

different locations. From the results in Figure 2.16 and Table 2.7, IDNN outperforms     

AI-based Segmented Forward Predictor (ASFP) and KF. For the 100 s GPS outage at 

different location, IDNN shows the maximum longitude error 33.50 m while maximum 

latitude error 30.93 m. 

 
Figure 2.16: Position Error Distribution along GPS Outages [37] 

 

Table 2.7: Summary of Position Errors for 100 s GPS Outages [37] 
Position 

Component 
Method 1st 

Outage 
2nd 

Outage 
3rd 

Outage 
4th 

Outage 
5th 

Outage 
6th 

Outage 
7th 

Outage 
8th 

Outage 
Longitude IDNN 2.86 5.92 2.53 30.05 33.50 30.91 9.82 10.13 

ASFP 3.71 5.49 14.11 43.33 44.51 34.49 10.63 11.32 
KF 7.09 10.25 21.21 63.26 70.19 41.15 13.85 16.08 

Latitude IDNN 26.25 8.45 30.32 8.20 8.25 22.12 30.93 18.95 
ASFP 26.09 17.86 31.82 7.87 21.71 31.16 28.21 25.32 
KF 29.43 24.14 40.32 11.51 35.16 45.92 40.32 69.27 
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 On the other hand, a low cost 2D navigation using augmented KF/Fast Orthogonal 

Search (FOS) module for integration of reduced inertial sensor system and GPS was 

suggested by author in [115]. The MEMS-grade gyroscope, OBD-II device Carchip, and 

off-the-shelf NovAtel G2 Pro-Pack SPAN unit were installed in a land vehicle for road test 

experiment purpose.  

 The data were logged and then evaluated after experiment. In each trajectory, 

several artificial 60 s and 120 s GPS outages were intentionally introduced. KF/FOS 

module shows improvement if compared with KF-only method. The RMS position error of 

KF/FOS module improves KF-only method from 30.98 m to 9.87 m (as shown in Table 

2.8). 

Table 2.8: Positioning Errors of KF/FOS and KF-only Methods during 120s Outages [115] 
GPS 

Outage 
Avg Speed 

(km/h) 
App. Dist. 

(km) 
KF/FOS 
max pos. 
err. (m) 

KF-only 
max pos. 
err. (m) 

KF/FOS 
RMS pos. 
err. (m) 

KF-only 
RMS pos. 
err. (m) 

1 63.7 2.1237 7.71 47.08 5.40 26.29 
2 67.1 2.2371 27.00 94.37 10.94 43.87 
3 73.3 2.4439 11.22 42.32 5.33 23.53 
4 100.8 3.3597 25.87 91.19 13.19 43.18 
5 108.0 3.5999 14.92 40.44 10.78 23.59 
6 78.6 2.6188 17.83 46.74 10.64 20.83 
7 60.4 2.0141 16.63 37.64 9.78 14.56 
8 49.4 1.6469 20.97 101.77 9.88 39.76 
9 64.1 2.1357 14.00 37.71 8.63 22.78 
10 39.2 1.3064 25.53 90.99 14.16 51.41 

Average 70.5 2.3486 18.17 64.03 9.87 30.98 
 

 A method using neural network (NN) and wavelet-based de-noising technology 

was introduced into the Strapdown Inertial Navigation System (SINS)/GPS/magnetometer 

integrated navigation system to improve the system accuracy. The current application of 

the wavelet-based de-noising technique is based on Matlab implementation. Thus, the 

author suggested that adaptive technique to be applied in real scenario with performance 

enhancement. 
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 Among the learning algorithms, Levenberg-Marquardt Algorithm (LMA) was 

chosen. The NN with five or more hidden neurons can be successfully trained. Meanwhile, 

the training process shows that NN with nine neurons has the least number of learning 

steps and thus the number of hidden neurons is set to be nine.   

 Several road tests on NN were conducted on a land vehicle as shown in Figure 2.17 

with the setup of navigation grade INS PHINS, a fiber optical gyro (FOG)-INS, a 

magnetometer and a TRIUMPH-1 GPS receiver. The GPS signals were artificially blocked 

in between 1000 s and 1500 s to observe the effect of GPS signal outages on system errors. 

 

Figure 2.17: Test Vehicle and Setup of the IMU Systems [32] 

 

 When the GPS signal is normal, the position error remains below 4 m. During the 

500 s GPS signal outages, the position error grows up to 30 m. With the NN-aided KF 

system, the position error improves significantly from 30 m to 10 m. 
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 The experiment was further carried out with 10 artificial signal outages in order to 

evaluate the Wavelet-based NN (WBNN). Each outage was maintained to be below 100 s. 

The result of third outage segment is shown in Figure 2.18. The application of WBNN is 

showing an obvious improvement of the prediction if compared to the prediction with KF. 

The improvement can be seen in Figure 2.19 bar chart as well. KF gives mean of position 

error below 25 m while WBNN gives mean of position error below 10 m. 

 

Figure 2.18: Result Trajectory (a) Result of WBNN (b) Result of KF [32] 

 

 

Figure 2.19: Mean Positioning Errors in 10 Outage Segments [32] 
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 Liu et al. [116] introduced a two-filter smoothing for accurate INS/GPS land 

vehicle navigation in urban centers. In this paper, two types of algorithms are mentioned. 

Firstly, Two-Filter Smoother (TFS) which is performing by combining the results of 

Forward Kalman Filtering (FKF) and Backward Kalman Filtering (BKF) to minimize the 

error covariance. Secondly, Rauch-Tung-Striebel Smoother (RTSS) is an algorithm with 

optimal smoothing for linear system based on the maximum likelihood criterion. It can be 

considered as an add-on correcting factor to KF.  

 Like aforementioned systems, the GPS outages were intentionally applied on the 

collected data with the outage period 10 s, 30 s and 60 s. The post-processing data goes 

through the FKF, RTSS and TFS to evaluate the performance of each smoother. The mean 

position error for FKF in 60 s outage can grow up to 186.06 m while the RTSS and TFS 

can both improve the position error to 7.91 m [116]. 

 Several authors [30, 33, 41, 43] carried out simulation works instead of apply the 

positioning/navigation technologies in real-time or practically. Moreover, some of these 

works do not make accuracy analysis neither in term of RMSE nor CEP [33, 43]. Without 

the accuracy evaluation, it is tough to define or compare the performance of the model or 

system developed. 

 

2.5.2 Real-Time Vehicle Positioning/Monitoring 

For real-time vehicle positioning/monitoring, the system can display the location of 

vehicle in real-time either in the vehicle or monitoring center. There is a design and 

development of farm vehicle monitoring and intelligent dispatching system where the 
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vehicle terminal has a GPS device, a GSM device and a display screen while the 

monitoring center has a GSM device and a computer [117].  

At the vehicle terminal, the GPS device will update the location of vehicle in real 

time and display on screen. The GPS data is then packed with the vehicle’s identity and 

sent to monitoring center through GSM device. The monitoring center will receive the data 

through GSM device and save the data in database. For high speed vehicle on road, data is 

transferred every 1 s. For low speed vehicle in field, data is transmitted every 10 s. This 

system is functioning without location prediction, which indicates the system will fail to 

provide location once the GPS signal lost. 

 Maurya et al. [118] proposed a real-time vehicle tracking system using GPS and 

GSM technology. A microcontroller AT89C51 is the core of the system on vehicle, 

interfacing the GPS receiver and GSM modem. The block diagram to illustrate the concept 

of the system is presented in Figure 2.20.  

 

Figure 2.20: Block Diagram Illustrating the Concept of System [118] 
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 The system will monitor a moving vehicle and report the position of the vehicle to 

the GSM mobile unit in the other end in real-time once request is sent by the user. The user 

can view the location of vehicle on Google Earth or Google Map with the existence of 

internet. However, the paper only presents the design of tracking system without showing 

the results. The concept is illustrated but the applicability and accuracy of positioning is 

doubtful. 

 Apart from the system above, several types of vehicle monitoring system based on 

GPS/GSM/GIS were introduced [119-122]. The design of these vehicle monitoring 

systems were presented in international conference papers and international symposium 

papers. In these papers, the authors emphasized on explaining the frameworks of system 

where as the real-time positioning is provided by GPS device, data transmission is done by 

GSM device or General Packet Radio Service (GPRS) device and mapping function is 

developed with Geographic Information System (GIS). Only the author in [120] performed 

the experiment and showed the successfulness of the real-time monitoring system with 

mapping function. However, there is no accuracy analysis and the experiment was carried 

out without consideration on the loss of GPS signal. 

 There is an intelligent vehicle monitoring system developed using global 

positioning system and cloud computing [123]. Data such as location, fuel level, altitude, 

tire pressure, driver conditions (drunken or not) and speed of the vehicle are sent to cloud 

server using GSM-enabled device [123]. However, this device will fail to pinpoint the 

location when GPS outage because it does not consider about the location in case of NLOS 

happens. Moreover, the researcher does not define the accuracy of the positioning in this 

system. 
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 Real-time remote onboard diagnostics using embedded GPRS surveillance 

technology [124] is a completely developed vehicle monitoring system which is capable to 

read Diagnostic Trouble Code (DTC) through OBD-II in real time and transmit all the data 

including vehicle’s ID, GPS data, vehicle’s status and DTC to the server system through 

GPRS mobile communication. The OBD-II device is worth to be studied and utilized 

because it can provide a long list of vehicle’s parameters that are useful to monitor the 

condition of vehicle.  

 This system is excellent to be taken as reference. Its server system interface display 

is illustrated in Figure 2.21. The system displays the location of vehicle, name of vehicle’s 

owner, vehicle model, owner’s contact number, vehicle’s plate number, vehicle’s issue, 

and suggested immediate solution. The main concern of this system is the DTC extraction 

and the communication method. The recommendation for this system is the addition of 

prediction model to overcome the NLOS issue that will cause the loss of the GPS data at 

certain area.  

 

Figure 2.21: Server System Interface Display [124] 
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2.5.3 On-Board Diagnostics (OBD)-II 

 Every vehicle has dashboard with gauges that display details such as the distance, 

vehicle speed, engine speed and fuel level [125]. These details are in analog form and are 

retrieved from Electronic Control Unit (ECU). The On-Board Diagnostic-II (OBD-II) is a 

standard which was developed by Society of Automotive Engineers (SAE) in US [126] and 

it specification was made mandatory for all US vehicles staring in 1996 [127]. In 1996, 

every light duty car sold in the US has an OBD-II port. This is then followed by the 

integration of OBD-II port in medium duty car (2005) and heavy duty car (2010).  

Subsequently, European Union (EU) made European On-Board Diagnostic systems 

(EOBD) an obligatory of petrol cars since 2001 and diesel cars since 2003 onwards [128]. 

In addition, Australia started emission control for light vehicles in 2005 based on OBD-II. 

From year 2008 onwards, gasoline vehicles in Taiwan are also compulsory to be outfitted 

with OBD-II system [129].   

OBD-II is a very useful invention which is specially designed to diagnose the 

condition of a vehicle through raw data that is collected from ECU. OBD-II as a diagnostic 

tool checks the issue of a vehicle by sending the Parameter Identity (PID) to the vehicle 

through specific protocol and the signaling protocol will response to the particular request, 

displaying the issue on board.  

The PIDs can be in hexadecimal or decimal form, each PID representing a code to 

request specific information. The PIDs include fuel system status, calculated engine load, 

engine coolant temperature, short term fuel trim, long term fuel trim, fuel pressure, engine 

RPM, vehicle speed, intake air temperature, throttle position, and so forth. Table 2.9 shows 

the example of OBD-II PIDs and its corresponding information. 



50 
 

Table 2.9: Example of OBD-II Command and its Description [130] 

Mode/Service PID Description 
01 01 Number of DTCs 
01 04 Engine load 
01 05 Engine coolant temperature 
01 0B Intake manifold absolute pressure 
01 0C Engine RPM 
01 0D Vehicle speed sensor 
01 0F Intake air temperature 
01 10 Air flow rate from mass air flow sensor 
01 11 Absolute throttle position 

  

 The OBD II had been standardized by SAE and upheld by International 

Standardization Organization (ISO) [128]. There are five communication protocols of 

OBD-II, as shown in Table 2.10. Different vehicle manufacturers deploy different kind of 

OBD-II protocol with different speed and signaling type. Though most of the vehicle 

manufacturers implemented OBD-II in the vehicles, Malaysia’s local manufactured 

vehicles have not installed any.  

Table 2.10: Communication Protocols and Signaling Protocols of OBD II [128, 131] 

No Protocol Speed 
(kbps) 

Signal Type Manufacturer (s) 

1 SAE J1850 
(VPW) 

10.4 Variable Pulse Width GM Vehicles 

2 SAE J1850 
(PWM) 

41.6 Pulse Width Modulation Ford Vehicles 

3 ISO 9141-2 10.4 Asynchronous Serial 
Communication 

European, Asia and 
Chrysler Vehicles 

4 ISO 15765-4 
(CAN) 

500 Single/Dual Wire Serial 
Lines 

Most Vehicle 
Manufacturers 

5 ISO 14230-4 
(KWP 2000) 

10.4 Asynchronous Serial 
Communication 

European, Asia and 
Chrysler Vehicles 

 

 The interface of OBD-II port is as shown as in Figure 2.22. OBD-II has 16 pins and 

each of them in charge of different function. The function description of each pin is listed 
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in Table 2.11. The OBD-II scanning tool or OBD-II reader is designed to interface with the 

vehicle via the OBD-II 16-pins port. The price is varies from RM10 to RM1000, 

depending on the specifications and functions of the scanning tool or reader. The example 

of Bluetooth OBD-II scanner is shown in Figure 2.23. 

 

Figure 2.22: The Interface of OBD-II Port [126] 

 

Table 2.11: Vehicle Connector Contact Allocation of OBD-II [129]  

Pin No Allocation 
1 Discretionary 
2 Bus positive line of SAE J1850 
3 Discretionary 
4 Chasis ground 
5 Signal ground 
6 CAN_H line of 15765-4 
7 K line of ISO 9141-2 and ISO 14230-4 
8 Discretionary 
9 Discretionary 
10 Bus negative line of SAE J1850 
11 Discretionary 
12 Discretionary 
13 Discretionary 
14 CAN_L line of 15765-4 
15 L line of ISO 9141-2 and ISO 14230-4 
16 Permanent positive voltage 
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Figure 2.23: Bluetooth OBD-II Scanner [132] 

 

 The data flow of data acquisition of OBD-II is as shown in Figure 2.24. Firstly, a 

smartphone is connected to OBD-II scanner (ELM327) through bluetooth connection and 

the OBD command is sent through queue. The scanner will read the command and send the 

instruction to ECU while ECU will retrieve data acquired from vehicle sensors through the 

specific protocol. The data which is obtained from sensors will be sent to buffer before 

outputted to smartphone through the scanner. 

 

Figure 2.24: Data Flow of Data Acquisition [130] 

 

Besides the deployment of OBD-II in [124] as surveillance system, it is used by the 

researchers in development of driver information system [125, 128] as well as vehicle 
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management and safety [133]. The information extracted from the OBD-II is majorly used 

to diagnose the vehicle’s issue. There is no research that utilizes the OBD-II data for 

positioning purpose. 

 

2.5.4 Antenna 

Since this dissertation is studying about smartphone-based GPS-integrated location 

prediction model for vehicle location, the antenna of smartphone which in charge of signal 

retrieval is necessary to be studied as well.  

The fourth generation of GSM (4G) has been widely used and it is considered as 

mature technology. However, it is noted that antenna of 4G mobile phone is mainly focus 

on land communication and is not specially designed for satellite communication. The fifth 

generation of GSM (5G) mobile phone may include the function of satellite 

communication. Mobile satellite communication service is claimed as a complement to 

current technology as it includes safety communications, broadcasting and accurate global 

positioning [134]. The design of antenna in the mobile phone is very important as it needs 

to be designed to specific radiation pattern that is able to cover complete azimuth range and 

wide range of elevation angles.  

According to the author in [49], Right-hand circular polarization (RHCP) is 

universally required for GNSS. The axial ratio (AR) less than 3 dB and cross polarization 

less than -10 dB is desired for medium quality GNSS antenna. A compact circular 

polarized patch antenna with wide beamwidth for handheld devide for future 5G 

application has been presented and it is proven to cover wide elevation angles and 
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complete azimuth range of 360 degree [134]. The result is promising where the medium 

gain is 5 dBic and the measured 3 dB axial ratio bandwidth is 3.05%. 

  Research on a compact GPS/WLAN antenna design for mobile device with full 

metal housing was carried out [135]. A contact tri-band antenna (GPS band, WLAN b/g 

band and WLAN a band) was proposed and fabricated for mobile phone application. The 

average measured gains at the three bands are about 0.5, 3 and 3.5 dBi respectively. 

 The authors in [136] realized that variety of GPS antennas are designed according 

to Right-Handed Circular Polarized (RHCP) theory. Since linear polarized antenna has 

better coverage, more convenient to be designed and more cost-saving, some linear 

polarized GPS antennas have been done. A dual-band Planar Inverted-F Antenna (PIFA) 

for GPS and WiMAX applications was designed to provide linear polarization which is 

anticipated to alleviate the multipath fading of circularly polarized GPS antenna [136]. 

This design exhibits good impedance matching performance, relatively high gain and wide 

reception angle from satellite constellation. It is thus suitable to be implemented as the 

antenna of the new generation of mobile phone to provide good satellite signal reception. 

 To further study on PIFA, it is compact and is able be designed in the housing of 

the mobile phone instead of the use of whip, rod or helix antennas. Besides, PIFA can 

depreciate the electromagnetic wave power absorption or so called Specific Absorption 

Rate (SAR), reduce the backward radiation toward user’s head and improve antenna 

performance. Moreover, it presents moderate to high gain in both states of vertical and 

horizontal polarization which is useful in certain wireless communication under multipath 

scenarios [137]. 
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Figure 2.25: Design of Electrically Small Three-Band Multi-polarization Cross Spiral 
Antenna [138] 

 

 An electrically small three-band multi-polarization cross spiral antenna has been 

designed [138] and the design is as shown in Figure 2.25. It is a planar structure design 

which is printed on single side of circuit board. The three bands are GPS band, RFID band 

and mobile phone band while the multi-polarization is realized by circular polarization (CP) 

and linear polarization (LP). Its multi-polarization is achieved by using a dipole-fed cross 

spiral antenna (DF-CSA) [138]. This design can radiate good CP and LP with 0 dBi or 

more gain and 62% or more efficiency within 28 MHz bandwidth. 

A small size planar dual wideband antenna for ultra-slim smartphones was 

proposed. The proposed antenna design involves a directly fed inverted L-shaped feeding 

strip, branch strip coupled to feeding strip with inductor, an inductively loaded shorted 

strip, and a matching circuit like shown in Figure 2.26. This design is proven to support 

multiple communication protocols including the GPS/GLONASS, DCS, PCS, UMTS2100, 

Bluetooth LTE2300/2500/3400 and 2.4-GHz WLAN and WiMAX 2.3/2.5/3.5GHz bands 

[139]. 
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Figure 2.26: Proposed Antenna Structure (a) Overall View (b) Front View (c) Bottom 
View [139] 

 

For the antenna design in Figure 2.27, T-shaped feeding strip and an encircled           

T-shaped parasitic shorted strip formed a coupled-fed antenna to achieve a low-wideband 

and high-wideband. The low-wideband and high-wideband are covering GSM850/900 

bands and GSM1800/1900/UMTS2100/LTE2300/2500 bands. On the other hand, a loop 

antenna working at 1/2 wavelengths is formed to cover the bands of GPS, GlONASS, 

Galileo and COMPASS [140]. The switching between two kinds of antenna is controlled 

by a PIN diode. The proposed antenna is able to achieve effective impedance matching in 

the desired bands [140]. 
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Figure 2.27: Dimensions of Metal Pattern in Antenna Area [140] 

 

The antennas that were specially designed by researchers in [127-133] are suitable 

to be implemented in current smartphone to improve the GNSS signals receive. This can 

enhance the use of smartphone as a positioning device for vehicle localization purpose.  

 

2.6 Performance Assessment 

The positioning requirement parameters are accuracy, coverage, integrity, 

availability, continuity, update rate, applicability, reliability and latency. This research 

work assesses the performance in term of continuity and accuracy. The continuity can be 

verified by testing at area with LOS and NLOS conditions. The accuracy will be evaluated 

through the calculations that are described later. 

Accuracy of positioning technology is a measurement that defines how close the 

measured location is to the actual location.  The closer measured location to the actual 

location indicates higher accuracy and better performance. There are three types of 
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accuracy measurements, which are Root Mean Square Error (RMSE), Circular Error 

Probability (CEP) and Horizontal Positioning Error (HPE). The categorization of 

performance assessment is presented in Figure 2.28. 

 

Figure 2.28: Performance Assessment 

 

2.6.1 Root Mean Square Error (RMSE) 

Root Mean Square Error (RMSE) is widely used in accuracy evaluation of 

positioning and the equation is as below:  

RMSE = �∑ (x�i − x)2 + (y�i − y)2n
i=0

n
 (2.8) 

where (x, y) is the actual location while (x�i, y�i) is the measured location with the 

subscript i  denotes the i  th of n  realizations. This equation can be further simplified as 

following: 

RMSE = �σx2 + σy2 (2.9) 

where σx is the standard deviation of horizontal positioning error while σy is the 

standard deviation of vertical positioning error. 
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To perform the calculation of this RMSE, the coordinates collected have to be 

converted into Universal Transverse Mercator (UTM). UTM is a 2-dimensional Cartesian 

coordinate system which provides horizontal position representation in terms of Easting 

and Northing on the planar surface of Earth. The system divides the Earth into sixty zones 

with the intersection of the equator and the zone’s central meridian as the point of origin of 

each zone. 

 The WGS 84 Spatial Reference System describes the Earth as a oblate spheroid 

with equatorial radius, a = 6378.137 km  and inverse flattening, 1
f

= 298.257223563 . 

Assuming the point with latitude, φ and longitude, λ with a reference meridian of longitude, 

λ0 , the Easting and Northing value can be computed with formulas as shown from 

Equation 2.10 to Equation 2.20. By convention, in Northern Hemisphere, N0 = 0 km and 

in Southern Hemisphere, N0 = 10000 km . Also, by convention, initial point scale 

factor, k0 = 0.9996 and E0 = 500 km. 

n =
f

2 − f
 (2.10) 

A =
a

1 + n
�1 +

n2

4
+

n4

64
+ ⋯� (2.11) 

α1 =
1
2

n −
2
3

n2 +
5

16
n3 (2.12) 

α2 =
13
48

n2 −
3
5

n3 (2.13) 

α3 =
61

640
n3 (2.14) 
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λ0 = Zone × 6° − 183° (2.15) 

t = sinh�tanh−1 sinφ−
2√n

1 + n
tanh−1 �

2√n
1 + n

sinφ�� (2.16) 

ᶓ′ = tan−1 �
t

cos(λ − λ0)� (2.17) 

η′ = tanh−1 �
sin(λ − λ0)
√1 + t2

� (2.18) 

E = E0 + k0A(η′ + �αj cos(2jᶓ′)sinh (2jη′))
3

j=1

 (2.19) 

N = N0 + k0A(ᶓ′ + �αj sin(2jᶓ′)cosh (2jη′))
3

j=1

 (2.20) 

Equation 2.10 to Equation 2.18 is equation to compute preliminary values and 

intermediate values. The Easting, E and Northing, N values can be obtained from the 

simplified equations, Equation 2.19 and Equation 2.20. The Easting and Northing values 

are the positions in term of kilometers. After conversion, the RMSE can be calculated by 

substitution of Easting and Northing values into Equation 2.8 and Equation 2.9. 

 Apart from the technique above, Spherical Law of Cosine can calculate the 

distance between 2 points with much easier and simpler formula. The distance calculated is 

same as the Root Mean Square Error (RMSE), where the equation of distance is 

d = cos−1[sinφ1 sinφ2 + cosφ1 cosφ2 cos∆λ] × R (2.21) 

where φ  is the latitude, λ is the longitude, ∆λ   is the difference between 2 

longitudes and R = 6371000m. 
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2.6.2 Circular Error Probability (CEP) 

Another common way to evaluate accuracy of location measurement is Circular 

Error Probability (CEP). CEP is defined as the radius of a circle with center (x, y) and 50% 

of the measured locations are targeted to be within this circle. The basic equation of a 

circle with CEP as radius and (x, y) as center is  

(x�i − x)2 + (y�i − y)2 = CEP2 (2.22) 

where x�i  is the moving x coordinate while y�i  is the moving y coordinate. By 

assuming u = (x�i − x) and v = (y�i − y), the equation of a circle can be rewritten as below: 

u2 + v2 = CEP2 (2.23) 

Gaussian function is a probability density function of distributed variable that is 

widely used in statistic to describe the normal distribution. (u, v) is assumed as Gaussian 

variables with mean (0,0) and variance (σu2,σv2).  

P(u) =
1

2πσu
e−

1
2�

u
σu
�
2

 (2.24) 

P(v) =
1

2πσv
e−

1
2�

v
σv
�
2

 (2.25) 

 The joint distribution of  P(u) and P(v) is given by  

P(u, v) = P(u) × P(v) (2.26) 

P(u, v) =
1

2πσu
e−

1
2�

u
σu
�
2

×
1

2πσv
e−

1
2�

v
σv
�
2

 (2.27) 
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P(u, v) =
1

2πσuσv
e−

1
2��

u
σu

�
2
+� vσv

�
2
� (2.28) 

The double integral of the joint Probability Density Function (PDF) is equals to    

50% as the requirement is that the CEP has a 50% probability of containing the target. This 

equation has to be solved in order to obtain the correct CEP value. 

�P(u, v)dudv = 0.5 (2.29) 

�
1

2πσuσv
e−

1
2��

u
σu
�
2
+� vσv

�
2
�dudv = 0.5 (2.30) 

Evaluation of equation above involves numerical approximation since the integral 

has no known anti-derivative except for some specific values of σu and σv. However, there 

is a formula which approximates the solution for the equation above which high degree of 

accuracy. The average error of this approximation is less than 1% and the maximum 

deviation is 1.5%.  

When the error variables are uncorrelated and the Gaussian distribution is of mean 

(0,0) and variance (σu2,σv2), the approximating formula for CEP may be used: 

CEP = �
σL(0.67 + 0.8w2)     if 0 < w < 0.5

0.59σL(1 + w)         if 0.5 ≤ w ≤ 1
 (2.31) 

where 

σL = Maximum �σdx,σdy� (2.32) 

σs = Minimum �σdx,σdy� (2.33) 
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w =
σs
σL

 (2.34) 

In [141], the formula of CEP is defined as  

CEP = 0.62σy + 0.56σx (2.35) 

and the paper stated that it is accurate when  σy
σx

> 0.3. 

In [142], the formula of CEP is defined as 

CEP≈0.75�σx2 + σy2 (2.36) 

where �σx2 + σy2 is the RMSE. 

 

2.6.3 Horizontal Positioning Error (HPE) 

Apart from the aforementioned popular ways to evaluate the performance of 

location prediction, Horizontal Positioning Error (HPE) is used to evaluate the accuracy of 

positioning. There is a formula namely Haversine Formula which can compute the distance 

between 2 coordinates. It is found that the obtained distance is the HPE of the 

measurement between the predicted coordinate and the GPS coordinate. 

a = sin2
∆φ
2

+ cosφ1 cosφ2 sin2
∆λ
2

 (2.37) 

c = 2atan2(√a ,√1 − a) (2.38) 

d = RC (2.39) 
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where φ is the latitude, λ is the longitude, ∆φ is the difference between 2 latitudes, 

∆λ  is the difference between 2 longitudes and R = 6371000m. 

 

2.7 Chapter Summary 

This chapter presents the satellite-based positioning, network-based positioning and 

location prediction techniques. The satellite-based positioning (GNSS, RNS and SBAS) 

techniques are recognized as mature technologies in the field of positioning, providing 

location with high accuracy. However, satellite-based positioning has the shortcoming of 

continuity. It cannot avoid NLOS issue. The positioning will fail to perform when the 

satellite signals are blocked or out of polarization. This is the point where the research on 

network-based positioning enters.  

Cellular network can provide estimated location according to Cell-ID, RSS, AOA, 

TOA and TDOA. The Cell-ID and RSS with high reliability, high applicability and low 

cost have the worst accuracy which is 200 m to 1500 m.  The AOA, TOA and TDOA are 

techniques with medium reliability and low applicability and medium/high cost give better 

accuracy, ranges from 50 m to 200 m. Thus, cellular network positioning is not considered.  

WLAN positioning requires large amount of installation of WLAN access points 

and development of large fingerprint database. The data collection for the database is time 

consuming and the maintenance of the database requires a lot of efforts from manpower 

from time to time. Thus, it has low applicability especially if it is outdoor positioning. The 

NLOS and multipath signal propagation issue degrades the accuracy.   
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VaNet can be implemented if the vehicles are installed with devices that having 

compatible communication protocol, frequency band, range and data rate. WAVE is 

mature technology but it requires continuous service fees for constant positioning. VaNet is 

not commonly implemented due to the privacy and security issue. 

A lot of researchers investigate on GPS/INS with aid of KF in the field of location 

prediction. Most of the experiments are carried out with low cost IMU and some of them 

are with bulky size. This is not practical and applicable in real life. IMU with high 

accuracy and small size is normally expensive. Therefore, it is suggested to use smartphone 

which is a daily essential device for civilian users and it is readily integrated with IMU.  

AI gives improvement in location prediction but its application is limited because 

the research works are emphasizing on simulation works instead of real life application. 

DR is the simplest method of location prediction which requires the least parameters. 

However, the studied research papers show that the researchers are focusing on 

smartphone-based Dead Reckoning for pedestrian instead of vehicle.  

According to the studied previous work, the non-real-time vehicle positioning 

systems are presented with simulation approach while those real-time vehicle positioning 

systems are mostly presented the design without further verification on the frameworks and 

without showing results or analysis. With a few of successfully developed systems, the 

authors do not focus on the positioning accuracy and do not consider the possibility of GPS 

signal lost.  

OBD-II is appeared to be suitable to retrieve necessary data from vehicle while 

antenna of smartphone is found that can be modified to obtain great GNSS signals. Thus, 
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smartphone is considered as a major component of this research work with the aid of  

OBD-II device to retrieve data from vehicle.  

Therefore, there is a need to have smartphone-based vehicle localization with 

integration of GPS and prediction algorithm.  There are very less papers explaining about 

how to compute accuracy of positioning. Thus, the performance assessments of positioning 

are highlighted in this dissertation, making a clear vision on how to evaluate accuracy of 

positioning. In short, RMSE will be chosen for performance assessment in this thesis. 
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CHAPTER 3 

METHODOLOGY 

3.1 Overview 

This chapter presents methodology that is set out to achieve the stated objectives. 

The primary objective of this research is to come out with a GPS-integrated location 

prediction model that can provide Vehicle Under Test (VUT) coordinates with reasonable 

accuracy under LOS and NLOS condition. The overall system architecture of integrating 

two different types of measurements, GPS and location prediction algorithm is explained. 

The chapter focuses on system architecture and conceptual framework. Apart from that, the 

system evaluation and validation are clarified by showing the methods of data collection 

and data analysis. 

 

3.2 System Architecture 

Figure 3.1 presents the methodology flow chart of system development.  Firstly, the 

key parameters for location prediction are identified. A list of parameters in the field of 

positioning is listed out in Table 3.1 according to the studies in Chapter 2. The most 

appropriate parameters will be chosen from this list as the key parameters. For example, if 

dead reckoning method is chosen, position updates, distance travelled and heading 

direction will be selected as key parameters. 

This is following by application programming to obtain the key parameters. If the 

application fails to obtain the key parameters, the process will be loop back to design and 
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program again. If the application successes, the process proceeds to the formulation of 

location prediction algorithm and testing.  

 

Figure 3.1: Methodology Flow Chart 

 

 

Objective 2 

Objective 3 

Objective 4 and 5 
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Table 3.1: Location Prediction and Parameters 

 

If the location prediction algorithm validation process fails, the formulation and 

validation will be continued until it success. Next, the loosely-coupled integration of GPS 

with location prediction model will be performed. Then, the location prediction model and 

its validation will be carried out. This process will be going on until success. Consequently, 

road tests will be performed and the performance assessment will be done. 

 This research attempts to propose a simple smartphone-based GPS-integrated 

location prediction model that can provide the vehicle’s coordinates with reasonable 

accuracy under LOS and NLOS condition. The proposed system architecture is as shown 

in Figure 3.2. 

Location Prediction Parameters Devices 

DR Position/velocity updates GPS 
Distance travelled  Odometer  
 
Heading direction 

Accelerometer 
Gyroscope 
Magnetometer 

INS Body’s specific force  
Angular rate  
Magnetic field 

Accelerometer 
Gyroscope 
Magnetometer  

Altitude Altimeter 
Velocity Air speed/wind estimation  
Heading direction Compass 
Pixel video updates Video sensor 
Position/velocity updates GPS 
TOA COMM  

KF Position/velocity GPS 
 
Heading direction 

Accelerometer 
Gyroscope 
Magnetometer 

Steering angle Steering angle sensor 
Throttle setting Throttle 
Braking force Brake  
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Figure 3.2: Proposed System Architecture 

 

OBD-II is an automotive device that is able to diagnose and capable to report the 

vehicle’s problem through ECU. With the implementation of OBD-II scanner or reader on 

vehicle, vehicle owner or mechanic can access the various parameters by PIDs and identify 

the malfunction parts within seconds. The standardized digital communication port can 

provide real-time data, showing the status of the various vehicle subsystems. Thus, the 

various valuable information obtains from OBD-II should be utilized.  

Malaysia’s local manufacture vehicles do not have the ECU and OBD-II but most 

of the Asian vehicles such as Toyato and Honda have. Thus, any vehicle that equipped 

with ECU and OBD-II can utilize this smartphone-based GPS-integrated location 

prediction model for localization. 

With the smartphone application, the information obtains from OBD-II can be 

accessed in real-time. The information includes GPS latitude, GPS longitude, GPS speed 

and GPS heading direction/bearing as well as vehicle’s speed. This data is helpful in 

positioning under LOS condition. While under NLOS condition, the last known coordinate, 

vehicle’s speed and vehicle’s heading direction/bearing are needed to predict the next 

location. Thus, an android application coding was written to log the vehicle’s heading 
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direction/bearing as there is no ready-made application available with this function. The 

android application can be written through Android Studio (Figure 3.3). 

 

Figure 3.3: Android Studio 

 

With the collaboration of the data from both OBD-II and smartphone’s sensors, the 

GPS-integrated location prediction model can be performed. The GPS will provide the 

location when the number of visible satellites is adequate. If the number of satellites 

detected is not sufficient, the location prediction will be activated to give predicted 

coordinates of the vehicle.  

 

3.3 Conceptual Framework 

The proposed system of smartphone-based GPS-integrated location prediction 

model for OBD-II-equipped land vehicle localization will work as shown in Figure 3.4. 

This integration system is loosely coupled. According to Figure 3.4, the system will firstly 

check the number of satellites. If the number of satellites is more than 4, the GPS latitude 

and longitude will be displayed. If the number of satellites is less than 4, the location 

prediction algorithm will take over the task. The location prediction algorithm will 

compute the next location with the last known coordinate, vehicle’s speed and vehicle’s 



72 
 

heading direction/bearing. The predicted coordinates are then proceeded to check accuracy 

and analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Conceptual Framework 

 

 
Figure 3.4: Conceptual Framework 
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3.3.1 Data Retrieval and Manipulation 

Prior to the experimental works, an in depth fundamental study on the positioning 

technologies is carried out to comprehend the theories available. With the comprehensive 

understanding on GPS and location prediction approaches, OBD-II adaptor ELM 327, 

OPPO F1 Plus and Samsung Galaxy S2 are selected as experimental devices. The 

specifications and functionality of these devices are studied in order to be used in the 

experimental works. Nevertheless, a prediction algorithm is suggested for the location 

prediction during the GPS signal outage. The devices are to be installed on a personal land 

vehicle, namely Honda City (as shown in Figure 3.8), for experimental purpose. 

 The OBD-II adaptor ELM 327 is shown in Figure 3.5 and its specifications are 

shown in Table 3.2.  Its dimension is 48mm x 25mm x 32mm, perfectly light and small. It 

will be installed in the chosen car, Honda City by just plugging in to the OBD-II socket, 

which is located under the steering of the car. It communicates and transfers data through 

Bluetooth connection. The Bluetooth range is 5 m to 15 m. This device can provide a long 

list of vehicle’s parameters including engine RPM, coolant temperature, fuel system status, 

air flow rate, fuel pressure, and so forth. The number of parameters ranges from 4,000 to 

15,000. This device is installed mainly to obtain the vehicle’s speed. 

 

Figure 3.5: OBD-II Adaptor ELM 327 
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Table 3.2: ELM 327 Bluetooth Specifications 

 ELM 327 Bluetooth Specifications 
Size 48mm x 25mm x 32mm 
Supported OBD-II Protocols J1850 PWM (Ford Vehicles) 

J1850 VPW (GM Vehicles) 
ISO9141-2 (Asian, European, Chrysler Vehicles) 
ISO14230-4 (Keyword Protocol 2000) 
ISO15765-4 (CAN) 

Bluetooth Range 5-15 meters 
Baud Rate 9600 or 38400 
Operating Voltage 12/24V 
Nominal Idle Current 45mA 
Operating Temperature -20º to 55º C 
Operating Humidity 10 to 85% 

 

 In order to extract data from OBD-II adaptor, a smartphone is needed. The 

smartphone has to consist of GPS and Bluetooth connectivity in order to obtain GPS data 

and vehicle’s speed. The smartphone OPPO F1 Plus (Figure 3.6) with these two functions 

is deployed. To be further discussed, this smartphone has accelerometer and gyroscope but 

does not have compass/magnetometer. These are shown in Table 3.3. 

 

Figure 3.6: OPPO F1 Plus 
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Table 3.3: OPPO F1 Plus Specifications 

 OPPO F1 Plus Specifications 
Size 151.8mm x 74.3mm x 6.6mm 
Processor 2GHz octa-core 
RAM 4GB 
Internal Storage 64GB 
Connectivity Wi-Fi Yes 

GPS Yes 
Bluetooth Yes 
USB OTG Yes 
NFC No 
Infrared No 

Sensors Compass/ Magnetometer No 
Proximity sensor Yes 
Accelerometer Yes 
Ambient light sensor Yes 
Gyroscope Yes 

 

 Currently, there is no android application that can log compass value (heading 

direction/bearing). Thus, a new coding is written to be programmed into a smartphone. 

Samsung Galaxy S2 is chosen because it has accelerometer, gyroscope and 

compass/magnetometer. It can provide the data that is needed. The smartphone is 

illustrated in Figure 3.7 and its specifications are presented in Table 3.4. 

 

Figure 3.7: Samsung Galaxy S2 
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Table 3.4: Samsung Galaxy S2 Specifications 

 Samsung Galaxy S2 Specifications 
Size 125.3mm x 66.1mm x 8.49mm 
Processor 1.2GHz dual-core 
RAM 1GB 
Internal Storage 16GB 
Connectivity Wi-Fi Yes 

GPS Yes 
Bluetooth Yes 
USB OTG No 
NFC Yes 
Infrared No 

Sensors Compass/ Magnetometer Yes 
Proximity sensor Yes 
Accelerometer Yes 
Ambient light sensor No 
Gyroscope Yes 

  

For the road test to be carried out, a land vehicle with ECU and OBD-II port is 

chosen. Honda City (Figure 3.8) with protocol ISO9141-2 is used in the experiment. The 

OBD-II adaptor device is installed in this vehicle at OBD-II socket which is under steering. 

Once the vehicle is initiated, the device will communicate with Bluetooth-paired 

smartphone immediately.  

 
Figure 3.8: Honda City 
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Once the device is connected to smartphone through bluetooth, the application 

(Torque) is able to read the input NMEA sentences from satellites and PIDs information 

from OBD-II adaptor ELM 327. The application can display the GPS speed, GPS heading 

direction/bearing, GPS accuracy, number of visible satellites and vehicle’s speed (OBD-II 

speed) and also log the data. The data can be then extracted and analyzed. On the other 

hand, the vehicle’s heading direction/bearing is also logged for location prediction purpose. 

The aforementioned data are stored in excel file for further analysis purpose. 

 

3.3.2 Prediction Algorithm 

 

Figure 3.9: Distance between Two Locations 

 

Figure 3.9 illustrates the last known coordinate, (∅1 ,  λ1 ), the next coordinate, 

(∅2, λ2), the distance between two coordinates, d and also the heading direction/bearing, θ. 

The heading direction/bearing is the angle between the true north of the last known 

coordinate to the next coordinate.   

 

 

(∅1, λ1) 

(∅2, λ2) 
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The prediction algorithm is derived from the equations below: 

Difference in latitude =
d

60
× cos θ (3.1) 

Difference in longitude =
d

60
× sinθ (3.2) 

where d is the distance between two locations in nautical mile and θ is the heading 

direction/bearing measured from north to that certain location in degree. The distance in 

nautical mile needs to be divided by 60 because 1° is equals to 60 nautical miles. These 

equations can be written as in Equation 3.3 and Equation 3.4 where ∅1 is latitude of last 

known coordinate, λ1 is the longitude of last known coordinate, ∅2  is latitude of next 

coordinate, λ2  is the longitude of next coordinate,. Then, they can be rearranged as 

Equation 3.5 and Equation 3.6.  

 ∅2 − ∅1 =
d

60
× cos θ (3.3) λ2 − λ1  =

d
60

× sinθ (3.4) 

∅2 = ∅1 +
d

60
× cos θ (3.5) λ2 = λ1 + 

d
60

× sinθ (3.6) 

 

The simplified predicted coordinate is 

cp = �∅2λ2
� = �∅1λ1

� + 9 × 10−6v �cosθ
sinθ� ± �

e∅
eλ�  

(3.7) 

where cpis the predicted coordinate, ∅2 is the predicted latitude, λ2 is the predicted 

longitude, ∅1  is the last known latitude, λ1 is the last known longitude, 9 × 10−6  is the 

converting factor, v is the velocity of vehicle per second, θ is the heading direction/bearing, 

e∅ is the latitude error, and eλ is the longitude error. 
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3.3.3 GPS-integrated Location Prediction Model 

 A Matlab coding is written to post-process all the collected data, including GPS 

latitude, GPS longitude, GPS speed, GPS heading direction/bearing, number of satellites, 

vehicle’s speed and vehicle’s heading direction/bearing. The functionality of the location 

prediction algorithm should be validated before proceeds to be integrated with GPS. When 

the algorithm works, the algorithm should be integrated with GPS through Matlab coding. 

The functionality of the model will be validated. It is supposed that GPS will work when 

the GPS signal is available, else, the algorithm will compute predicted coordinates when 

the GPS signal is lost. The model is able to perform the loosely coupled integration and 

provide coordinates continuously either under LOS or NLOS conditions.  

 

3.4 System Evaluation and Validation 

3.4.1 Data Collection 

The data collection for the smartphone-based GPS-integrated location prediction 

model is planned to be taken place in Kuching, Sarawak, Malaysia (Figure 3.10). Different 

test trajectories will be chosen to test the capability of the model. The scenarios have to 

involve slight turning, sharp turning, U-turn and roundabout. Besides the road condition 

will be different, the duration of data collection will be varied. The duration will be set as 5 

minutes and 10 minutes. 

During the data collection, the OBD-II adaptor will be plugged in to its socket in 

the chosen vehicle and it is made sure connected to the smartphone OPPO F1 Plus for the 

data logging purpose. The smartphone OPPO F1 Plus can be placed at the dashboard of the 

vehicle. Another smartphone Samsung Galaxy S2 will be placed properly on the dashboard 
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too. Its position is critical to log accurate compass values. The values are the vehicle’s 

heading direction/bearing per second which is a critical parameter in the location prediction 

model. Once the devices are placed properly at their positions in the vehicle and initiated, 

the vehicle can be driven along the set road trajectories for the fixed duration. 

 

 

 

Figure 3.10: Area of Data Collection (Kuching, Sarawak, Malaysia)  
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3.4.2 Data Analysis 

The performance of every experiment will be accessed by using Root Mean Square 

Error (RMSE). RMSE can be calculated with different ways. The Spherical Law of Cosine 

(Equation 2.19) can be inserted in Matlab code to compute the distance between the actual 

coordinates and predicted coordinates. The distance is the RMSE. Then, the average and 

standard deviation of RMSE can be calculated. 

Another method of calculation is shown in Figure 3.11. The logged data is exported 

into UTM Conversion MS Excel sheet to convert latitude and longitude in degree into 

UTM format. UTM shows Easting and Northing value in meters. The horizontal and 

vertical positioning errors can be found by using Equation 3.8 and 3.9. With the values of 

horizontal and vertical positioning error, RMSE can be calculated according to Equation 

2.7.  

eλ = Ea − Ep (3.8) 

e∅ = Na − Np (3.9) 

where eλ is the horizontal error/longitude error, Eais the actual easting value, Ep is 

the predicted easting value, e∅ is the vertical error/latitude error, Na is the actual northing 

value, Np is the predicted northing value. 
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Figure 3.11: Flow Chart to Obtain RMSE 

 

The Spherical Law of Cosine will be chosen to compute the RMSE. The graphs of 

performance are plotted by using Matlab and Microsoft Excel. The graphs include graph of 

latitude versus longitude, graph of RMSE versus time, graph of comparison and so on. 

Through the graphs, the continuity and accuracy of the experiments can be clearly 

observed. 
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3.5 Chapter Summary 

As aforementioned in Chapter 2, there is no research on smartphone-based       

GPS-integrated location prediction model for vehicle localization. Therefore, this chapter 

describes the methods to design the model, the details of data collection and ways of 

analysis for the results of experiment. The experiment for the vehicle localization is carried 

out by placing the planned devices on a chosen vehicle and the vehicle will be driven in 

different conditions/durations to verify the functionality of this model. The data will be 

saved into database for further analysis. The performance will be validated through its 

continuity and accuracy, which mainly emphasizes on the RMSE. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 Overview 

This chapter addresses the results of the smartphone-based GPS-integrated location 

prediction model for vehicle localization and provides complementary explanations of the 

results obtained. The chapter covers the results and analysis of experimental work which 

was carried out on five different test trajectories. Analysis is done based on one of the 

discussed performance assessment method, Root Mean Square Error (RMSE). The 

prediction model is then compared with other prediction formulas/models. The analysis 

will show the reliability and accuracy of the smartphone-based GPS-integrated location 

prediction model for OBD-II-equipped vehicle localization. 

 

4.2 Validation of Functionality of Prediction Algorithm 

To validate the functionality of the algorithm, data collection was carried out with 

logged GPS latitude, GPS longitude, GPS speed and GPS heading direction/bearing. The 

data were logged each second up to 500s to show the reliability and accuracy of the 

prediction algorithm. By substituting the collected data into the prediction algorithm 

(written with Matlab and coding as shown in Appendix A), the result of the prediction can 

be observed through Figure 4.1 to Figure 4.5. 
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The experimental road tests have been carried out at Jalan Akses FAC on 15 

December 2016 (Thursday) and repeated for 5 times in the period of time (2.00pm to 

2.50pm). The total duration was 50 minutes which meant averagely 10 minutes per round, 

providing about 500 to 600 data each round. It was a sunny day with clear sky view. Thus, 

the number of satellites in Line-of-Sight (LOS) was adequate (minimum 6 and maximum 

17). With this number of satellites visible to the data collection device, the GPS can 

provide location with excellent accuracy.  

 

Figure 4.1: Prediction Algorithm Validation 1 

 

Figure 4.1 shows the route plotted by using GPS coordinates (blue line) and a 

predicted route (red line). The result shows precise and accurate prediction. To be specific, 

the accuracy is 7.47 m. The accuracy is obtained from the RMSE calculation. The crucial 

part is the prediction during the 180° turning at the U-turn area, as highlighted in the figure.  

The errors were increasing to higher value after the U-turn. When there is a sudden 

change in the heading value within short period of time, the prediction algorithm could not 
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provide high accuracy computation. The sensor errors happen in millisecond instead of one 

second. Thus, the predicted coordinates will deviate from the actual values.   

 

Figure 4.2: Prediction Algorithm Validation 2 

 

 

Figure 4.3: Prediction Algorithm Validation 3 
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Figure 4.4: Prediction Algorithm Validation 4 

 

 

Figure 4.5: Prediction Algorithm Validation 5 

  

From the observation on Figure 4.1 to Figure 4.5, it is verified that the algorithm is 

works if the obtained parameters (speed and heading direction/bearing) are with certain 

accuracy. The accuracy calculated were 7.47 m, 5.69 m, 9.80 m, 5.77 m and 8.48 m 
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respectively and tabulated in Table 4.1. According to the research works regarding 

positioning, GPS provides position information with accuracy of 10 meters or less [143]. 

Thus, outdoor positioning with accuracy range of 10 m is acceptable. Figure 4.1 to 4.5 

shows slight deviation at U-turn, proving that the prediction will deviate from its actual 

route when there is a sudden change in direction. 

The maximum RMSE ranges from 22.8780 m to 47.7377 m. The errors are higher 

at two major turning points which are the U-turn and the start/end point (as shown in 

Figure 4.2). From Table 4.1, it can be observed that Set 2 is showing a better result. It 

presents the lowest maximum value of RMSE, the least average of RMSE and the smallest 

standard deviation of RMSE. This is due to the number of visible satellites along the route 

during data collection is higher if compared to other sets of data collection. On the other 

hand, Set 5 gives the worst performance because the number of visible satellites is lower 

during the data collections.   

Besides, it is found that the car speed might affect the number of visible satellites. 

As the speed increases, the number of satellites in LOS may decrease. By observing the 

raw data, the number of satellites in LOS drop to 10 or less than 10 when the car speed 

increases up to 80km/h and above, particularly if the car is accelerating up to a speed of 

110 km/h.  When the speed is increasing and the number of visible satellites is decreasing, 

the prediction algorithm gives result with less precision and less accuracy.  

In Figure 4.6, Set 2 and Set 4 show the better results in terms of either average or 

standard deviation of RMSE. Standard deviation is a better measurement in analyzing data 

as it uniquely characterized the dispersion of a distribution. The standard deviation of 

RMSE is ranging in between 5 m to 10 m. This shows that the accuracy of this prediction 
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algorithm is excellent as GPS itself defines its accuracy as 6 m to 7 m (as claimed in 

Section 2.2.1).  

Table 4.1: Performance of Prediction Algorithm 

 Set 1 Set 2 Set 3 Set 4 Set 5 
Maximum (m) 35.5926 22.8780 32.9219 28.4206 47.7377 
Average (m) 19.2235 10.9820 17.9273 13.2558 21.2553 
Standard Deviation (m) 7.5309 5.7089 9.8204 5.7901 8.5231 
Average Speed (km/h) 76 83 83 81 84 
Average No. of Satellites 11 12 11 11 10 

 

 

Figure 4.6: Average and Standard Deviation of RMSE of Prediction Algorithm  

 

4.3 Validation of Functionality of Prediction Model 

The functionality of the GPS-integrated Dead Reckoning prediction model was 

validated by insertion of the collected data (GPS latitude, GPS longitude, GPS speed and 

GPS heading direction/bearing) used in Section 4.2 into the prediction model. The GPS 

data is integrated with the prediction algorithm through loosely-coupled method. When the 
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0

5

10

15

20

25

1 2 3 4 5

RM
SE

 (m
) 

Set 

Average

Standard Deviation



90 
 

than 10), the prediction algorithm will take over the task to perform the location 

computation and show coordinate of vehicle. While the GPS signal is available, the GPS 

coordinate will be shown. The coding for this GPS-integrated Dead Reckoning prediction 

model was written in Matlab (as shown in Appendix B). The result of prediction can be 

observed through Figure 4.7 to Figure 4.11. 

 

Figure 4.7: Prediction Model Validation 1 

 

The data used to validate the functionality of prediction algorithm is same as the 

data used to validate the functionality of GPS-Integrated prediction model. In Figure 4.7, 

the blue line is the route plotted with GPS coordinates while the red line is the route plotted 

with the predicted coordinates. It can be observed that the test trajectory in this section is 

same as the route in Section 4.2, with the same Start/End point and a U-Turn. The only 

difference is the predicted route of the integrated model is more precise and accurate if 

compared to the prediction by stand-alone prediction algorithm.  
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Figure 4.8: Prediction Model Validation 2 

 

 

Figure 4.9: Prediction Model Validation 3 
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Figure 4.10: Prediction Model Validation 4 

 

 

Figure 4.11: Prediction Model Validation 5 

 

The results in Figure 4.7 to Figure 4.11 proved that the prediction model performed 

well with the provided parameters (speed and heading direction/bearing). The accuracy 

calculated were 3.96 m, 1.18 m, 1.53 m, 1.99 m and 8.41 m respectively and tabulated in 

Table 4.2. These results show excellent improvement compared to standalone prediction 

algorithm. 
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The maximum RMSE ranges from 5.87 m to 44.17 m. These values are averagely 

lower than the maximum RMSE in previous section. In term of average and standard 

deviation of RMSE, Set 2 gives the best results while Set 5 gives the worst results. The 

highest maximum RMSE in Set 5 is due to the outage of GPS signal for about 100s and the 

prediction errors accumulate up to high value in this period of time. During this period of 

time, the car speed is high (above 100 km/h) and the number of visible satellites is low     

(6 to 10). This is the reason of the poor accuracy.  

Since the prediction algorithm only performs when the number of satellites detected 

is less than or equal to 10, the number of prediction in each set is observed. The prediction 

data in Set 1 is 202, Set 2 is 128, Set 3 is 150, Set 4 is 189 and Set 5 is 250. This data is 

plotted in Figure 4.12. From Figure 4.12, it can be observed that the more the data of 

prediction, the higher the standard deviation of RMSE. When more predictions are 

performed in a set of data, it has higher probability to get cumulative prediction errors, 

which in turns reduces the accuracy.  

To conclude the overall data in this prediction model, the data is satisfying as it 

gives an average data that is less than 10 m of RMSE. It only gives poor prediction when 

the vehicle stopped and waited for U-turn or when the prediction algorithm runs for longer 

term. 

Table 4.2: Performance of GPS-integrated Location Prediction Model 

 Set 1 Set 2 Set 3 Set 4 Set 5 
Maximum (m) 25.4086 5.8653 8.6792 11.7152 44.1727 
Average (m) 1.4454 0.5289 0.7178 0.9667 3.9050 
Standard Deviation (m) 3.6781 1.1787 1.5302 1.9915 8.4055 
Number of Prediction 202 128 150 189 250 
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Figure 4.12: Standard Deviation of RMSE versus Number of Prediction 

 

In term of average and standard deviation of RMSE, prediction algorithm shows 

higher average value than standard deviation. In contrast, prediction model shows higher 

standard deviation than average value (Figure 4.13). This is due to the reason that when no 

prediction error will be detected in prediction model when GPS signal is excellent and thus 

those zero positioning errors will make the average value lower. Standard deviation 

characterizes each data uniquely so the value is higher if compared to the average value. 

 

Figure 4.13: Average and Standard Deviation of RMSE of Prediction Model 
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4.4 Performance Assessment of GPS-Integrated Prediction Model 

The required parameters for the GPS-Integrated prediction model are collected 

through a smartphone OPPO F1 Plus, a smartphone Samsung Galaxy S2 and                  

On-Board-Diagnostic-II (OBD-II) Bluetooth device ELM 327. The OBD-II bluetooth 

adaptor is installed on a vehicle namely Honda. A smartphone application, Torque (Lite) 

(as circled in Figure 4.14) is installed in OPPO F1 Plus to read the data from the OBD-II 

through Bluetooth connection.  The logged data is saved in .csv file, as shown in Figure 

4.15. The data consists of date, time, GPS latitude, GPS longitude, GPS heading 

direction/bearing, GPS speed, speed (OBD), gyroscope data, accelerometer data and 

number of satellites. The data is comprehensive and adequate for the experiment. 

 

Figure 4.14: Torque Installed in OPPO F1 Plus 
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Figure 4.15: Data Logged via Torque (Lite) 

 

Another parameter, heading direction/bearing is collected through a                

newly-programmed logging phone application (programmed with Android Studio 2.1.2) 

that is installed in Samsung Galaxy S2 (its icon and name are as shown in Figure 4.16). It 

is an android compass application (its interface is as shown in Figure 4.17) which can log 

the reading value of the compass per second in text file (as shown in Figure 4.18). The data 

is post-processed to obtain the predicted coordinates. The post-processed solutions are 

presented in the following section.  

         

Figure 4.16: Icon and Name of Apps Figure 4.17: Interface of Apps 
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Figure 4.18: Logged Compass Values with Date and Time 

 

The comprehensive data collection of five test trajectories were carried out and 

evaluated in this section. The total duration of field test was about 5013 seconds, which 

indicates 83 minutes and 33 seconds or 1 hour, 23 minutes and 33 seconds. During the data 

collection, it was a sunny day with clear blue sky view and the traffic was smooth as few 

vehicles were seen on the test trajectories.  

 

4.4.1 Scenario 1 

In Scenario 1, the first test trajectory is in Samajaya Free Industrial Zone. It is a 

rectangular path with five major left turnings, involving right-angle turning (90°) and   

non-right-angle turning (< 90°). The starting and ending point is at the same point as 

shown in Figure 4.19 and the black arrow shows the direction of the vehicle (facing south 

east) before it starts.  
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The data collection is carried out on 6 March 2017 (Monday), starting from 8.36 

am and ending at 8.56 am. This is the duration for 5 set data collection, which means there 

is a total of 20 minutes driving and collected about 1200 data. The average driving time for 

a round is 4 minutes, which is 240 seconds and giving 240 data. Three sets of data will be 

shown as following. During the data collection, it was a sunny day with clear sky view and 

clear traffic.  

 

Figure 4.19: First Test Trajectory Plotted on Google Map 

 

The GPS signal outage is intentionally introduced into the model during the 

experiment. There are 10 times of 10 seconds outage in this scenario. Among these 10 

times of outage in Set 1 data, there are only 3 outages with major errors that more than 50 

m RMSE while others’ errors remain below 20 m. The major errors can be seen as labeled 

in Figure 4.20 and Figure 4.21. The 3 major errors of the prediction happened at the major 

turning point and on the path after the major turning. The major turn makes the compass 
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drift and could not calibrate itself in time right after the turn. Thus, the errors accumulate 

and make the prediction inaccurate. 

 

Figure 4.20: Comparison between Reference and Location Prediction (Scenario 1 Set 1) 

 

 

Figure 4.21: RMSE versus Time (Scenario 1 Set 1) 
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happened at the same place, right after the first major turning. The collected heading 

direction/bearing deviated from its actual value after the turn and could not align back to 

the actual value immediately. Therefore, the prediction is imprecise and the RMSE is 

higher. 

 1  

Figure 4.22: Comparison between Reference and Location Prediction (Scenario 1 Set 2) 

 

 

Figure 4.23: RMSE versus Time (Scenario 1 Set 2) 
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Set 3 data is alike with Set 1 which has 3 major errors after the first major turn. The 

errors are as high as 50 m and approaching 65 m. The measured and logged compass 

values are not accurate after the turn, making the predicted coordinates deviate to the left. 

However, the error is minimized after the second major turn as the compass started to 

calibrate itself to correct value. The other error to be mentioned is during the first outage, 

which giving an error of 18 m. The error might due to the compass have not been adjusted 

to its best position before the experiment started.  

 

Figure 4.24: Comparison between Reference and Location Prediction (Scenario 1 Set 3) 

 

 

Figure 4.25: RMSE versus Time (Scenario 1 Set 3) 
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Figure 4.26 is comparison of the error performance of 3 sets of data. They are 

showing similar pattern of errors, except set 2 has lower error at 51 s and set 3 has higher 

error at 11 s. Set 1 has higher error at 31 s and 191 s if compared to the other 2 sets. 

 

Figure 4.26: Comparison of RMSE in Scenario 1 

 

In Table 4.3, the minimum, maximum, average and standard deviation of RMSE in 

meters is presented. The minimum RMSE value will be zero while the maximum RMSE 

value is approaching 71.3837 m. This maximum RMSE is high but the overall performance 

of the GPS-integrated prediction model is great as the average RMSE is between 5.6377 m 

to 6.8875 m, which is lower than 10 m.  On the other hand, the standard deviation of 

RMSE for total 100s of outage can be remained below 15 m shows a good performance. 

Table 4.3: Comparison of RMSE in Scenario 1 
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RMSE (m) 

Route 1 
Set 1 Set 2 Set 3 

Maximum 71.3837 63.4060 64.1347 
Average 6.8875 5.6377 6.8079 
Standard Deviation 12.6611 10.4699 12.9271 
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In comparison with the smartphone-based inertial navigation system in [144], the 

location is predicted according to gyroscope-based heading and magnetometer-based 

heading. The maximum errors obtained are 211.86 m and 296.16 m. If using the 

magnetometer-based heading prediction as example, the mean error is 111.64 m while the 

standard deviation is 82.80 m. The error is higher than the RMSE in this road test result 

and it happens in a real distance of 183 m which is comparable with the distance in this 

experiment. 

 

4.4.2 Scenario 2 

Scenario 2 is the second test trajectory in Samajaya Free Industrial Zone. It is 

another rectangular path but with only four major left turnings, involving two right-angle 

turnings (90°) and two non-right-angle turnings (< 90°). The starting and ending point is at 

the same destination as shown in Figure 4.27 and the white arrow shows that the vehicle is 

facing south west before the experiment is carried out.  

The data collection of Scenario 2 is carried out on 6 March 2017 (Monday), from 

9.05 am to 9.21 am with total of 5 set data. The total of 16 minutes’ drive has collected 

about 960 data. Each round of driving contributes about 192 data in 192 seconds. The 

performance of the three sets of data will be presented. The weather is good during data 

collection and without traffic congestion. 
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Figure 4.27: Second Test Trajectory Plotted on Google Map 

 

There are 12 GPS signal outages which is intentionally substitute into the GPS-

integrated model during the field test. In Scenario 2 Set 1, when the vehicle was facing 

south west, the errors are smaller and below 10 m. There are 4 out of 12 outages with low 

error. After the first corner, each outage shows larger error that more than 20 m. Among 

the 8 high errors prediction, the highest is at 151 s where the error increases up to 80 m. 

 

Figure 4.28: Comparison between Reference and Location Prediction (Scenario 2 Set 1) 
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Figure 4.29: RMSE versus Time (Scenario 2 Set 1) 

 

In Scenario 2 Set 2, there are 3 prediction errors that are more than 50 m, 5 

prediction errors that are in the range of 20 m to 50 m while other 4 predictions have error 

less than 10 m (at the beginning and when vehicle was facing south west). The predicted 

route deviated to the right when the vehicle was facing south east and deviated to the left 

when facing north east and north west. Comparative to the performance in Scenario 1 

whereas the errors tend to increase to higher point when the vehicle was facing to the north 

east. 

 

Figure 4.30: Comparison between Reference and Location Prediction (Scenario 2 Set 2) 

0
10
20
30
40
50
60
70
80
90

1 51 101 151 201

RM
SE

 (m
) 

Time (s) 

1 

2 

1 
2 



106 
 

 

Figure 4.31: RMSE versus Time (Scenario 2 Set 2) 

 

In comparison with Scenario Set 1 and Set 2 data, Set 3 performs the best which it 

has only 2 major prediction errors. The 2 major errors are about 48 m and 62 m when the 

vehicle was facing south east. The other errors are about 22 m or below. The 2 major errors 

happened when the measured heading direction/bearing is about 20° different from the 

actual value. 

 

Figure 4.32: Comparison between Reference and Location Prediction (Scenario 2 Set 3) 
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Figure 4.33: RMSE versus Time (Scenario 2 Set 3) 

 

Referring to Figure 4.34, the errors of Set 1 and Set 2 are more similar. Both sets of 

data have the highest errors at the 151 s and 171 s with errors in the range of 70 m and 80 

m. The large errors at these 2 outages are due to the deviation of compass values for more 

than 20°. 

 

Figure 4.34: Comparison of RMSE in Scenario 2 
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The minimum error values are 0 m while the maximum error values range from 60 

m to 80 m. In total of 250 data, there are 12 outages which involve 120 s of prediction. In 

average, the prediction has RMSE of 8.94 m, 9.31 m and 5.56 m. The prediction errors can 

be maintained below 10 m is good. The standard deviations of RMSE are about 10 m and 

15 m. The results of the outperforming set 3 can be seen from Table 4.4 as well. Its 

maximum, average and standard deviation of RMSE is the lowest among the 3 set of data 

collections. 

Table 4.4: Comparison of RMSE in Scenario 2 

 

 

 

 Dynamic neural network is introduced into GPS/INS navigation and the authors 

mainly focus on IDNN technique [39]. The authors compare the results of IDNN with INS 

(raw), RBFNN and KF. IDNN gives RMSE of 11.89 m while others are larger than this 

value. Therefore, the average RMSE in Table 4.4 is good if compared to the result in [39]. 

 

4.4.3 Scenario 3 

The third test trajectory was in Samajaya Free Industrial Zone. It is another 

rectangular path with four major left turnings, involving two right-angle turnings (90°) and 

two non-right-angle turnings (< 90°). The start/end point is indicated in Figure 4.35. The 

black arrow shows that the vehicle is facing south east before the experiment is carried out 

and the vehicle turned left after the experiment started for a few seconds.  

RMSE (m) 
Route 2 

Set 1 Set 2 Set 3 
Maximum 80.9471 77.3509 60.7309 
Average 8.9395 9.3090 5.5644 
Standard Deviation 15.7659 15.7512 10.3887 
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The date of data collection for Scenario 3 was on 6 March 2017 (Monday) and the 

time was from 9.36 am to 9.53 am. There is a total of 4 set data in this 17 minutes’ drive, 

contributing about 1020 data. Each round of driving contributes about 192 data in 192 

seconds. The performance of the three sets of data collected under clear sky view and clear 

traffic will be presented, as following. 

 

Figure 4.35: Third Test Trajectory Plotted on Google Map  

 

The third test trajectory obtained the best measured heading direction/bearing as the 

data showed better prediction results if compared to other test trajectories. The largest error 

is 30 m and the second largest error is 20 m. These values are much lower than the 

maximum errors in previous scenarios. The major errors start to happen at the third turning 

corner, which involving twice 45° turns. After the forth turn, the compass was able to 

calibrate itself to make the logged heading direction/bearing accurate. 

This trajectory has 10 GPS signal outages that was intentionally injected into the 

prediction model. Excluding the 2 major errors, there are 8 outages with prediction errors 

less than 20 m and 6 of them gives errors of 10 m or less than 10 m.   
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Figure 4.36: Comparison between Reference and Location Prediction (Scenario 3 Set 1) 

 

 

Figure 4.37: RMSE versus Time (Scenario 3 Set 1) 

 

Scenario 3 Set 2 also gives great performance where the major errors only 

happened twice. The major errors are about 35 m while minor errors are below 15 m with 6 

out of 8 are below 10 m of RMSE. The prediction is precise and accurate according to this 

performance. 
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Figure 4.38: Comparison between Reference and Location Prediction (Scenario 3 Set 2) 

 

 

Figure 4.39: RMSE versus Time (Scenario 3 Set 2) 

 

According to Figure 4.40, the major errors (29 m and 36 m) happened twice as 

indicated. There are 7 other outages which give prediction errors of less than 20 m. Among 
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Figure 4.40: Comparison between Reference and Location Prediction (Scenario 3 Set 3) 

 

 

Figure 4.41: RMSE versus Time (Scenario 3 Set 3) 

 

 The performance of this 3 set of data in Scenario 3 is slightly different from each 

other. Set 3 performed the best at the 1st and 9th outages while performed the worst at 2nd, 

3rd, 5th and 8th outages especially the 5th outage. Set 2 only performed the worst at 6th and 

7th outage while it performed well during other outages. Set 1 performed moderately. 
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Figure 4.42: Comparison of RMSE in Scenario 3 

 

The minimum value of RMSE is 0 m while the maximum value of RMSE is about 

30 m to 36 m. However, judging at the average RMSE, the performance of prediction 

model in this scenario is the best among the 5 scenarios. The average RMSE of the data 

maintains below 5 m. The 210 data in this scenario gives 6.18 m, 6.81 m and 7.59 m 

standard deviation of RMSE respectively. The values of standard deviation also the lowest 

if compared to other 4 scenarios. 

Table 4.5: Comparison of RMSE in Scenario 3 
 

 

 

 

An advanced GPS/INS using extended KF and integrating vector observations was 

described [145]. The different duration of GPS outages was inserted during the experiment. 
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Maximum 30.7564 35.4105 36.4485 
Average 3.7949 3.8773 4.8420 
Standard Deviation 6.1844 6.8054 7.5872 
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During the total of 235 seconds of GPS outage, the average RMSE was 7.975 m according 

to calculation. This value was higher than the average RMSE obtained through the 

experiment, which is below 5 m. 

 

4.4.4 Scenario 4 

Scenario 4 was happened in Samajaya Free Industrial Zone but it is a long straight 

road with 2 roundabouts. There is a big roundabout and a smaller roundabout. The second 

roundabout indicates a 180° turning. The vehicle is facing north east at the start/end point 

as shown by the black arrow in Figure 4.43.  

Scenario 4 data collection is carried out on 6 March 2017 (Monday), from 9.56 am 

to 10.10 am. The 3 sets of data were collected within 14 minutes with about 840 data. 

Averagely each set of data is 280 seconds and 280 data. The data shows good performance 

as the weather and traffic was excellent during the experiment.  

 

Figure 4.43: Forth Test Trajectory Plotted on Google Map 
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The difference between this scenario and previous 3 scenarios is that this is not a 

rectangular path with a few of left turnings but is a long straight round with 2 roundabouts 

and they are right turning roundabouts. In Figure 4.44, it can be observed that the predicted 

coordinates of the vehicles shifted to the left when the vehicle is moving towards north east 

while the predicted coordinates also shifted to the left after 2 roundabouts and facing south 

west.  

The set 1 data shows about 13 times of 10 s GPS signal outages were inserted into 

the prediction model. There are 4 positioning errors that more than 35 m. Other than 

RMSE of 21 m and 27 m, other RMSE are below 15 m. The RMSE increases after the 180° 

turning at the second roundabouts. 

 

Figure 4.44: Comparison between Reference and Location Prediction (Scenario 4 Set 1) 
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Figure 4.45: RMSE versus Time (Scenario 4 Set 1) 

 

For Scenario 4 set 2, the error goes high to 25 m right after the first roundabout. 

The error is then minimized until it approached the second roundabout. Its error is about 32 

m. Other than that, most of the errors remain in the range of 20 m. 

 

Figure 4.46: Comparison between Reference and Location Prediction (Scenario 4 Set 2) 
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Figure 4.47: RMSE versus Time (Scenario 4 Set 2) 

 

The 4 highest prediction errors during outages are as shown in Figure 4.48 and 

Figure 4.49.  The highest error is during the turning at the second roundabout which is 

relatively smaller and needs more change in the direction of vehicle. The other 3 errors are 

high is due to the failure of compass adjustment after the 180° turning at the roundabout. 

 

Figure 4.48: Comparison between Reference and Location Prediction (Scenario 4 Set 3) 
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Figure 4.49: RMSE versus Time (Scenario 4 Set 3) 

 

To conclude the overall performance of prediction model in Scenario 4, Figure 4.50 

is plotted.  The RMSE of 2 set data are presented in graph form. Set 3 performed better at 

the 4th, 8th, 11th and 12th outage but performed poorer at 6th and 10th outages. From figure, it 

can be observed that set 1 performed the worst as it contributed a few highest error values. 

Meanwhile, set 2 gives good performance in term of RMSE as it has only 2 large errors. 

 

Figure 4.50: Comparison of RMSE in Scenario 4 

0

5

10

15

20

25

30

35

40

1 51 101 151 201

RM
SE

 (m
) 

Time (s) 

0

5

10

15

20

25

30

35

40

45

1 51 101 151 201 251

RM
SE

 (m
) 

Time (s) 

Set 1

Set 2

Set 3

2 
3 4 1 



119 
 

The minimum value for the data is 0 m. Set 1 has the highest maximum RMSE 

which is 40.36 m. This raises the average RMSE of set 1 to 6.47 m and its standard 

deviation to 9.47 m. Set 2 has the lowest maximum, average and standard deviation of 

RMSE. Its performance is the best. Set 3 has a moderate performance if compared to set 1 

and set 2. To conclude the results of the prediction model, the average and standard 

deviation of RMSE are all below 10 m. This is considered as a successful prediction model. 

Table 4.6: Comparison of RMSE in Scenario 4 

RMSE (m) 
Route 4 

Set 1 Set 2 Set 3 
Maximum 40.3595 32.0080 34.5755 
Average 6.4738 5.6031 5.9381 
Standard Deviation 9.4696 7.8881 8.5114 

 

To compare with the results of this scenario, MEMS-based INS/GPS integration for 

low-cost navigation applications [110] will be discussed. This paper focuses on improving 

the performance of navigation through the implementation of KF-auto-regressive (KF-AR) 

model and KF-adaptive-neuro-fuzzy (KF-ANF) module. Within the stimulated 45 s GPS 

outages, the highest RMSE presented by KF-AR is approaching 60 m. KF-ANF is utilized 

to enhance the performance of KF-AR by reducing the RMSE to below 20 m and 8 of 9 of 

the RMSE are below 10 m.  

 

4.4.5 Scenario 5 

The fifth test trajectory is at Jalan Akses FAC. It is a long straight road with a main 

U-turn (180°). The total length of road is 12 km and the driving time is about 10 minutes. 

The field test was carried out on 6 March 2017 (Monday) in between 1.48 pm and 2.36 pm. 
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The starting and ending point is as shown in Figure 4.51 and the white arrow shows that 

the vehicle was facing north west before it departed.  

The vehicle mainly faced north west after started the journey and faced south east 

after make a U-turn. According to the total duration of 48 minutes data collection, there is 

a total of 2880 data obtained from the 5 rounds of driving. This indicates there is a mean of 

576 data per set. The sun was bright and shines while the traffic was smooth during the 

data collection. The best 3 sets are presented as below. 

 

Figure 4.51: Fifth Test Trajectory Plotted on Google Map 

 

This test trajectory is purposely set to a long distance and long duration data 

collection. With an interval of 10 s, a 10 s GPS signal outage will be programmed into the 

prediction model. The total number of GPS signal outage is 28. Within these 28 times of 

outages, the prediction data is about 280.  
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From Figure 4.52, the prediction errors cannot be seen clearly but the errors can be 

check in Figure 4.53. Out of 28 outages, there are 9 outages gave errors that more than 30 

m while another 19 gave errors that less than 30 m. The errors happened at 7th to 13th 

outage. This error increasing during vehicle was speeding on a road while there is a small 

curve on the straight road. The curve means there is a slight change in the heading of 

vehicle during the driving. However, the small changes are hardly detected and measured 

by the compass logger especially during high speed. 

 

Figure 4.52: Comparison between Reference and Location Prediction (Scenario 5 Set 1) 

 

 

Figure 4.53: RMSE versus Time (Scenario 5 Set 1) 
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Figure 4.54 shows the test results of scenario 5 set 2 and Figure 4.55 shows the 

RMSE versus time. There are 24 outages inserted into the prediction model. The 

performance is better since the errors do not more than 40 m. 24 out of 28 predictions give 

errors less than 35 m and 33.33% of them give errors that less than 10 m.  

 

Figure 4.54: Comparison between Reference and Location Prediction (Scenario 5 Set 2) 

 

 

Figure 4.55: RMSE versus Time (Scenario 5 Set 2) 
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Figure 4.56 and Figure 4.57 show the results of scenario 5 set 3. There are 25 GPS 

signal outages that are purposely introduced to the prediction model. There are 4 out of 25 

outages give errors more than 40 m. Other errors maintained below 30 m with only 2 errors 

below 10 m.  

 

Figure 4.56: Comparison between Reference and Location Prediction (Scenario 5 Set 3) 

 

 

Figure 4.57: RMSE versus Time (Scenario 5 Set 3) 
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Set 1 spent the most time on data collection and provided more data. Its accuracy 

from the beginning is much higher than the other 2 sets of data. It has the highest errors 

from 1st to 5th outage, 9th outage, 11th to 13th outage and 21st outage. Set 1 has the worst 

performance. Set 2 gives good performance as it only shows the highest errors at 22nd and 

23rd outages while has more errors that less than 10 m. Set 3 is the set with moderate 

results as it has 6 highest errors which is less if compared to set 1’s 10 highest errors.  

 

Figure 4.58: Comparison of RMSE in Scenario 5 

 

The minimum values of the RMSE in scenario 5 are 0 m. The maximum values of 

RMSE in scenario 5 are 53.90 m, 38.88 m and 65.08 m. These maximum values are lower 

than scenario 1 and scenario 2. The average values of RMSE are below 10 m, which is 

good as prediction result. The standard deviations of RMSE are 10.52 m, 8.84 m and 11.42 

m. These values are comparative with the values in scenario 1 and scenario 2. 
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Table 4.7: Comparison of RMSE in Scenario 5 

RMSE (m) 
Route 5 

Set 1 Set 2 Set 3 
Maximum 53.8965 38.8826 65.0795 
Average 7.8452 5.5953 7.4919 
Standard Deviation 10.5168 8.8427 11.4183 

 

Various filters are introduced into INS/GPS integration system [146]. The author 

proposes that adaptive filter is more effective than EKF in terms of estimating position and 

heading. The on-vehicle road tests are carried out with additional position errors are 

stimulated into the system within 20 s. Subsequently, simulations are performed to 

compare the performance of EKF and adaptive filter. The adaptive filter is outperforming 

and shows RMSE of 12.23 m (latitude error of 8.85 m and longitude error of 8.44 m). The 

RMSE in this dissertation has better performance than the results in [146]. 

 

4.5 Comparison with Other Methods 

To further verify the smartphone-based GPS-integrated location prediction model, 

the results of the model is compared with other works. The other methods that available for 

location prediction include Vincenty’s formula and Haversine formula.  

Vincenty’s formula is developed by Thaddeus Vincenty in 1975 [147]. The 

assumption that the figure of the earth is an oblate spheroid is made. Thaddeus Vincenty 

developed direct problem and inverse problem. The direct problem can be used to compute 

coordinates while the inverse problem can be used to compute distance and azimuth. The 

computation is complex. It involves a lot of intermediate parameters and iterations. This 

method requires longer computational time. 
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Haversine formula is an equation that is developed according to the law of 

haversine which relates the sides and angles of spherical triangles [148]. The formulas can 

be used to calculate great-circle distances between two points on a sphere or calculate the 

coordinate based on the distance and azimuth. 

Vincenty’s formula and Haversine formula are programmed by using Matlab 

(Appendix C and Appendix D). The results of these two formulas are presented in 

graphical form and in term of RMSE to compare with the results of the model.  

The condition of satellite signal lost is assumed as happens when the number of 

satellites is less than 15 (can be other random number). This condition is intentionally 

added to the Matlab codes to test the formulas. From Figure 4.59 to Figure 4.63, it can be 

observed that the location prediction is performed occasionally and randomly.  

However, the similarity is that the predicted coordinates by Vincenty’s formula, 

Haversine formula and the prediction model are close to each other. According to the data, 

they only slightly differ. Thus, Table 4.8 to Table 4.12 show the difference between the 

computed average RMSE and standard deviation of RMSE in all scenarios. 

Figure 4.59 shows the reference route of Scenario 1 and its predicted routes by 

Vincenty’s formula, Haversine formula and the prediction model. The blue route is the 

reference route. The red and green line covered by the purple line as they are too close to 

each other’s values. The small differences can only be observed from Table 4.8.  

The three different methods can give similar performance in terms of RMSE. The 

highlighted boxes in Table 4.8 are the lowest values if compared to the other two 

techniques. By this, it can be concluded that Vincenty’s formula with the most complex 
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computation and consideration is not necessary give the best performance. The other two 

equations can give better accuracy as well. 

 

Figure 4.59: Comparison of the Results of Formulas (Scenario 1) 

 

Table 4.8: Comparison of the RMSE of Formulas (Scenario 1) 

RMSE Vincenty's 
Formula 

Haversine 
Formula 

Prediction 
Model 

Average 7.6181 7.5823 7.5831 
5.6272 5.6083 5.6075 
2.8723 2.9033 2.8975 

Standard Deviation 21.7734 21.6412 21.6501 
13.1109 13.0169 13.0228 
6.7804 6.8563 6.8467 

 

 Figure 4.60 is the comparison of the results of formulas for Scenario 2. The 

performance of three prediction formulas is as expected, consistent and similar. The red, 

green and purple lines are predicted routes. They deviate from the blue reference route at 

the same points and same timing. The magnitude of deviation is slightly different from 
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each other. The RMSE of Haversine formula and prediction model is closer if compared to 

RMSE of Vincenty’s formula. 

 

Figure 4.60: Comparison of the Results of Formulas (Scenario 2) 
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provides the most precise and accurate prediction. The performance of these three methods 

is comparable. 

 

Figure 4.61: Comparison of the Results of Formulas (Scenario 3) 

 

Table 4.10: Comparison of the RMSE of Formulas (Scenario 3) 
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Model 
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standard deviation. The standard deviation of RMSE from three prediction methods does 

not have difference even up to ten thousandth. The complex Vincenty’s formula does not 

outperform in this case. Haversine formula and prediction model provides RMSE with 

minimal difference and they have better performance if compared to Vincenty’s formula. 
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Figure 4.62: Comparison of the Results of Formulas (Scenario 4) 

 

Table 4.11: Comparison of the RMSE of Formulas (Scenario 4) 
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Formula 
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Formula 

Prediction 
Model 
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Standard Deviation 0.0027 0.0027 0.0027 
0.0027 0.0027 0.0027 
0.0027 0.0027 0.0027 

 

 Scenario 5 is the longest route with the longest duration. Vincenty’s formula gives 

the best RMSE in this case either in term of average or standard deviation. The RMSE 

values of three methods are comparable. The percentage of difference of RMSE between 

these three techniques is less than 2%. The small percentage of difference shows the 

trustworthiness of prediction model. 
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Figure 4.63: Comparison of the Results of Formulas (Scenario 5) 

 

Table 4.12: Comparison of the RMSE of Formulas (Scenario 5) 

RMSE Vincenty's 
Formula 

Haversine 
Formula 

Prediction 
Model 

Average 9.4117 9.5519 9.5406 
5.4217 5.4465 5.4440 
3.1249 3.1827 3.1777 

Standard Deviation 20.3703 20.7001 20.6761 
16.0942 16.2139 16.2052 
8.9769 9.1679 9.1537 

 

4.6 Chapter Summary 

The functionality of the prediction algorithm and prediction model had been 

validated with the collected GPS data. For prediction algorithm, the standard deviation of 

RMSE is ranging in between 5 m to 10 m. For prediction model, the standard deviation of 

RMSE is ranging in between 1 m to 9 m. The range of RMSE validates the functionality of 

the prediction algorithm and prediction model.  
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The smartphone-based GPS-integrated location prediction model for                

OBD-II-equipped land vehicle localization was developed. Then, the experimental works 

were carried out in five chosen scenarios. For Scenario 1, the standard deviation of RMSE 

ranges from 10 m to 13 m. For Scenario 2, the standard deviation of RMSE ranges from 10 

m to 16 m. For Scenario 3, the standard deviation of RMSE ranges from 6 m to 8 m. For 

Scenario 4, the standard deviation of RMSE ranges from 7 m to 10 m. For Scenario 5, the 

standard deviation of RMSE ranges from 8 m to 12 m. Thus, the minimum value is 6 m 

and the maximum value is 16 m. This result is satisfying for location prediction. 

The location prediction model was further compared with other methods, 

Vincenty’s formula and Haversine formula. The results of these three methods are 

comparable and is verified that this prediction model is reliable. The RMSE of Haversine 

formula is closer to the RMSE of prediction model and they are not much different from 

the RMSE of Vincenty’s formula.   
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CHAPTER 5 

CONCLUSION 

5.1 Research Summary 

The major findings of the study are as follows: 

i. The current positioning technologies are compiled, categorized and evaluated in 

Chapter 2. Throughout the studies on various kinds of positioning technologies, it is 

found that no research work is done on integrating satellite-based positioning and 

location prediction for vehicle localization by using smartphone and OBD-II 

function. Thus, a smartphone-based GPS-integrated location prediction model for 

OBD-II-equipped vehicle localization is proposed. GPS is chosen as it is a mature 

and promising satellite-based positioning approach while prediction algorithm can 

support the positioning of vehicle whenever GPS has NLOS problem. Smartphone is 

selected as it is portable and convenient. In addition, OBD-II is deployed due to it is 

mandatory installed in most of Asian vehicles, its adaptor is small size, it is easy to be 

used and it can pull variety range of useful data from vehicle’s ECU. 

ii. The key parameters of location prediction algorithm are analyzed and identified. 

There are a lot of parameters that can be taken into consideration when come to 

location prediction. For the location prediction algorithm uses in this study, last 

known coordinate, distance travelled and heading direction/bearing are the key 

parameters. The last known coordinates can be acquired from GPS that is integrated 

in smartphone while the heading directions/bearings can be obtained from sensors of 

smartphone. The distance travelled can be computed from the equation d = v
t
 , where 

d is the distance travelled, v is the velocity and t is the time. The velocity can be 
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retrieved from OBD-II. 

iii. The location prediction algorithm is formulated and validated. The location 

prediction algorithm is cp = �∅2λ2
� = �∅1λ1

� + 9 × 10−6v �cosθ
sinθ� + �

e∅
eλ� . The key 

parameters are inserted into the location prediction algorithm to obtain predicted 

coordinates. The results are validated by comparing with GPS coordinates. The 

results show the continuity and accuracy of location prediction algorithm. 

iv. A smartphone-based GPS-integrated location prediction model is proposed and 

developed. The model is designed to provide GPS coordinates when GPS signal is 

available while location prediction algorithm will perform coordinate computation 

when GPS signal outages happen. The model is validated as well. It is functioning 

well. The accuracy is calculated and presented in Chapter 4. From the results 

obtained, the standard deviation of RMSE or accuracy is ranging from 5.2 m to 15.8 

m within 5-10 minutes. 

cp = �∅2λ2
� = �∅1λ1

� + 9 × 10−6v �cosθ
sinθ� ± (5.2 to 15.8 m) 

vi. The portability, applicability, continuity, accuracy and price of smartphone-based 

GPS-integrated location prediction model are defined. The smartphone and OBD-II 

adaptor are smaller and portable. The location prediction model is applicable in 

smartphone and it is able to provide continuous coordinates under LOS and NLOS 

condition. The accuracy is ranging from 5.2 m to 15.8 m. The price of smartphone 

and OBD-II is affordable. 

In conclusion, the objectives of this research work have been achieved. The 

smartphone-based GPS-integrated location prediction model for OBD-II-equipped vehicle 

localization is developed and verified to be portable, functional, applicable, reliable, 
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precise and accurate. This model will be useful to be implemented by civilian 

users/companies/government bodies (police or Jabatan Perangkutan Jalan) to monitor the 

location of vehicles in real-time. Tracking location of vehicle in real-time can prevent a 

personal to get lost in unknown area, can help a company to observe their 

employees/drivers/land vehicles, as well as can help government bodies to observe the 

traffic conditions. 

 

5.2 Significant Findings and Research Contributions 

This research work shows the ability of smartphone to provide high continuity 

vehicle localization with the integration of GPS, OBD-II and location prediction algorithm. 

The system can provide coordinates of vehicle without loss of data during the experiment 

work. Currently, most of the available positioning relies on satellites but satellite-based 

positioning fails to perform during NLOS condition. Thus, a smartphone-based            

GPS-integrated location prediction model is presented so that it can be easily implemented 

on OBD-II-equipped land vehicle. The civilian users/companies/government bodies (police 

or Jabatan Perangkutan Jalan) can pinpoint the location of OBD-II-equipped vehicles with 

smartphone under LOS and NLOS condition.  

 

5.3 Future Research 

The accuracy of the location prediction algorithm can be further improved by 

adding in low pass filter or other filtering such as Kalman Filter (KF). This is because KF 

is the best solution of integration and is widely implemented in the field of prediction. The 

extensions of KF can minimize the error and improve the accuracy of prediction. 
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In addition, the current smartphone’s antenna is linear-polarized and particularly 

designed for GSM signal transfer. There are investigations on circular-polarized antenna or 

dual-band Planar Inverted-F Antenna (PIFA) design in smartphone. The designs aim 

multiband signal transfer and better satellite signal receive. Therefore, the improvement to 

be suggested is the deployment of smartphone with modified antenna (circular-polarized or 

PIFA) instead of smartphone with linear-polarized antenna, 

Furthermore, the auto upload of data on server to store in database is another kind 

of improvement that can be done. This function is highly recommended as every 

smartphone has own data plan. The auto upload of data per second allows user to trace 

their driving route from the database whenever they want. This is helpful for a civilian user 

to keep the driving route as record, for a company to track the movement of company 

vehicles or for a government body to monitor the traffic on road. 

Last but not least, the technology of Geographic Information System (GIS) should 

be utilized. With the help of GIS mapping, civilian users/companies/government bodies 

can view the location of vehicles in real time on map (Google Map or Google Earth), either 

on client side (smartphone) or server side (monitoring center). 
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Matlab Coding of Prediction Algorithm 
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Appendix B 

Matlab Coding of Prediction Model 
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Appendix C 

Matlab Coding of Vincenty’s Formula 
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Appendix D 

Matlab Coding of Haversine Formula 
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