

Faculty of Engineering

DESIGN OF CONTROL SYSTEM FOR THE POKA YOKE WAGON DOLLY

Syamsul Akmal Bin Ahmad Kamil Saraidin

QA 76.9 S88 S981 2004 Bachelor of Engineering with Honours (Mechanical Engineering and Manufacturing Systems) 2004

Faculty of Engineering

DESIGN OF CONTROL SYSTEM FOR THE POKA YOKE WAGON DOLLY

Syamsul Akmal Bin Ahmad Kamil Saraidin

Bachelor of Engineering (Mechanical Engineering and Manufacturing Systems) 2004

		Ur	niversiti Malaysia	Sarawak	
		BOR	ANG PENYERAI	IAN TESI	IS
Judul:	Des	ign of Control	System for the Pol	<u>ka Yoke</u> W	agon Dolly
		S	SESI PENGAJIAN: 20	03/2004	
Saya	SYA	MSUL AKMA	AL BIN AHMAD K	AMIL SAF	RAIDIN
			ini disimpan di Pus at-syarat kegunaan sep		Maklumat Akademik, Universiti
dan c	libiayai oleh l	UNIMAS, hakmili	iknya adalah kepunyaa	n UNIMAS.	
2. Nask penu		dalam bentuk ker	tas atau mikro hanya b	oleh dibuat c	lengan kebenaran bertulis daripada
 Pusat Kerta 	t Khidmat Ma	ya boleh diterbitka			alinan untuk pengajian mereka. ran royalty adalah mengikut kadar
-				embuat salin	an kertas projek ini sebagai bahan
-		a institusi pengaji	ian tinggi.		
6. ** Si	la tandakan (
	SULIT	(Menga Malaysi	ndungi maklumat yar a seperti ynag termakti	ng berdarjah ub di dalam A	keselamatan atau kepentingan AKTA RAHSIA RASMI 1972).
	TERHAD		ndungi maklumat si/badan di mana peny		yang telah ditentukan oleh lankan).
\checkmark	TIDAK T	ERHAD			
				Ľ	Disahkan oleh:
S	MunQua	/			n
(TAND	ATANGAN	PENULIS)		(TAND	ATANGAN PENYELIA)
ALAMA 85 Lorg	AT TETAP:	5B Taman Arked,		SYED	TARMIZI SYED SHAZALI
08000 S Malays	Sungai Petani.	, Kedah.			(Nama Penyelia)
Tarikh:	24.03.	2004		Tarikh:	15-04-2004
ATATAN	* **	pinak derkuasa	ojek ini SULIT atau 7	n dengan m	la lampirkan surat daripada enyertakan sekali tempoh IT atau TERHAD.

APPROVAL SHEET

This project attached hereto, entitled "Design of Control System for the Poka Yoke Wagon Dolly" is prepared and submitted by Syamsul Akmal Bin Ahmad Kamil Saraidin in partial fulfillment of the requirements of Bachelor's Degree with Honours in Mechanical Engineering and Manufacturing Systems is hereby accepted.

(Mr. Syed Tarmizi Syed Shazali)

15-04-2004

Date

DESIGN OF CONTROL SYSTEM FOR THE POKA YOKE WAGON DOLLY P.KHIDMAT MAKLUMAT AKADEMIK UNIMAS 1000125691

SYAMSUL AKMAL BIN AHMAD KAMIL SARAIDIN

This project is submitted in partial fulfillment of the requirements for the degree of Bachelor of Engineering with Honours (Mechanical Engineering and Manufacturing Systems)

> Faculty of Engineering UNIVERSITI MALAYSIA SARAWAK 2004

Dedicated To My Beloved Family

ACKNOWLEDGEMENT

Firstly, I would like to express my sincere and appreciation to my supervisor, Mr. Syed Tarmizi Syed Shazali, Department of Mechanical Engineering and Manufacturing Systems, University Malaysia Sarawak for his guidance and advice in completion of my final year project.

A special acknowledgment goes to PROTON BHD for the permission to use the facilities needed to complete the Poka Yoke Wagon Dolly project. I would like to take this opportunity to express my gratitude to Mr. Mohd Raziff Ahmad, Head of MVF PROTON, for his tolerance, and for the valuable time he took out of his busy schedule to guide and advised in this project. I would also like thank En. Hairudin Hairuman QIT MVF, En. Zairi Md Idris PM/TF MVF, and all staff that are contributed to this project.

In addition, special thanks to my project partner, Mr. Wan Sharuzi Wan Harun, a hardworking and creative person, for giving useful and valuable helps, co-operation and information when difficulties encountered. Special recognition also goes to the mechanical lab technicians that provided help during the implementation of this project.

Finally, I owe a great debt of gratitude to my supportive family for giving me the spiritual support through out the entire course.

ABSTRACT

A programmable logic control system is an essentially device to control machinery and equipment without complexity of the wiring, relays ad timers that would normally be required. The programmable logic control system used a programmable memory for the internal storage of instructions for implementing specific functions such as logic, sequencing, timing and arithmetic to control through analog or digital input or output modules, various types of devices and process. The Poka Yoke Wagon Dolly project was developed which included the processes such as manufacturing, designing, analysis, PLC software control, wiring design and electrical selection. The control system for the wagon dolly is designed with the concepts of poka yoke (mistake-proving) system. The project report presents the documentation of developing the control system that operates the Poka Yoke Wagon Dolly. Techniques of writing the ladder diagram which drawn using GPPW software to operate the machine prototype using Mitsubishi PLC control system has been developed. A flow chart of the process operation was drawn to implement the ladder diagram. The wiring diagrams for all electrical and electronic components also included. The method for troubleshooting, commissioning and debugging process of PLC and electrical components were done to ensure the safety and efficiency of the system.

ABSTRAK

Sistem kawalan pemprograman logik adalah merupakan satu alat untuk mengawal mesin dan peralatan mesin dengan tanpa menggunakan pendawaian rumit yang sepertimana diperlukan untuk pendawaian peralatan yang biasa. Sistem ini memerlukan set aturcara spesifik sebagai program memori untuk melaksanakan fungsi-fungsi seperti logic, masa, penyusunan, arimetik dalam mengawal input dan output daripada peralatan peralatan mesin. Projek Poka Yoke Wagon Dolly dibina merangkumi proses proses seperti pembuatan, fabrikasi. mereka bentuk. menganalisis, aturcara pengawalan PLC (Programmable Logic Controller), pendawaian, pemasangan dan pemilihan komponen elektrikal. Sistem kawalan yang direka kepada wagon dolly menerapkan aplikasi konsep sistem 'poka yoke' (pembetulan kesilapan). Laporan projek ini memperihalkan dokumentasi dalam pembinaan sistem kawalan yang mengoperasikan Poka Yoke Wagon Dolly. Satu aturcara tangga (ladder diagram) yang dilukis dengan menggunakan perisian GPPW yang berfungsi untuk mengoperasikan prototaip mesin yang menggunakan sistem kawalan PLC jenis Mitsubishi. Satu carta aliran dalam proses operasi dibuat untuk menjalankan aturcara tangga tersebut. Pendawaian untuk semua komponen elektrikal dan elektronik juga disertakan. Proses troubleshooting, commissioning dan debugging untuk PLC dan komponen-komponen elektrikal telah dijalankan untuk memastikan keselamatan dan kecekapan dalam sistem.

TABLE OF CONTENTS

CONTENTS	Page
TITLE	i
DEDICATION	ii
ACKNOWLEDGEMENT	iii
ABSTRACT	iv
ABSTRAK	v
TABLE OF CONTENTS	vi
LIST OF FIGURES	x
LIST OF TABLES	xii

CHAPTER 1 : INRODUCTION

1.0	Overview of the Poka Yoke	1
1.1	Overview of the Wagon Dolly	2
1.2	Overview of the Poka Yoke Wagon Dolly	2
1.3	Objective of the Poka Yoke Wagon Dolly	3
1.4	Rational of the project	4

CHAPTER 2 – LITERATURE REVIEW

2.0	Introduction	6
2.1	Review on the type of the Control System	6
2.2	Review of the Poka Yoke System	8
	2.2.1 The importance of the Poka Yoke System	8

	2.2.2	Poka Yoke Devices	9
	2.2.3	Eliminate the Mistakes	10
	2.2.4	Where Does Poka Yoke System Apply	12
2.3	Revie	w of the Tightening Equipment Poka Yoke System	13
	2.3.1	The Porpose and Operations	13
2.4	Revie	w of the Fool-proof system at Toyota Production System	14
	2.4.1	Contact Method Foolproof for the Packing Process	14
	2.4.2	Altogether Method Foolproof for Shipping Box	15
2.5	Revie	w of the Wagon Dolly	16
	2.5.1	Standardization of the Wagon Dolly at PROTON	16
	2.5.2	Types of the Wagon Dolly	18
2.6	Revie	w of the Programmable Logic Controller (PLC)	19
	2.6.1	Mitsubishi Programmable Logic Controller (MELSEC-A)	19
2.7	Perfor	rmance List of the MELSEC-A Series	21
2.8	The A	dvantages of the PLCs	22
	2.8.1	Flexibility	22
	2.8.2	Setup Speed	22
	2.8.3	Reliability and Maintainability	23
	2.8.4	Data Collection Capability	23
	2.8.5	Input/Output Option	23
	2.8.6	Cost	24
2.9	The D	isadvantages of the PLCs	24

CHAPTER 3 – METHODOLOGY

3.1	Hardw	vare Design	26
3.2	Progra	mmable Logic Controller Hardware	27
	3.2.1	Inputs and Outputs	27
3.3	Sensin	g devices	28
	3.3.1	Proximity Sensor	28
3.4	Actuat	ors Component	30
	3.4.1	Solenoids	30
	3.4.2	Valves	31
	3.4.3	Cylinders	32

3.5 Software Design

3.6	Flowc	hart Based Design	34		
	3.6.1	Flow Chart Analysis for writing a PLC program	35		
3.7	PLC I	adder Programming	36		
	3.7.1	Outline of Basic Devices Used in Programming (MELSEC A)	36		
		3.7.1.1 Input/Output	36		
		3.7.1.2 Auxiliary relays	38		
		3.7.1.3 Special Relay M	38		
		3.7.1.4 Timer T	3 9		
3.8	Writing a Ladder Diagram in GPP/WIN Software				
	3.8.1	Product Outline and Features	40		
		3.8.1.1 Program creation	40		
		3.8.1.2 Writing and reading to/from PLC	41		
		3.8.1.3 Monitoring	41		
		3.8.1.4 Debugging	41		
		3.8.1.5 Diagnostics PLC	42		
	3.8.2	Circuit Creation Method used GPPW Software	42		

CHAPTER 4 : RESULTS

4.1	Hard	ware Design	43
	4.1.1	The Components Used	43
	4.1.2	The Hardware Wiring Diagram Flow	44
	4.1.3	Control Panel Main Circuit Wiring Diagram	45
	4.1.4	Sensor Wiring Diagram	45
	4.1.5	Push Button Wiring Diagram	47
	4.1.6	Electro-Pneumatic Wiring Diagram	47
	4.1.7	Indicator Light Wiring Diagram	49
	4.1.8	Siren and Tower Light Wiring Diagram	50
4.2	Input	s and Outputs for the PLC	50
	4.2.1	Input	51
	4.2.2	Output	51
4.3	Softw	are Design	52

	4.3.1	Flow Chart of Poka Yoke Wagon Dolly Operation	52
	4.3.2	Flow Chart for the Whole Process Operation	52
	4.3.3	Flow Chart for the Process 1 Operation	54
	4.3.4	Flow Chart for Process 2 Operation	57
	4.3.5	Flow Chart for Process 3 Operation	60
	4.3.6	Flow Chart for Manual Mode Operation	63
4.4	PLC I	adder Programming	64
4.5	Desig	n of the System	64
4.6	Comp	erative Study	67

CHAPTER 5 : DISCUSSION

5.1	Contro	ol Process Sequences and Flows	70
5.2	Overal	ll Performance of the System	71
	5.2.1	Performance of the Sensing Devices	73
	5.2.2	Performance of the Pneumatics System	74
5.3	Troubl	eshooting Procedures	75
5.4	Comm	issioning Procedures	77
5.5	Safety		78

CHAPTER 6 : CONCLUSION & RECOMMENDATIONS

6.1	Conclusion	79
6.2	Recomendations	80

81

REFERENCES

APPENDICES

A.	List of Operation for Circuit Creation	82
B.	PLC Ladder Programming (in GPPW software)	85
C.	Standard Operating Procedure (SOP) of Poka Yoke Wagon Dolly	93

LIST OF FIGURES

Figure 2.0	Poka Yoke Device for Correct Count of Parts in Drill Bit	11
Figure 2.1	Control systems of the Poka Yoke Tightening Equipment	13
Figure 2.2	'Contact method' fool-proof for Packing Process	15
Figure 2.3	'Altogether method' foolproof Shipping Box	16
Figure 2.4	Example of the standard design Wagon Dolly	17
Figure 2.5	Example of the Guide Rail Wagon Dolly	18
Figure 2.6	Example of the Wagon Dolly with the Synchronous System	18
Figure 2.7	Programmable Logic Controller MELSEC A Series	20
Figure 3.0	Inductive Proximity Sensors	29
Figure 3.1	Shielded and Unshielded Sensors	29
Figure 3.2	A Solenoid	30
Figure 3.3	A Solenoid Controlled 5 Ported, 4 Way 2 Position Valve	31
Figure 3.4	Cross Section of a Pneumatic Cylinder	32
Figure 3.5	(A) Single acting spring return cylinder	33
	(B) Double acting cylinder	33
Figure 3.6	Flowchart symbols	34
Figure 3.7	The technique writing the PLC program	35
Figure 3.8	Inputs (X)	37
Figure 3.9	Outputs (Y)	37
Figure 3.10	Ladder Logic Diagram in GPPW	40
Figure 3.11	Writing and reading to/from PLC	41

Figure 4.0	Hardware wiring diagram flow	45
Figure 4.1	Control panel main circuit wiring diagram	46
Figure 4.2	Sensor wiring diagram	46
Figure 4.3	Push buttons wiring diagram	47
Figure 4.4	Solenoid valves wiring diagram	48
Figure 4.5	The Electro-Pneumatic wiring diagram	48
Figure 4.6	Indicator lights wiring diagram	49
Figure 4.7	Siren and tower light wiring diagram	50
Figure 4.8	The Flow chart for the whole process operation	53
Figure 4.9	The flow chart for the Process 1 operation	55
Figure 4.10	The flow chart for the end Process 1 operation	56
Figure 4.11	The flow chart for the Process 2 operation	58
Figure 4.12	The flow chart for the end Process 2 operation	59
Figure 4.13	The flow chart for the Process 3 operation	61
Figure 4.14	The flow chart for the end Process 3 operation	62
Figure 4.15	The flow chart for Manual Mode operation	63
Figure 4.16	The module of Poka Yoke Wagon Dolly System	65
Figure 4.17	The layout of the electrical components in the control panel	65
Figure 4.18	The prototype of the Poka Yoke Wagon Dolly	67
Figure 5.0	Location of the push buttons at the operation panel	72
Figure 5.1	Location of the proximity sensors at the assembly board	73

LIST OF TABLES

Table 2.0	Specification of Wagon Dolly AT PROTON	17
Table 2.1	Performance List of MELSEC A Series	21
Table 4.0	List of the parts for pneumatic system and wagon dolly	43
Table 4.1	List of the parts for operation panel box	44
	and control panel box	
Table 4.2	Input points for the PLC	51
Table 4.3	Output points for the PLC	51
Table 5.0	Troubleshooting for Poka Yoke Wagon Dolly system	76

CHAPTER 1

INTRODUCTION

CHAPTER 1

INTRODUCTION

1.0 Overview of the Poka Yoke

The concept of Poka Yoke has existed for a long time in various forms; it was Japanese manufacturing engineer Shigeo Shingo who developed the idea into a formidable tool for achieving zero defects and eventually eliminating quality control inspections. The term Poka Yoke, generally translated as mistake proofing or fail-safe. The idea behind Poka Yoke is to respect the intelligence of workers. By taking over repetitive tasks or actions that depend on vigilance or memory, Poka Yoke can free a worker's time and mind to pursue more creative and value-adding activities [Shigeo Shino, 1986].

Many things can go wrong in the complex environment of the workplace; everyday there are opportunities to make mistakes that will result in defective products. Defects are wasteful, and if they are not discovered, they disappoint the customer's expectations of quality. Behind Poka Yoke is the conviction that it is not acceptable to produce even a small number of defective goods. *To become a world-class competitor, a company must adopt not only a philosophy but a practice of producing zero defects. Poka Yoke methods are simple concepts for achieving this goal* [Shigeo Shino, 1986].

1

1.1 Overview of the Wagon Dolly

Wagon Dolly can be defines as small racking machine or racking table car that used to connect the human operator with racking part system and the process assembly at the production lines. Wagon Dolly is used as the temporary place for the certain amount of parts and tools (referred to the small components) before they were installed to the car or before the operators put them into the processes (assembly works). By using it, the operators can save their steps a lot during working compared if their using the usual parts rack system at line sides for done the same jobs.

The concept of the Wagon Dolly was originated by Mitsubishi Motor Corp. in order to reduce the setup time in production area. Nowadays, the idea of Wagon Dolly was widely used in the automotive manufacturing sector included Perusahaan Otomobil Nasional Berhad (PROTON) as the Malaysian Car Manufacturer. Most of the station at the production lines in the PROTON factories are using it because of their benefit to reduce the setup time and increased the ratio of machinery utilization to its full capacity.

1.2 Overview of the Poka Yoke Wagon Dolly

Poka Yoke Wagon Dolly is a new student final year project that developed in UNIMAS by two undergraduate's student of Mechanical Engineering and Manufacturing System Program, Mr. Syamsul Akmal Bin Ahmad Kamil Saraidin, the author and Mr. Wan Sharuzi Wan Harun. Basically this project is divided into 2 parts:

- a) Mechanical design, analysis, fabrication and installation: handled by Wan Sharuzi Wan Harun.
- b) Electrical wiring, circuit diagram and control system. Included the PLC programming, electrical circuit wiring, electrical parts and component installation, circuit design, control system design, troubleshooting, test run, control panel box and installation: handled by Syamsul Akmal Bin Ahmad Kamil Saraidin.

This project is mainly inspired by the potential of automation applications in the elimination of the wasteful activities at the workstation. The control system for the Wagon Dolly will be design with the concepts of Poka Yoke system. This equipment will be used in the case that critical and important area where mistake (defect) always happen. The system will guide the operator based on Standard Operation Procedure (SOP) to complete the work process at that area. The system also will detect the sequence error or any wrong specifications installation.

1.3 Objective of the Poka Yoke Wagon Dolly

Poka Yoke Wagon Dolly project is to be complete in one year time. The objectives of the project are listed as below:

(a) To apply the following techniques into practice and application.

- Mechanical design and fabrication.
- Electrical wiring.
- Electrical control system and process sensing..
- Industrial process controller, the Programmable Logic Controller.

- (b) To have a basic understanding of the technology aspects, and some basic theory of practical control systems.
- (c) Implement the Poka Yoke system ideas and methods in product design and process design which eliminate both human and mechanical errors.
- (e) To improve problem solving skills by thinking analytically and practically.
- (f) To understand the control of machines and processes widely used in manufacturing.
- (g) Simulation industrial practice on a realistic industrial system model.
- (h) To develop a prototype based on the proposed design.

1.4 Rational of the project

Poka Yoke Wagon Dolly is similar in operation to the mechanical checks and is widely used in both machine and manual operations. Unlike the mechanical checks, however, the Wagon Dolly system is used to eliminate defects that may occur due to an oversight on the worker's part.

The system consists of a detecting instrument, a restricting tool, and signaling device. The detecting instrument will sense the abnormalities or deviations in the process, where the scope of study for this project will be focus in term of the processes sequences error and miss processes that happen in the work area. The restricting tool will function as the emergency button to stops the process immediately. The signaling device sounds a buzzer or lights a lamp to attract the worker's attention. The Implementation of the Poka Yoke Wagon Dolly at the working area will guide the operators to do the jobs correctly without any errors as followed the Standard Operation Procedure (SOP) provided at the work places.

It is the basic principle of *do not let defects pass.* It is can be done through early stage of prevention. As all known, that as a human being, we are always going to make a mistake no matter how simple the things are. In the implementation of this project, the author can foresee the challenges waiting to get fully expose to real practice of the control system instead of gaining the knowledge from books and lecture hall.

As a result it is important to learn the control system and apply it practically due to industrial process control systems, which are getting very important on par with computer and electronic technology.

CHAPTER 2

LITERATURE REVIEW

University Malaysia Sarawak

CHAPTER 2

LITERATURE REVIEW

2.0 Introduction

In the scientific research it is always important to study the work of others in the related field to understand the method employed. So that, a better overall approach towards the implementation of the research plan can be done.

This chapter will review various work done previously and also currently by others in control system and manufacturing field. The literature review will focus on characteristics and functions for those reviews:

- 1. Review on the type of the Control System.
- 2. Review of the Poka Yoke System.
- Review of the Tightening Equipment Poka Yoke System by PROTON MVF T/F Shop Floor.
- 4. Review of the Fool-proof system at Toyota Production System.
- 5. Review on the Wagon Dolly system at PROTON.
- 6. Review of the Programmable Logic Control (PLC).

2.1 Review on the type of the Control System

Control system in general can be divided into two broad categories, open loop and closed loop. It will determine at fixed point of time, the system under