

900MHZ AND 1800MHZ MOBILE PHONE SIMULATION WITH HUMAN HEAD AND HAND MODEL

Nasyitah bt Ahmad Kamal

TK 6564.4 C45 N269 2010

Bachelor of Engineering with Honours (Electronics & Telecommunication Engineering) 2010

		R13a
	BORANG PENGESA	HAN STATUS TESIS
Judul:	900 AND 1800 MHz MOBILE PHONE SIM	ULATION WITH HEAD AND HAND MODEL
	SESI PENGAJI	IAN: <u>2009/2010</u>
Saya	NASYITAH BIN	NTI AHMAD KAMAL
	(HUR	UF BESAR)
mengal dengan	tu membenarkan tesis * ini disimpan di Pusat Kh syarat-syarat kegunaan seperti berikut:	idmat Maklumat Akademik, Universiti Malaysia Sarawak
1. 2.	Tesis adalah hakmilik Universiti Malaysia Sarav Pusat Khidmat Maklumat Akademik, Universit tujuan pengajian sahaja	vak. ti Malaysia Sarawak dibenarkan membuat salinan untuk
3. 4.	Membuat pendigitan untuk membangunkan Pan Pusat Khidmat Maklumat Akademik, Universiti sebagai bahan pertukaran antara institusi pengaji	gkalan Data Kandungan Tempatan. i Malaysia Sarawak dibenarkan membuat salinan tesis ini ian tinggi.
5.	** Sila tandakan (🖌) di kotak yang berkenaan	
[SULIT (Mengandungi makl Malaysia seperti yar	umat yang berdarjah keselamatan atau kepentingan ng termaktub di dalam AKTA RAHSIA RASMI 1972).
[TERHAD (Mengandungi makl badan di mana penye	umat TERHAD yang telah ditentukan oleh organisasi/ elidikan dijalankan).
[✓ TIDAK TERHAD	
	•	Disahkan oleh
	ANAN JAHAT	10 ¹ 0
_	//2×7///"	<u> 5/0</u> 140 h
	(IANDA IANGAN PENULIS)	(IANDA PARGAN PENYELIA)
Ala	mat tetap: NO 306 BLOK 4	
-	ILN PJS 2C/5, TAMAN DATO' HARUN,	KASUMAWATI BINTI LIAS
	46000 PETALING JAYA, SELANGOR	Nama Penyelia
		• • •
Tarikh: _	30/7/2010	Tarikh: 30/7/2010

CATATAN

*

Tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah, Sarjana dan Sarjana Muda. Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi ** berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT dan TERHAD.

UNIVERSITI MALAYSIA SARAWAK

900 AND 1800 MHz MOBILE PHONE SIMULATION WITH HEAD AND

HAND MODEL

NASYITAH BINTI AHMAD KAMAL

This project report is submitted as a partial fulfillment of the requirements for the degree of Bachelor of Engineering with Honors (Electronics and Telecommunication Engineering)

Faculty of Engineering

UNIVERSITI MALAYSIA SARAWAK

2009/2010

This Final Year Project attached here:

Title	: 900 AND 1800 MHz MOBILE PHONE SIMULATION
	WITH HEAD AND HAND MODEL
Student Name	: NASYITAH BINTI AHMAD KAMAL
Matric No	: 16792

has been read and approved by:

Ms. Kasumawati Binti Lias

.

Date

(Supervisor)

Dedicated to my beloved family and friends

UNIVERSITI MALAYSIA SARAWAK

TABLE OF CONTENTS

CONTENT	PAGES
TABLE OF CONTENTS	
ACKNOWLEDGEMENT	i
ABSTRAK	ü
ABSTRACT	iii
LIST OF TABLES	iv
LIST OF FIGURES	v
ABBREVIATIONS	vii
CHAPTER 1 INTRODUCTION	1
1.1 Introduction	1
1.2 Problem Statement	2
1.3 Project Objectives	3
1.4 Project Scope	4
1.5 Project Outlines	5
CHAPTER 2 LITERATURE REVIEW	7
2.1 Introduction	7
2.2 Revolution	8
2.2.1 The Generation	9
2.3 The Drawbacks	10
2.3.1 Biological Effects	11
2.3.2 Health Effects	12

2.3.2.1 Potential Health Effects	12
2.3.2.2 Adverse Health Effects	12
2.3.2.3 Thermal and Non-Thermal Effects	13
2.4 Situation in Malaysia	14
2.5 Summary of Practiced and experienced in	16
other countries and International Recommendation	
2.6 Reviews of the International Organization on	19
Health Effect of the RF exposure	
2.7 Radio Frequency	21
2.8 Mobile Base Station	22
2.9 Electromagnetic Fields (EMF)	23
CHAPTER 3 METHODOLOGY	27
3.1 Introduction	27
3.2 CST Microwave Studio (CST MWS)	33
3.3 Specific Absorption Rate (SAR)	35
3.4 Standard Anthropomorphic Model (SAM)	37
3.5 Simulation on Antenna and Mobile Phone	38
3.6 Simulation SAR on the SAM Phantom	39
CHAPTER 4 RESULTS, ANALYSIS, AND DISCUSSION	41
4.1 Introduction	41
4.2 Results, Analysis and Discussion	42
4.2.1 Result for Planar Antenna (mobile phone)	42
900MHz and 1800MHz	
4.2.2 Simulation of 900MHz and 1800MHz	47
Mohile Phone with Head and Hand Model	

C	CHAPTER 5	CONCLUSION AND RECOMMENDATION	63
	5.1 Us	eful Tips from Malaysian Communication	64
	ar	nd Multimedia Commission	
	5.2 W	HO Guidelines	65
	5.3 Re	commendation	68
REFERENCE		69	

ACKNOWLEDGEMENT

This project has been made possible as a result of the co-operation and support rendered by several individuals. While it is impossible to list down all of them, I am very grateful for their assistance.

Firstly, I would like to thank my supervisor, Ms. Kasumawati Binti Lias. Her comments support, and guidance has helped me throughout the course our project. Without her cooperation and dedicated work in keeping the project on track, I would not be able to complete the project easily and on time.

Thankfulness would like to give to my friends and family who give full supports to me either morally or financially. They had helped me in sailing through the many hard days in lives and studies all these while.

Finally, I express my gratefulness to in the individuals who involved direct or indirectly during the progress of this project.

ABSTRAK

Dalam era modenisasi ini, komunikasi memainkan peranan yang penting untuk menyebarkan dan menyampaikan maklumat kepada orang ramai melalui pelbagai saluran. Pengunaan alat komunikasi seperti telefon bimbit telah mendapat sambutan yang hangat ekoran daripada ledakan sains dan teknologi. Keadaan sedemikian telah menimbulkan isu kesihatan di kalangan masyarakat akibat daripada pengunaaan telefon bimbit secara berleluasa yang berkait rapat dengan pendedahan terhadap radio frekuensi. Oleh itu, projek ini bertujuan untuk menyelidik kesan pemancaran oleh telefon bimbit terhadap manusia. Sasaran utama projek ini adalah untuk mencari nilai "Specific Absorption Rate" (SAR) melalui simulasi "Computer Simulation Technology" (CST). Projek ini menumpukan secara terperinci untuk SAR 1g dan 10g tisu otak. Dalam konteks ini, dua jenis telefon bimbit digunakan untuk kajian iaitu telefon bimbit berfrekuensi 900MHz dan 1800MHz. Dengan merujuk kepada hasil kajian, didapati bahawa nilai SAR bagi 1g dan 10g tisu otak tidak melebihi had yang ditetapkan oleh ICNIRP (International Comission on Non-Ionizing Radition Protection), iaitu 2W/kg. Oleh yang demikian, kesimpulannya, pengunaan telefon bimbit tidak memaparkan kesan terhadap kesihatan manusia. Walaubagaimanapun, telefon bimbit mampu meninggalkan kesan sampingan dari segi biologi terhadap penggunanya seperti mual, sakit kepala dan penat.

ABSTRACT

Communication referred as an information transmission from one place to another place. The usage of mobile communication such as mobile phones had increased rapidly. With that, peoples concern about the health issues arise from the wide usage of mobile phones which are associated with the Radio Frequency (RF) exposure from the mobile phones. This project investigates the radiation effects of mobile phones towards human health. The main aim of this project is to determine the Specific Absorption Rate (SAR) values via Computer Simulation Technology (CST) simulation in order to indicate the effects of mobile phones towards human health. This project concentrates on the SAR value computation of 1g and 10g of brain tissue. Throughout this project, two types of mobile phones either with frequencies of 900MHz and 1800MHz are covered for simulation. According to the results, the SAR values obtained for 1g and 10g of brain tissue do not exceed the limit of threshold exposure, $\frac{2W}{Kg}$. Therefore it can be deduced that the mobile phones exhibit no adverse health effects towards human health. However, there are several temporary adverse health effects such as dizziness, headaches and fatigue. As a conclusion, the radiations of the mobile phones do not produce adverse health effects towards human health. Nevertheless, further investigations are required in order to provide concrete evidences on mobile phones radiation effects towards human health.

LIST OF TABLES

TABLE

PAGE

2.1 Practice and Experience in Other Countries	16
4.1 Return Loss for 900MHz and 1800MHz	47
4.2 Frequency, SAR, Power Absorbed, and S-Parameter	54
for 1g Brain Tissue	
4.3 Frequency, SAR, Power Absorbed, and S-Parameter	55
for 10g Brain Tissue	

LIST OF FIGURES

FIGURE		PAGE
2.1	Mobile Phone Users in Malaysia	14
2.2	Exposure to Radio Frequency in Daily Life	22
2.4	Mobile Base Station	23
2.5	The Electromagnetic Spectrum	24
2.6	Positive and Negative Electric Charges	25
	(Static)-(Electric Field)	
2.7	Positive and Negative Electric Charges	25
	(in Motion)-(Magnetic Field)	
2.8	Ionizing and Non-Ionizing Frequency	26
3.1	Flow Chart of Mobile Phone with 900 MHz and	29
	1800 MHz Simulation	
3.2	Flow Chart of 1g and 10g Brain Tissue Simulation	31
3.3	Real Human Model in CST	33
3.4	Visible Human Voxel Data	34
3.5	Other Voxel Model	34
3.6	SAM Phantom	37
3.7	3D view of the antenna	38

3.8	Define the Power Loss and Averaging Mass	39
3.9	SAR Special Setting	40
4.1	3D Outline View of Planar Antenna (Mobile Phone)	43
4.2	3D Farfield for 0.9GHz	43
4.3	3D Farfield for 1.8GHz	44
4.4	Return Loss for 0.9GHz and 1.8GHz (measurement)	45
4.5	Return Loss for 0.9GHz and 1.8GHz (simulation)	46
4.6	Return Loss of the Simulation for 900MHz and	48
	1800MHz with Head and Hand Model	
4.7	SAR for 900MHz with 1g Brain Tissue	49
4.8	SAR Result Sheet for 900MHz with 1g Brain Tissue	50
4.9	SAR for 900MHz with 10g Brain Tissue	51
4.10	SAR Result Sheet for 900MHz with 10g Brain Tissue	51
4.11	SAR for 1800MHz with 1g Brain Tissue	52
4.12	SAR Result Sheet for 1800MHz with 1g Brain Tissue	53
4.13.	SAR for 1800MHz with 10g Brain Tissue	55
4.14	SAR Result Sheet for 1800MHz with 10g Brain Tissue	56
4.15	Power Loss Density (rms) for 900MHz	57
4.16	Power Loss Density (rms) for 1800MHz	58
4.17	Farfield for 900MHz Mobile Phone	59
4.18	Farfield for 1800MHz Mobile Phone	60
4.19	Current Density for 1800MHz in Z-axis	61
4.20	Mobile Phone Structure	61

.

5.1 Tips Using Mobile Phone

64

ABBREVIATIONS

LIST OF NOTATIONS

2G	Second Generation Mobile Communication
3G	Third Generation Wireless Technology
4G	Fourth Generation Mobile Communication
ABC	Absorbing Boundary Condition
AMPS	Amplitude Modulation Pulse Synchronize
CDMA	Code Division Multiple Access
CST	Computer Simulation Technology
EM	Electromagnetic
EMC	Electromagnetic Compatibility
EMF	Electromagnetic Field
EMI	Electromagnetic Interference
EMW	Electromagnetic Wave
FDTD	Finite Difference Time Domain
GPRS	General Packet Radio Services
GSM	Global System for Mobile Communication
GUI	Graphic User Interface
IC	Integrated Circuit
ICNIRP	International Commission on Non-Ionizing Radiation Protection
IEGMP	International Expert Group on Mobile Phones
MCMC	Malaysian Communications and Multimedia Commission
MHLG	Ministry of Housing and Local Government
MMS	Multimedia Messaging Service
МОН	Ministry of Health Malaysia
МОМ	Method Of Moment
MSC	Mobile Switching Center
NET	Nikkon Telegraph and Telephone
NIR	Non-Ionizing Radiation
NMT	Nordic Mobile Telephone
PDA	Personal Digital Assisstant
PEC	Perfectly Electric Conductor
RF	Radio Frequency

RFIC	Radio Frequency Integrated circuit
SAR	Specific Absorption Rate
SAM	Standard Anthropomorphic Model
SMS	Short Message Service
TDMA	Time Division Multiple Access
UMTS	Universal Mobile Telecommunications system
WAP	Wireless Application Protocol
W-CDMA	Wide Band Code Division Multiple Access
WHO	World Health Organization

CHAPTER 1

INTRODUCTION

1.1 Introduction

The first commercial launch of cellular telecoms was launched by NET (Nikkon Telegraph and Telephone) in Tokyo Japan in 1979 [1]. The introduction of cellular phone began to grow rapidly and the users of cellular phone increase from years to years. The technology of cellular phone also known as mobile phone began to proliferate until it became portable and held hand phone. Nowadays, the using of mobile phone not only limit for call and messaging (SMS) but it is also used for other services such as, Bluetooth and Internet access.

Up to the year 2007, the population of mobile phone user are more than 0.4 billion users in China. This shows that mobile phones become most widely spread technology and commonly used electronic devices with the increasing number of users. In China only, the rate of brain cancer of male suffers in city has increased 100% and the rate of female suffers in city has increased 50% [2]. With the widespread from public, many researches and studies had been observed.

However, in order to get specific outcome on the usage of mobile phone towards human, the continuous researches are essential. Many researchers from establish organizations such as Royal Society of Canada and Institute of Electrical and Electronics Engineering have start to documentation their research for these problems. The aim of this project is to study whether the mobile phone have a big effect to the user or not. In other to achieve this, prototype or simulation is important. In this project, Computer Simulation Technology (CST) is use to calculate the specific absorption rate (SAR).

1.2 Problem Statement

Until now, mobile phones radiation proves to have two main effects which are thermal effect and non-thermal effect (also called biological effect) [3]. The thermal effect bring by mobile phone is research more because its concern has been recognize by the world. Investigation and research still going on until now and there is still no strong evidence that these devices give thermal effect or non-thermal effect towards human especially on their health. This project is carrying out in way to investigate the SAR (specific absorption rate) of the mobile phone towards human health.

1.3 Project Objectives

The objectives of this project are:

> To expose the student on how to use the Computer Simulation Technologies (CST).

These objectives may help students in the future. They will become more knowledgeable about this simulator software and having no problem to use another version of this software.

> To simulate the 900 MHz and 1800 MHz of mobile phone using the head and hand model.

The SAR values measurement emphasize on the 900 MHz and 1800 MHz of mobile phone. For the head model, 1g and 10g human brain tissue will be utilized.

> To investigate the effect of mobile phone towards human by getting the SAR (specific absorption rate) value.

The effect of mobile phone towards human will be determined from the SAR value. If the SAR values exceed 2W/kg, the mobile phone will give an effect towards human.

3

1.4 **Project Scope**

This project involves 900MHz and 1800MHz mobile phone simulation with Human Head and Hand Model. It involves the simulation on Specific Absorption Rate (SAR) value towards human head. This project use Computer Simulation Technologies (CST) as a software in order to simulate the mobile phone with human head and human hand.

Radiation from the mobile phone not only effect on the human brain, it also effect the electric charge in the human cell body. The exposure of the radiation towards human body makes the biology of it system totally disturbed. The effect of the mobile phone casing and the antenna towards human will be discussed in this project. From the simulation, the radiation pattern of the mobile phone can be determined. To transmit out the SAR simulation, planar antenna of mobile phone with 900MHz and 1800MHz is going to be used. The power of mobile phone for each case will be 0.6W. The experiment includes current density, return loss, power loss, and farfield.

Pusar Kniumat Makiumat Akademik UNIVERSITI MALAYSIA SARAWAK

1.5 Project Outlines

The final year project report covered all the process of the project starting from its idea development, software simulation, and report writing. For the report, it will be divided to five chapters which are introduction, literature review, methodology, result with discussion and the conclusion of this project.

Chapter 1: Introduction

This chapter will introduce the background, problem statement and objectives of the project. Besides, it also provides the scope of the project. On the other hands, the project outlines are also detailed under this chapter.

Chapter 2: Literature Review

This chapter summarizes and reviews onto the overall studies and researches that are related to the project. In this context, preliminary literature search included mobile phone technology, existing issues and researches related to the effects of mobile phones towards human health.

Chapter 3: Methodology

This chapter discusses the methodology development and focuses on the use of the CST (Computer Simulation Technology) in order to obtain the SAR (specific absorption rate) measurement. The first part of this chapter will concentrate on the CST. The final part is then focus on the modelling of mobile phone and human head.

Chapter 4: Results, Analysis and Discussion

This chapter exhibits the results and data obtain from the SAR simulation process. It carries out analysis and discussion onto the data. It also examines whether the simulation results fulfilled the predicted or expected results as mention in the early part of the project. The problems facing through out of the project are also discussed. Besides, different approaches and testing in order to examine the project in achieving its objectives are listed in details in this chapter.

Chapter 5: Conclusion and Recommendation

This chapter will summarize the overall finding of the project. In addition, further works that can be implemented for future improvement of the project is discussed in this chapter.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Mobile phone or also known as cellular phone is a small or portable device that has become one of the most successful inventions in this world. Until 2007, the population of the mobile phone consumers have reached to 2.6 billion [4]. The devices allow peoples from over the world to communicate to one another without the limitation. This short range devices are not only use for voice communication, but it also provide additional services such as Short Messaging Services (SMS), email, packet switching for Internet access, Bluetooth, Infrared, camera with video recorder and Multimedia Messaging Service (MMS).