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ABSTRACT

This study compares the flexural design for arbitrary rectangular 

sections of reinforced concrete beams between BS 8110 (1985) and ACI 318 

(1995). The main objectives of this study are to identify a more conservative 

design approach and to obtain a set of design aids such as charts and tables 

for ACI 318 (1995). This study includes the different analysis and design 

procedures of both codes and the interpretation of effects in flexural design.

In this study, singly reinforced beams and doubly reinforced beams 

were analyzed by using 4 different grades of concrete, associated either with 

mild steel or high-tensile steel in various percentages of longitudinal 

reinforcement ratios. Therefore, four Mathcad worksheets had been written 

to generate data for both codes. The depth of neutral axis and ultimate 

moment for every combination of concrete grades and steel ratios can be 

obtained easily through these worksheets. These were basically to eliminate 

the tedious iteration procedures and providing a more accurate solution for 

flexural design. From the obtained data, several graphs of ultimate moment 

ratio M/bd2 versus percentage of longitudinal reinforcement ratio 10OAs/bd 

had been plotted. Comparison among the graphs between both codes had 

been carried out and the more conservative approach in flexural design had 

been identified.
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ABSTRAK

Kajian mi dijalankan dengan membandingkan rekabentuk lenturan 

bagi rasuk konkrit bertetulang di antara BS 8110 (1985) dengan ACI 318 

(1995). Objektif utamanya ialah untuk mengenalpasti rekabentuk yang 

lebih konservatif dan seterusnya menghasilkan carta serta jadual baru 

untuk memudahkan prosidur rekabentuk lenturan khsusnya bagi ACI 318 

(1995). Kajian mi adalah melibatkan perbezaan analisis dan rekabentuk 

prosidur di antara kedua-dua kod serta interpretasi tentang kesan-kesan 

yang mempengaruhi rekabentuk tersebut.

Dalam kajian ini, rasuk bertetulang tunggal dan bertetulangan 

kernbar telah dianalisis dengan menggunakan 4 ferns gred konkrit, 

bergabung dengan keluli lembut atau keluli jenis tegangan tinggi mengikut 

pelbagai nisbah yang ditetapkan. Dengan mi, 4 kertas kerja Mathcad telah 

dihasilkan untuk mendapatkan data-data rekabentuk lenturan bag] kedua- 

dua kod tersebut. Paksi neutral dan moment muktamad bagi setiap 

kombinasi di antara konkrit dengan nisbah tetulang tertentu juga dapat 

dipemlehi dengan mudah. Keadaan sedemikian telah . ber, Jäya 

rnenghapuskan kerja-kerja cuba-jaya yang membosakan. Melalui data-data 

yang diperolehi, beberapa graf bagi nisbah momen muktamad M/bau 

melawan peratusan nisbah tetulang 100A, /bd telah diplotkan. Akhlrnya,
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Perbandingan telah dijalankan dengan menginterpretasi analisis yang 

dilaksanakan dan seterusnya menggenalpasti rekabentuk lenturan yang 

lebih konservatifdi antara kedua-dua kod tersebut.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Many codes and standards have been developed throughout the 

world for the design and control of the quality of the reinforced concrete. 

Among those codes, BS 8110 (1985) and ACI 318 (1995) are widely used. 

Both of the design codes are generally limit state design and based on the 

similar design concept, but the symbols and interpretation of formulas 

are different.

In Malaysia, BS 8110 (1985) is the only code that has been widely 

practiced so far. This code has just been updated in 1997 after 12 years 

from its predecessor in 1985. Conversely, the ACI Code is always been 

updated to reflect the latest technological changes in materials and 

design philosophy. Therefore, it can serve as an alternative of the design 

code that will be practiced in Malaysia later.

Comparison of the flexural design between BS 8110 (1985) and ACI 

318 (1995) was carried out in this parametric study especially for the 

rectangular flexural members. In addition, the different analysis, 

parametric considerations and design procedures for both codes were also 

identified. Eventually, several design charts and tables were produced to
1



facilitate the flexural design especially in eliminating iteration and 

providing more exact solutions for an arbitrary cross section.

1.2 Objective

The objectives of this study are to compare the manners of flexural 

design between the BS 8110 (1985) and ACI 318 (1995) codes; to identify 

a more conservative design approach from both of the codes; to generate 

new design aids such as charts and tables for ACI 318 (1995); and the 

results from this study will serve as a guide for quick check of the 

concrete beam design.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

When a beam is subjected to bending moments (also termed as 

flexure), bending strains are produced. As normally defined, under 

positive moment, compressive strain is produced in the top of the beam 

and tensile strain is produced in the bottom. Therefore bending members 

must be able to resist tensile and compressive stresses. 

For a concrete flexural member (beam, wall and slab) to have any 

significant load carrying capacity, its basic inability to resist tensile 

stresses must be overcome by embedding reinforcement in tension zones. 

Thus, reinforced concrete has been constructed to perform very 

adequately under flexure.

2.2 General Theory of Ultimate Flexural Design

In general, the existing design methods in American and British 

Codes are based on the similar theory with the following assumptions. 

These assumptions are not exactly correct but are justifiable for practical 

purposes. (Kong and Evans 1987):

3



a) The strains in the reinforcing steel and the concrete are directly 

proportional to the distances from the neutral axis where the 

strains is zero. 

b) The ultimate limit state of collapse is reached when the concrete 

strain of the extreme compression fibre reaches an ultimate value, 

Ccu. 

c) The distribution of concrete compression stress is defined by an 

idealized stress-strain curve. 

d) The tensile strength of the concrete is ignored. 

e) The stress in the reinforcement is derived from the appropriate 

stress-strain curve, with the assumption that plane sections 

remain plane.

d

X

v

b 
; ý --ºý

0 0 cis
C(x)

d-0.45x

E,

T 00 ---ý A
I No

T(x) T(x)

(a) Beam section b) Strain (c) Actual stress (d) Simplifed stress 
diagram diagram diagram

Fig. 2.1 Derivation of formula from stress-strain diagram in 
BS 8110 (1985)
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Fig. 2.1 shows a cross section of a reinforced concrete beam with 

the strain and stress distributions. The symbols used were based on BS 

8110 (1985) which are defined as follows: b = width of beam; A8, d = Area 

and effective depth of longitudinal tension reinforcement respectively; A'8, 

d' = area and effective depth of longitudinal compression reinforcement 

respectively; f� = Characteristic cube strength of concrete; x = neutral 

axis depth; T(x) = tensile force of the tension reinforcement; C(x) = 

compressive force of the concrete; C'(x) = compressive force of the 

compression reinforcement; E. = tensile strain of the tension

reinforcement; E. = compressive strain of the compression reinforcement; 

E'c and Ec, = maximum compression strain [= 0.003 according to ACI 318 

(1995) and = 0.0035 according to BS 8110 (1985)]

From assumption (b) as mentioned earlier, the maximum concrete 

compressive strain has a specified value C. Therefore, the concrete 

strains at distance d' and d can be obtained directly from compatibility. 

Perfect bonding is also assumed between the concrete and the steel. 

Thus, the strain Ee and E'8 can be derived as follows [Fig. 2.1(b)]:

gs d - X 
X Ell

d -x EB = ( 
x )c � (2.1)
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6 'S x - d
Ccu X

x -d Vs = ( 
x 

)F-c. (2.2)

From the simplified stress block [Fig. 2.1 (d)]: the forces on the

beam section can be expressed in terms of these characteristics:

C(x) = 0.45 fe� b x 

C'(x) = 0.87A'. f. 

T(x) = 0.87A. f.

(2.3)

(2.4)

(2.5)

Tensile stress of steel, fe, and compressive stress of steel, f,, are

closely related to the strain C and C'e by the respective stress-strain

curves for the reinforcement. 

From equilibrium condition, 

T(x) = C(x) + C'(x) (2.6) 

Substituting Eqs. (2.3) through (2.5) into Eq. (2.6) gives 

0.87fß = 0.405 f� b x + 0.87f, A'e (2.7)

From equations (2.1), (2.2) and (2.7), the value of neutral axis x, is

the only unknown, which is related to E. and E'.; and hence f. and f..

6



Therefore, to satisfy the equilibrium condition, x can be solved by trial

and error method.

In normal practice, a value of x is assumed and the strains and 

hence the stress are determined. If Eq. (2.7) is not satisfied, an 

adjustment is made to x by inspection. These procedures will be repeated 

until Eq. (2.7) is sufficiently satisfied. To overcome this tedious and time 

consuming process, the Mathcad Worksheets had been written to solve 

the iterations and to provide more accurate solutions for x value.

The ultimate flexural strength, (often denoted as ultimate moment 

of resistance), M, of the beam is then obtained by taking moment about 

the level of the tension reinforcement or other suitable axis such as the 

centroid of the concrete stress block. The equation of the flexural 

strength, M, can be obtained using the following equation:

M = 0.405 f� b x (d - 0.45x) + 0.87f, A!, (d - d') (2.8)

This general theory is applicable for all the arbitrary cross section of 

rectangular concrete beams. The detail analyses for BS 8110 (1985) and 

ACI 318 (1995) are shown in the chapter 3, section 3.6.

7



2.3. Mode of the Flexural Failure

Ultimate strength design in civil engineering practice took place 

partially in recognition of the importance of structural safely. Therefore, 

the study of the three modes in which a beam may fail in flexure under 

overloads is the prime concern of the design engineer. The particular 

modes of failures are actually depending on the amount of tensile 

reinforcement.

2.3.1 Balance Failure

Balance failure occurs when the concrete fails and the steel yields 

simultaneously at ultimate load. The concrete strain is 0.0035 or 0.003 for 

BS 8110 (1985) and ACI 318 (1995) respectively and the steel strain is 

0.002. The amount of steel to give this situation can be determined by 

equating the internal forces, C(x) and T(x) in the concrete. This is the 

theoretical balance design case. (Choo and Macginley, 1990)

2.3.2 Tension Failure

Tension failure occurs when the steel yield followed by concrete 

compression failure. If the steel is stressed to its yield point before the 

concrete crushed in compression, the section will not fail. A small

8


