

Faculty of Cognitive Science and Human Development

Quantitative Analysis of EEG Activity in Mild and Moderately Depressed Young Adult

Lim Zi Xiang

Master of Science 2018

Quantitative Analysis of EEG Activity in Mild and Moderately Depressed Young Adult

Lim Zi Xiang

A thesis submitted

In fulfillment of the requirements for the degree of Master of Science

(Cognitive Neuroscience)

Faculty of Cognitive Science and Human Development UNIVERSITI MALAYSIA SARAWAK 2018

UNIMAS Graduate School FINAL SUBMISSION OF THESIS

This form is to be filled and submitted on final submission of the thesis upon correction (as advised by the Faculty) for hardcover binding together with a copy of CD to the UNIMAS Graduate School.

Name and ID of Candidate	Lim Zi Xian	g, 150202	66	
Degree	Master*	\checkmark	PhD*	
Programme	Cognitive S	cience		
Title of Thesis	Quantitative A Depressed Yo		EG Activity in Mild and	Moderately
Faculty/Institute/Centre	Faculty of Cognitive Science and Human Development			

*Please tick () accordingly

I hereby submit a total of ______ copies of the corrected version of my thesis for the final hardcover binding together with a copy of CD for the following distribution:-

- Centre for Academic Information Services (CAIS) (MUST submitted together with a copy of CD)
- (ii) Dean/ Director of Faculty/ Institute/ Centre
- (iii) Personal
- (iv) Supervisor

		Date
Signature of the Candidate	Xing	8100 19172
		1.4

Acknowledgment of receipt of the	0	Date
Above for UNIMAS Graduate School	As Norgenti	27.9.12
Signature & Official Stamp		

Number of copies received

* Please attached together a form of "Declaration of Original Work" when submitted to UNIMAS Graduate School.

UNIVERSITI MALAYSIA SARAWAK

Grade: _____

Please tick (√) Final Year Project Report Masters PhD

DECLARATION OF ORIGINAL WORK

Student's Declaration:

Lim Zi Xiang, 15020266, Faculty of Cognitive Science and Human Development

(PLEASE INDICATE STUDENT'S NAME, MATRIC NO. AND FACULTY) hereby declare that the work entitled, Quantitative Analysis of EEG Activity in Mild and Moderately Depressed Young Adult is my original work. I have not copied from any other students' work or from any other sources except where due reference or acknowledgement is made explicitly in the text, nor has any part been written for me by another person.

27/9/2018

Date submitted

Lim Zi Xiang (15020266) Name of the student (Matric No.)

Supervisor's Declaration:

I _______ (SUPERVISOR'S NAME) hereby certifies that the work entitled, _____Quantitative Analysis of EEG Activity in Mild and Moderately Depressed Young Adult (TITLE) was prepared by the above named student, and was submitted to the "FACULTY" as a * partial/full fulfillment for the conferment of ______Master of Science (PLEASE INDICATE THE DEGREE), and the aforementioned work, to the best of my knowledge, is the said student's work

Norsiah Fauzan

Received for examination by:

(Name of the supervisor)

Date: 27.09.18

I declare this Project/Thesis is classified as (Please tick (\mathbf{v})):

RESTRICTED

CONFIDENTIAL (Contains confidential information under the Official Secret Act 1972)* (Contains restricted information as specified by the organisation where research was done)*

✓OPEN ACCESS

Validation of Project/Thesis

I therefore duly affirmed with free consent and willingness declared that this said Project/Thesis shall be placed officially in the Centre for Academic Information Services with the abide interest and rights as follows:

- This Project/Thesis is the sole legal property of Universiti Malaysia Sarawak (UNIMAS).
- The Centre for Academic Information Services has the lawful right to make copies for the purpose of academic and research only and not for other purpose.
- The Centre for Academic Information Services has the lawful right to digitise the content to for the Local Content Database.
- The Centre for Academic Information Services has the lawful right to make copies of the Project/Thesis for academic exchange between Higher Learning Institute.
- No dispute or any claim shall arise from the student itself neither third party on this Project/Thesis once it becomes sole property of UNIMAS.
- This Project/Thesis or any material, data and information related to it shall not be distributed, published or disclosed to any party by the student except with UNIMAS permission.

Student's signature

Supervisor's signature: (Date)

Current Address:

Taman Chi Liund, Jeranger, No. 66, Lerang Kland

(Date)

Notes: * If the Project/Thesis is CONFIDENTIAL or RESTRICTED, please attach together as annexure a letter from the organisation with the period and reasons of confidentiality and restriction.

[The instrument was duly prepared by The Centre for Academic Information Services]

DECLARATION

The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

.....

Name : Lim Zi Xiang

Matric No. : 15020266

Faculty : Faculty of Cognitive Science and Human Development

Date : 28 February 2018

ACKNOWLEDGEMENT

"Do not be anxious about anything, but in every situation, by prayer and petition, with thanksgiving, present your request to God."

Philippians 4:6

First of all, I want to thank God for His provision in every area that I am lacking. I would also like to thank my family who has always supported me financially, emotionally and spiritually. A special gratitude to my main supervisor, Assoc. Prof. Dr. Norsiah Fauzan for her willingness to guide and support me in throughout my research. In addition, I would also like to thank my co-supervisor, Dr. Kartini bt Abdul Ghani for her encouragements and guidance whenever I seek help from her. I would not have been able to complete my thesis without them. Specials thanks to my proposal defense evaluators: Dr. Tan Kock Wah and Drs. Muhamad Sophian that has given me valuable feedback to improve my research.

I would also like to acknowledge my senior and fellow researchers, Nur Hurunain and Hartini who have unconditionally helped me in my research and taught me so much in my field of study. I am really touched as they never once expect any returns from their assistances.

Lastly, I would also like to give thanks to all my brothers and sisters in Hope Kota Samarahan for their fervent prayers, encouragements and supports during the course of my postgraduate study.

ABSTRACT

Several brain regions that show abnormal activities are known to be linked to depression such as anterior region of the brain and prefrontal cortex (PFC). Besides that, the persistence of default mode network (DMN) on the inferior parietal lobe (IPL) also associated to rumination of negative thoughts. This study aimed to identify the distinction in brain activity of young adults suffering mild and moderate depression in Malaysia. Quantitative Electroencephalography (qEEG) sources were assessed from 12 depressed university students with recommendation from counselors and 12 healthy university students. Participants were then group according to Beck Depression Inventory (BDI) criteria. The results of current study shows significant difference in beta1 (U = 43.0, p = .050, r = .34) and beta2 (U = 43.0, p = .050, r = .34) activities on the anterior region of the brain and heightened theta activity (U = 41.0, p = .038, r = .37) on the PFC in the depressed group. However, IPL in depressed group shows no persistency of alpha activity unlike previous study and has no relation to rumination thoughts ($r_s(24) = -.034$, p = .44). Excess beta activity is often found on patients suffering from depression and those with recurrent depression and excess theta on PFC is an indication of dysfunction in attention and working memory. Furthermore, coherence analysis supported the notion of imbalanced functional processes and low coherence on left and right frontal are potential areas for Neurofeedback Training (NFT).

Keywords: qEEG, DMN, Anterior, PFC.

Belia

ABSTRAK

Bahagian otak seperti bahagian anterior dan prefrontal cortex (PFC) yang mengalami ketidakbiasaan adalah tanda-tanda kemurungan. Selain itu, default mode network (DMN) yang berterusan di inferior parietal lobe (IPL) juga berhubungkait dengan pemikiran yang negatif. Kajian ini bertujuan untuk mengenalpasti perbezaan aktiviti otak dalam kalangan belia yang mengalami kemurungan ringan dan sederhana di Malaysia. Quantitative Electroencephalography (qEEG) telah digunakan untuk menilai 12 individu yang mengalami kemurungan dan 12 individu yang sihat. Peserta dibahagikan kepada kumpulan mengikut ciri-ciri Beck Depression Inventory (BDI). Keputusan menunjukkan perbezaan yang significant pada betal (U = 43.0, p = .050, r = .34) dan beta2 (U = 43.0, p = .050, r = .34) pada bahagian anterior otak serta aktiviti theta yang berlebihan (U = 41.0, p = .038, r = .37) pada PFC dalam kalangan kumpulan kemurungan. Bagaimanapun, IPL dalam kalangan pesakit kemurungan tidak menunjukkan aktiviti alpha secara berterusan, tidak seperti yang dinyatakan pada kajian terdahulu dan tiada hubungkait dengan ruminasi pemikiran ($r_s(24) = -.034$, p = .44). Aktiviti beta yang berlebihan selalu didapati pada pesakit kemurungan dan kemurungan berulang. Theta pada PFC yang berlebihan menunjukkan kegagalan berfungsi di dalam pemerhatian dan daya ingatan. Tambahan pula, analisis koheren menunjuk kepada masalah proses fungsional dan koheren yang rendah pada bahagian frontal kiri dan frontal kanan merupakan bahagian yang berpotensi untuk rawatan Neurofeedback Training (NFT).

Kata kunci: qEEG, DMN, Anterior, PFC.

TABLE OF CONTENTS

DECLARA	ГІО i
ACKNOWI	EDGEMENTii
ABSTRACT	۲iii
ABSTRAK	iv
TABLE OF	CONTENTS
LIST OF TA	ABLESix
LIST OF FI	GURESxi
LIST OF A	BBREVIATIONS
CHAPTER	1: INTRODUCTION
1.1 Intr	oduction1
1.2 Bac	kground of Study1
1.2.1	Impact of Depressive Disorders
1.2.2	Quantitative Electroencephalography4
1.2.3	Basic qEEG definition
1.2.4	qEEG and Depression7
1.2.5	Brain Default Mode Network and Rumination7
1.3 Pro	blem Statement
1.4 Res	earch Objective

1.5	Hypothesis	13
1.6	Conceptual Framework	15
1.7	Terminology	16
1.8	Significant of Study	18
1.9	Conclusion	19
СНАР	TER 2: LITERATURE REVIEW	20
2.1	Introduction	20
2.2	PET/SPECT Studies on Depression	20
2.3	fMRI Studies on Depression	22
2.4	Sleep and Wake EEG Studies on Depression	24
2.5	qEEG Studies on Depression	27
2.6	qEEG and fMRI Studies on Default Mode Network	33
2.7	Conclusion	36
СНАР	TER 3: METHODOLOGY	37
3.1	Introduction	37
3.2	Research Design	37
3.3	Participants and Settings	38
3.4	Sampling Method	39
3.5	Data Collection Protocol	40
3.6	Instrumentation	41

3.0	6.1	Ruminative Response Scale	
3.0	6.2	Quantitative Electroencephalography	43
3.7	Dat	ta Analysis Methods	44
3.2	7.1	Mann Whitney U Test	45
3.2	7.2	Spearman's Correlation	45
3.	7.3	Coherence Analysis	46
3.8	Cha	allenges in Data Sample Selection	46
3.9	Dat	ta Collection Gantt chart	49
3.10	Eth	ical Consideration	
3.11	Co	nclusion	51
СНАР	PTER	4: RESULTS	
4.1	Dei	mographic Data	
4.2	Bec	ck Depression Inventory	
4.3	Ru	minative Response Scale	53
4.4	Ab	solute Activity	54
4.4	4.1	Crosscorrelation Coherence	67
4.5	Co	nclusion	71
CHAP	PTER	5 CONCLUSION	72
5.1	Intr	oduction	72
5.2	Dis	cussion	72

5.2	Coherence Analysis	77
5.3	Conclusion	78
5.4	Contribution of Work	80
5.5	Limitation	81
5.6	Recommendation for Future Work	81
5.7	Concluding Remark	82
REFEI	RENCES	83
APPEN	NDICES	90

LIST OF TABLES

Table 1.1	Comparison on the prevalence of depression in Malaysia and United State (%)2
Table 1.2	Frequencies, normal occurrence and significance of each frequency bands 6
Table 1.3	ROIs from previous studies that will be investigated 11
Table 2.1	Previous studies on depression using PET/SPECT scan
Table 2.2	Previous studies on depression using fMRI
Table 2.3	Previous studies on depression using EEG
Table 2.4	Previous studies on depression using qEEG
Table 2.5	Previous studies on DMN using fMRI and qEEG
Table 3.1	Gantt chart for data collection
Table 4.1	Descriptive Statistics for the Age of Participants (N=24)
Table 4.2	Demographic Table for Participants' Race
Table 4.3	Descriptive Statistics for BDI scores of Participants (N=24)
Table 4.4	Descriptive Statistics for RRS scores of Participants (N=24) 53
Table 4.5	Mann Whitney Test for EC Task
Table 4.6	Mann Whitney Test for EO Task
Table 4.7	Mann Whitney Test for Comparison in Depressed and Normal Group (1) 58
Table 4.8	Mann Whitney Test for Comparison in Depressed and Normal Group (2) 58
Table 4.9	Mann Whitney Test for Comparison in Depressed and Normal Group (3) 59
Table 4.10	Mann Whitney Test for Comparison in Depressed and Normal Group (4) 59
Table 4.11	Mann Whitney Test for Comparison in Depressed and Normal Group (5) 60
Table 4.12	Mann Whitney Test for Comparison in Depressed and Normal Group (6) 60
Table 4.13	Mann Whitney Test for Comparison in Depressed and Normal Group (7) 61

Table 4.14	Mann Whitney Test for Comparison in Depressed and Normal Group (8) 61
Table 4.15	Mann Whitney Test for Comparison in Depressed and Normal Group (9) 62
Table 4.16	Mann Whitney Test for Comparison in Depressed and Normal Group (10) 62
Table 4.17	Mann Whitney Test for Comparison in Depressed and Normal Group (11) 63
Table 4.18	Mann Whitney Test for Comparison in Depressed and Normal Group (12) 63
Table 4.19	Descriptive Statistics for IPL Bands of Depressed Participants in EC Task 64
Table 4.20	Descriptive Statistics for IPL Bands of Normal Participants in EC Task 64
Table 4.21	Mann Whitney Test for Comparison on EC and EO Task
Table 4.22	Mann Whitney Test for Comparison in Depressed and Normal Group
Table 4.23	Spearman Correlation Matrix among RRS and Alpha Activity in EC Task 66
Table 5.1	Result from all Hypotheses Based on Previous Studies

LIST OF FIGURES

Page

Figure 1.1	Hubs and subsystems within DMN
Figure 1.2	Conceptual framework for current study15
Figure 3.1	Data collection protocol for current study
Figure 3.2	Diagram of Average Montage (Av) in Mitsar WinEEG 45
Figure 3.3	Example of Coherence Diagram in Mitsar WinEEG program
Figure 4.1	Grand average maps of qEEG power spectra for Depressed Group 56
Figure 4.2	Grand average maps of qEEG power spectra for Normal Group 57
Figure 4.3	Grand average diagram of qEEG coronal intra-hemisphere coherence for
	Depressed Group
Figure 4.4	Grand average diagram of qEEG sagittal intra-hemisphere coherence for
	Depressed Group
Figure 4.5	Grand average diagram of qEEG inter-hemisphere coherence for
	Depressed Group
Figure 4.6	Grand average diagram of qEEG coronal intra-hemisphere coherence for
	Normal Group
Figure 4.7	Grand average diagram of qEEG sagittal intra-hemisphere coherence for
	Normal Group 69
Figure 4.8	Grand average diagram of qEEG inter-hemisphere coherence for Normal
	Group

LIST OF ABBREVIATIONS

Notation

AAPB	Association for Applied Pyschophysiology and Biofeedback
BDI	Beck Depression Inventory
CNS	Central Nervous System
DLPFC	Dorsal Lateral Prefrontal Cortex
DMN	Default Mode Network
dMPFC	Dorsal Medial Prefrontal Cortex
EC	Eyes Closed
EEG	Electroencephalogrpahy
EO	Eyes Open
FFT	Fast Fournier Transform
fMRI	Functional Magnetic Imaging
Hz	Frequency/Relative Power
IPL	Inferior Parietal Lobe
LORETA	Low Resolution Electromagnetic Tomography
MDD	Major Depressive Disorder
Mdn	Median
MRI	Magnetic Resonance Imaging
Ν	Sample Size
NFT	Neurofeedback Training
OFC	Orbito Frontal Cortex
р	p-value
PET	Positron Emission Tomography

PFC	Prefrontal Cortex
qEEG	Quantitative Electroencephalography
r	Effect Size
rACC	Rostral Anterior Cingulate Cortex
r _s	Spearmen's correlation Coefficient
REM	Rapid Eye Movement
ROI	Region of Interest
RRS	Ruminative Response Scale
SD	Standard Deviation
SGH	Sarawak General Hospital
SPECT	Single-photon Emission Tomography
U	Mann Whitney U
vMPFC	Ventral Medial Prefrontal Cortex
Z	Standard Score
μV^2	Absolute Power

CHAPTER 1

INTRODUCTION

1.1 Introduction

This chapter served to introduce the genesis of current study that came upon review on the prevalence of Depression in Malaysia and the world, as well as the application of qEEG in investigating the brain sources or pattern of those suffering depression. Clear research objectives, hypotheses, definition of terms and conceptual framework was intended to be delivered in this chapter to help anyone that are either involved in the field of cognitive neuroscience or not understand the notion of current study and what this study wanted to contribute in the field of cognitive neuroscience, mental disorders and affective studies.

1.2 Background of Study

According to World Health Organization (WHO), depressive disorder or depression is a mental disorder that causes depressed mood, loss of interest and pleasure, guilt, low self-esteem, anxiety, lethargy, sleep disturbance and drastic changes in bodyweight (Marcus, Yasamy, Ommeren, Chisholm, & Saxena, 2012). The prevalence rate of depression holds 10.4 percent of the approximate 24 percent of mental disorders in primary health care worldwide according to the World Health Report (World Health Organization, 2001). Depression is continuously on the rise and by year 2020, depression will be one of the main causes of worldwide disability. In Asia Pacific region, rates of major depression range from 1.3 to 5.5 % and it is still comparable with other western countries. In Malaysia, depression is most reported and treatable mental disorder. It is predicted to affect

approximately 2.3 million people in Malaysia at some point of their life (Mukhtar & Oei, 2011). The overall prevalence of depression in Malaysia is 3.9 to a whopping 46% in comparison to 9% in United State (Depression, 2011). Prevalence in primary health care in a single study shows a range between 6.7 to 14.4 % in Malaysia. The comparison of prevalence of depression between the elderly in Malaysia also shows that Malaysia have higher rate (6.3 - 18%) of depression in comparison to United State (1 – 2%) (Mukhtar & Oei, 2011). Other depressive disorder statistics such as postpartum depression is shown on Table 1.1.

Table 1.1: Comparison on the prevalence of depression in Malaysia and United State (%)

	Overall	Primary Care	Elderly	Postpartum
Malaysia	3.9 - 46*	6.7 – 14.4*	6.3 – 18*	3.9 - 20.7*
United State	9	6.3	$1 - 2^*$	5-25*

*An approximate percentage of the statistics

Note. Data for prevalence of depression in Malaysia from Mukhtar & Oei (2011), and for United State from Depression (2011).

1.2.1 Impact of Depressive Disorders

Depressive episodes occur to everyone in different period of lifetime and if not carefully dealt with will potentially turn chronic and recurrent. It will further disrupt one's ability to take of their daily responsibilities. WHO study also shows cases of depression reported are 50% higher in female than male (Marcus et al., 2012). Depression has impacted individuals, families and communities in different aspect such as stigma and discrimination, socioeconomics, quality of life, and suicide rates. In worldwide, depression has affected 121 million people and severe depression has cause 850 thousand death in a year (Bromet et al., 2011). Families that have members suffering with depression have to

provide physical and emotional supports while facing discrimination themselves, this make coping with members with depression more difficult. In order to cope with members with depression, families need to sacrifice their social circles outside of the family and loss productivity in their work (not taking up overtime work for projects and assignment to spend time with family members). In a study on burden of diseases shows that out of the 31% of burden from neuropsychiatric conditions, 12% of the burden comes from depressive disorders which was also the highest in all neuropsychiatric conditions. In Southeast Asia, 27% of the burden of diseases comes from neuropsychiatric condition but the burden of depressive disorder specifically was uncertain (World Health Organization, 2001).

The economic impacts of depression are often long-term and costly such as health and social service needs that is possibly for a lifetime. Besides that loss of employments of those suffered depression and some of them are breadwinner of the family will affect the family financially. Other non-physical costs such as reduce productivity that was mentioned earlier will bring impact on the families and caregivers as well. According to a few studies of the economic costs of mental disorders done in United States, United Kingdom and Holland showed that the yearly cost of mental disorder can range from 2.5 - 23% of the health services and inpatients expenditure (World Health Organization, 2001).

The impact of depression on the quality of life was another aspect that was measure using a subjective rating for individual in various area of their life. The result shows that Quality of Life (QOL) rating was poor even after recovery from depression due to the stigma and discrimination of mental disorder in society. Those suffers from depression and did not

have basic social and functioning needs met are shown to be the largest predictor of low rating QOL (World Health Organization, 2001).

The current preferred treatment is the combination of anti-depressant and psychotherapy especially in resource-constrained countries such as Uganda, Chile and India. Treatments such as interpersonal psychotherapy, pyscho-educational group intervention and psychosocial intervention. Such primary care treatments are considered cost-effective and feasible according to economic analysis (Marcus et al., 2012).

1.2.2 Quantitative Electroencephalography

Brain imaging has been providing insight about structural or functional anomaly in patients with various mental disorders and shown it is linked with brain dysfunctions. These imaging tools includes magnetic resonance imaging (MRI) functional magnetic resonance imaging (fMRI), positron emission tomography (PET) single-photon emission computed tomography (SPECT), conventional electroencephalography (EEG), and quantitative electroencephalography (qEEG). One of the most commonly used non-invasive imaging tool is EEG, and with software that utilized Fast Fournier Transform (FFT) algorithms, brain waves recorded can be quantify into numbers that provides information on the relative and absolute power of different waves. Electrophysiological assessment using EEG and qEEG are the most practical methods as it is relatively simple to be used, inexpensive, mobile equipment (depending on the brand and model). Besides that, it has the most replicated evidence regarding psychiatric and mental disorders in academic and clinical studies. However, adaptation of EEG and qEEG has not been extensive in clinical community due to its lack of psychiatric studies in comparison to electrophysiological brain research studies even though more than 500 EEG and qEEG studies reports on brain anomaly was in accordance to high proportion of psychiatric patients (Hughes & John, 1999).

The beginning of application of EEG dated back to 1929 when Hans Berger published the first EEG sample of his son. The first EEG sample of his 16 years old son included an approximately 10 Hz which is later called alpha EEG rhythm and a faster desynchronized EEG that was later called beta EEG rhythm (Berger, 1929). Conventional EEG was previously inspected visually until digital equipment was available to quantify the EEG sample power spectrum. This power spectrum analysis are what now known as qEEG and there are often debates on whether qEEG should be analyze without the conventional EEG wave graph (Arns et al., 2011). One of the earliest applications of EEG in depression study was done by Lemere (1936) where the study shows that the ability to produce normal alpha waves is a characteristic that the affective capacity of an individual is normal. Discoveries of EEG and qEEG studies on depression were covered in literature review on previous studies.

1.2.3 Basic qEEG definition

The most basic qEEG recording was usually done in 19 electrodes and position in accordance to the international 10-20 system (Homan, Herman & Prudy, 1987). Normally sample of eyes open and eyes closed are recorded around the time frame of 3-5 minutes because anything longer than it might be compromised with drowsiness. The sample will then be edited to remove any artifacts (air conditioning sound, statics, body movements, and etc.). FFT algorithm will then quantify the sample as mentioned earlier and produced

an averaged frequency for each band known as power spectrum. The frequency range was previously separated to 4 frequency bands which are defined as delta (1.5 - 3.5 Hz), theta (3.5 - 7.5 Hz), alpha (7.5 - 12.5 Hz), and beta (12.5 - 30 Hz) (Hughes & John, 1999). Later another frequency range was introduced defined as gamma (>30 Hz). These averaged frequencies are represented as absolute power (μV^2) and relative power (Hz) (Table 1.2).

Band	Frequency (Hz)	Normal Occurrence	Significance
Delta	1.5 – 3.5	Deep Sleep and Infants	Sign of brain dysfunction, lethargy or cognitive impairment
Theta	3.5 – 7.5	Young Children, lethargy and some characteristics of learning	Often related to attention or cognitive impairment
Alpha	7.5 – 12.5	Eyes closed, relax and self – awareness	Excessive alpha frequency waves might be an indication of learning difficulty and relating with environment
Beta	12.5 – 30 Hz	Alert and anxious	Excessive beta frequency waves might indicate anxiety or irritability
Gamma	>30 Hz	Associated with problem solving and memory consolidation.	N/A

Table 1.2: Frequencies, normal occurrence and significance of each frequency bands

Note. Reprinted from Coben, Linden & Myers (2009)