ADVANCES IN CONCRETE TECHNOLOGY: A STATE OF ART REPORT ON HIGH PERFORMANCE CONCRETE

YUSUF BIN HAJI MORTADHA

Universiti Malaysia Sarawak 2000

Advances In Concrete Technology:

A State of Art Report on High Performance Concrete

By

Yusuf Bin Mortadha

A literature review report submitted in partial fulfillment of the requirement for the Degree of Bachelor of Engineering (Hons) Civil Engineering

in Faculty of Engineering Universiti Malaysia Sarawak 94300 Kota Samarahan,

Sarawak

May 2000

Universiti Malaysia Sarawak

Kota Samarahan

	BORA	NG PENYERAHAN TESIS	
Judul: ADVANCES IN		ES IN CONCRETE TECHNOLOGY :	
-	A STATE OF ART R	EPORT ON HIGH PERFORMANCE CONCRETE	
	SES	I PENGAJIAN: 1997 – 2000	
Saya		YUSUF B. HJ. MORTADHA (HURUF BESAR)	
	tu membenarkan tesis ini disir k dengan syarat-syarat kegunar	mpan di Pusat Khidmat Maklumat Akademik, Universiti Malaysia an seperti berikut:	
dibiaya	i oleh UNIMAS, hakmiliknya	yah nama penulis melainkan penulisan sebagai projek bersama dan adalah kepunyaan UNIMAS. ertas atau mikro hanya boleh dibuat dengan kebenaran bertulis	
 Rvastnan sannan ur uanan benuk kertas atau nikro hanya boleh urbuat dengan kebenaran bertun daripada penulis. Pusat Khidmat Maklumat Akademik, UNIMAS dibenarkan membuat salinan untuk pengajian mereka. Kertas projek hanya boleh diterbitkan dengan kebenaran penulis. Bayaran royalti adalah mengikut kada 			
* Saya pertuka	persetujui kelak. membenarkan/tidak membenar ran di antara institusi pengajiar tandakan (🗸)	rkan Perpustakaan membuat salinan kertas projek ini sebagai bahan n tinggi.	
		gandungi maklumat yang berdarjah keselamatan atau kepentingan sia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)	
		gandungi maklumat TERHAD yang telah ditentukan oleh organisasi/ di mana penyelidikan dijalankan).	
	TIDAK TERHAD		
(T.	ywyy ANDATANGAN PENULIS)	(TANDATANGAN FENKELIA)	
amat tetap	P.O.Box 94, Satok Post O	EN. MOHAMMAD IBRAHIM	
93860 Kuching, SARAWAK. SAFAWI B. HJ. MOHAMMAD ZAT			
(082 - 258	579)	(Nama Penyelia)	
rikh: 22	Mei 2000	Tarikh: 23-5-00	

- CATATAN **
- Potong yang tidak berkenaan. Jika Kertas Projek ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/ organisasi berkenaan dengan menyertakan sekali tempoh kertas projek. Ini perlu dikelaskan sebagai SULIT atau TERHAD.

ACKNOWLEDGEMENTS

Many people have been extremely generous with their time and expertise while I have been writing this final year project. In particular, I would like to thank my supervisor, Mr. Mohd Ibrahim Safawi B. Hj. Mohammad Zain for his encouragement, advises and aspiring guidance throughout the duration of this work. He was also of immense help in checking the grammar and relevance of the text. Without him, the work would undoubtedly be poorer. Of course, as author I accept full responsibility for the final content of this project.

I would like to thank Miss Cheam C. L. for her enthusiasm and commitment in supporting and motivating me throughout the writing of this final year project. In the absence of her, it seemed that the project would never reach to the end.

Finally, I would like to thank my friends and family who have supported and encouraged me during the completion of this project. I am extremely grateful to my father for his support and to my mother, without whom the whole project have been impossible. They have my wholehearted thanks.

Yusuf B.Hj. Mortadha, May 2000

i

CONTENTS

	Page
Acknowledgement	i
Contents	ii
List of Figures	vii
List of Tables	x
Abstract	xiii
Chapter 1: Introduction	1
Chapter 2: Concrete Technology	
2.1. Introduction	4
2.2. Types of Concrete	5
2.3. Concrete Components	
2.3.1. Aggregates	6
2.3.2. Cement	7
2.3.3. Water	8
2.4. Concrete Properties	
2.4.1. Compressive strength	9
2.4.2. Tension strength	10
2.4.3. Creep	11
2.4.4. Shrinkage	12
2.4.5. Fatigue	13
2.4.6. Bond strength	15
2.4.7. Durability	15

2.5. Problems with Concrete

2.5.1. Deterioration	16
2.5.2. Workability	22
2.5.3. Economy	24
2.6. Advances in Concrete Technology	
2.6.1. Admixtures	26
2.6.2. High Strength Concrete	28
2.6.3. Fiber-Reinforced Cementitious Composites	28
2.6.4. Special Cements	29
2.7. Conclusion	33

Chapter 3: Concept of High Performance Concrete

3.1. Introduction	
3.2. Definition of HPC	
3.3. Introduction and Use of Admixtures	38
3.4. Water-Cement Ratio (W/C)	42
3.5. Types of HPC	
3.5.1. Very Early Strength	45
3.5.2. High early Strength	45
3.5.3. Very High Strength	45
3.5.4. High-strength Concrete	
3.5.5. Fibre-reinforced Concrete	48
3.5.6. High Performance Lightweight Concrete	50
3.5.7. Super-workable Concrete	51
3.5.8. Shrinkage Compensating Concrete	54

3.6. Advantages and Disadvantages of HPC		
3.6.1. Advantages	54	
3.6.2. Disadvantages	57	
3.7. Conclusion	58	
Chapter 4: Producing High Performance Concrete		
4.1. Introduction	60	
4.2. Materials Selection		
4.2.1. Admixtures	61	
4.2.2. Cement	64	
4.3.3. Aggregates	68	
4.3. Design and Mix Proportions		
4.4. Behavior of Fresh Concrete		
4.4.1. Workability	72	
4.4.2. Setting time	74	
4.4.3. Curing	77	
4.4.4. Testing		
4.4.4.1. Rheological Test	80	
4.4.4.2. Filling Capacity Test	82	
4.5. Behavior of Hardened Concrete		
4.5.1. Strength	84	
4.5.2. Deformation	89	
4.5.3. Fatigue	91	
4.5.4. Durability	94	
4.5.4.1. Permeability	94	

4.5.4.2. Freeze-thaw	97
4.5.4.3. Abrasion	98
4.5.4.4. Chemical Reactions	100
4.6. Conclusion	104
Chapter 5: Applications of High Performance Concrete	
5.1. Introduction	105
5.2. Bridges	
5.2.1. HPC Bridge in New Hampshire	108
5.2.2. Texas HPC Bridge Decks	110
5.2.3. HPC Bridge Decks in Virginia	113
5.3. Pavements	
5.3.1. Pavement Repairs for Early Opening to Traffic	115
5.3.2. Bridge Deck Overlays	
5.3.2.1. Washington Overlays	117
5.3.2.2. Virginia Overlays	118
5.3.2.2. Oregon Overlays	119
5.3.3. Special Applications and Other Developments	119
5.4. Other Projects	
5.4.1. Great Stupa of Dharmakaya, Fort Collins, Colo, 1991	120
5.4.2. Federal Paper Plant, Wilmington, N.C., 1991	122
5.4.3. Glomar Beaufort Sea Drilling Platform, 1984	123
5.5. Conclusion	125

v

Chapter 6: Conclusions & Recommendations		
6.1. Conclusions	126	
6.2. Recommendations	127	
References	128	
Appendix A	133	
Appendix B	134	

List of Figures

Figure	

Figure 2.1	Compressive strength change over 100 years ³	10
Figure 2.2	Typical S-N Relationship for Concrete in Compression	14
	(Source: ACI Committee 215, 1974) ³	
Figure 2.3	Freeze-thaw Cracking	17
Figure 2.4	Sulphate attack causing damages to the edge and corner	18
	of concrete	
Figure 2.5	Concrete deterioration due to acid solutions in an	19
	industrial plant	
Figure 2.6	Alkali-aggregate reaction	21
Figure 2.7	Cracking caused by alkali-aggregate reaction	21
Figure 3.1	Effect of W/C on compressive strength and permeability	43
Figure 3.2	Comparison of Passability between ordinary concrete and	52
	super-workable concrete ¹⁶	
Figure 3.3	Girder Depths for 100 ft. Span	55

Figure 4.1 Model results for degree of hydration of the cement for 67W/C = 0.5, 0.3 and 0.246²⁵

Page

Figure 4.2	Effect of superplasticizer dosage on the viscosity	73
	of paste ²⁹	
Figure 4.3	Effect of temperature and type D retarding admixture	76
	on standard penetration and setting times of concrete	
	determined in accordance with ASTM C 403 ³¹	
Figure 4.4	Effect of CWA dosage on initial set of concrete ³⁰	77
Figure 4.5	Effect of curing conditions and time on compressive	78
	strength of concrete ²	
Figure 4.6 Pa	art (a) General arrangement of apparatus ²⁹	81
Figure 4.6 Pa	rt (b) Detail of spindle and container	82
	(dimension in mm) ²⁹	
Figure 4.7	Schematic of filling capacity apparatus ¹⁸	83
Figure 4.8	Typical stress-strain curve for concrete in uniaxial	90
	compression ³	
Figure 4.9 (a)	S-N curves for plain concrete and fibre concrete under	92
	uniaxial compression 33	
Figure 4.9 (b)	S-N curves for plain concrete and fibre concrete under	93
	biaxial compression ³³	
Figure 4.10	Impact of W/C on permeability ³⁶	96
Figure 4.11	Polished section of air-entrained concrete ²	97
Figure 4.12	Abrasion resistance varies inversely with the W/C^{32}	99
Figure 4.13	Carbonation depth of concrete ³⁸	101
Figure 4.14	Influence of dual admixtures on alkali-aggregate	103
	expansion ⁴¹	

Figure 5.1	Tacoma's Theo Foss Waterway Bridge	105
Figure 5.2	Lacey V. Murrow	106
Figure 5.3	Chicago's 225 West Wacker	107
Figure 5.4	Crack free HPC bridge was completed in October 1996	108
	and subsequently opened to traffic	
Figure 5.5	Louetta Overpass in Houston, Texas	110
Figure 5.6	Partial cross section of Louetta Road Overpass	111
Figure 5.7	Great Strupa of Dharmakaya	120
Figure 5.8	100 foot-tall shrine to Buddha	120

List of Tables

	Table	Page
Table 2.1	Concrete category with respect to compressive strength	5
Table 2.2	Influence of aggregate properties on concrete properties ²	7
Table 2.3	Briefing on Problems with Concrete	26
Table 2.4	Special cement and their uses	32
Table 3.1	Definition of HPC according to FHWA	36
	(Goodspeed, et al. 1996) ⁹	
Table 3.2	Information about four types of admixture	40
Table 3.3	Fly ash, silica fume and GGBFS	41
Table 3.4	Relationships between W/C and compressive strength 2	43
Table 3.5	Three types of HPC developed under SHRP ¹⁴	46
Table 3.6	A brief information on High Strength Concrete	48
Table 3.7	Brief on Fibres-Reinforced Cementitious Composites	50
Table 4.1	Admixtures Selection With Respect to Applications ²⁴	64
Table 4.2	Four different mix proportions for same strength	70
	property ²⁶	
Table 4.3	Different achieved properties by different proportions of	71

the same ingredients ²⁶

Table 4.4	Mix design and mix proportion of the Confederation	71
	Bridge in Canada ²⁷	
Table 4.5	Temperature effect on the time of setting of concrete ³⁰	75
Table 4.6	Values of A & B ³²	85
Table 4.7	Compressive strength in different applications and	86
	countries from the year 1994	
Table 4.8	Results of push-off tests by Zia et al. [1993c, 1993d]	87
Table 4.9	Test results of RILEM beam test by de Larrard et al.	88
	[1993] ³²	
Table 4.10	Durability index test results by Alexander and Magee ³⁵	95
Table 4.11	Mixture proportions and resistance to chloride ion	101
	penetration after 10 years 39	
Table 5.1	Deck mix proportions (HPC Bridge in New Hampshire) ⁴²	109
Table 5.2	Deck concrete test results (HPC Bridge in New	109
	Hampshire) 42 & 43	
Table 5.3	Dimensions and design compressive strengths of Louetta	111
	Road Overpass 44	
Table 5.4	Field permeability test results @ 56 days, coulombs	112
	passed 44	
Table 5.5	High performance concrete bridges in Virginia ⁴⁶	113
Table 5.6	Mix Proportions for Rte. 40 Bridge and Telegraph Road	114
	Bridge ⁴⁶	

Table 5.7	Compressive strength and coulomb value	115
	Rte. 40 Bridge and Telegraph Road Bridge	
Table 5.8	Applications of HPC in Bridge Deck Overlays	119
Table 5.9	Mix Design of Concrete for the Great Stupa of	121
	Dharmakaya ⁵⁰	
Table 5.10	Mix Design of Concrete for Federal Paper Plant 50	122
Table 5.11	Mix Design of Concrete for Glomar Beaufort Sea Drilling	124
	Platform ⁵⁰	

ABSTRACT

This project reviews the concrete properties, which are related to the following works such as concrete problems and advancements. Problems with the use of concrete mainly on quality, workability and economic bring up more advances concrete technology to provide more alternate solutions in the construction industry. The most popular advancement in the past decade would be the High Performance Concrete (HPC). There are too many types of HPC in the engineering industry, High Strength Concrete and Self-Compacting Concrete are just the two examples mentioned here. The approaches that have been done to come up with this special concrete are the achieving of low water-cement ratio (W/C) and the contributions or effects that are brought by four types of admixture. They are air entraining, setcontrolling, high-range water reducing and mineral admixtures. This special concrete really has obvious advantages over the conventional concrete, which cover the strength, durability, workability and economic aspect. There are a few disadvantages of HPC but this would not stop the development of the HPC. It would be interesting to know where it is applied. Applications are widely found in bridges and pavements from the United States, Canada, European countries and Japan.

ABSTRAK

Projek ini mengulas tentang sifat-sifat konkrit di mana kerja-kerja seterusnya seperti masalah dan kemajuan konkrit adalah berkait-rapat. Masalah penggunaan konkrit merangkumi kualiti, kebolehkerjaan dan ekonomi telah mewujudkan lebih banyak kemajuan dalam teknologi konkrit untul memberi lebih penyelesaian dalam industri pembinaan. Kemajuan yang paling popular dalam masa sedekad ini adalah "Konkrit Prestasi Tinggi" (KPT). Ada banyak jenis KPT dalam industri kejuruteraan, "Konkrit Kekuatan Tinggi" dan "Konkrit Kompak Sendiri" adalah dua contoh yang diberi di sini. Pendekatan yang telah dibuat dalam menyediakan konkrit istemewa ini adalah pencapaian nisbah air kepada simen yang rendah dan sumbangan ataupun kesan yang dibawa oleh empat jenis admixture. Mereka adalah air entraining, setcontrolling, high-range water reducing dan mineral admixtures. Konkrit istimewa ini mempunyai kelebihan yang sungguh jelas daripada konkrit konvensional, yang meliputi aspek kekuatan, ketahan-lamaan, kebolehkerjaan dan ekonomi. Ada beberapa kelemahan juga namun ini tidak membantutkan perkembangan KPT. Dengan kelebihan pada KPT, adalah menarik sekiranya dapat tahu di mana ia digunakan. Pengunaanya boleh dijumpai secara meluas pada jambatan dan jalan berturap dari Amerika Syarikat dan Jepun.

Chapter 1: Introduction

Concrete, steel and wood are the common materials used in the construction industry. These materials can be found in structures like highways, bridges, dams and buildings generally. However, concrete should be the most widely used material due to the massive volume involved in constructions.

The biggest problem faced by the concrete is deterioration. The decreasing of concrete durability can lead to structure failure. Deterioration in concrete generally is caused by abrasion, erosion, freezing and thawing cycle and chemical attacks or reaction such as sulphate attack and alkali-aggregate reaction. Major signs of this problem are cracks, spalling, deflection, corrosion, erosion and stains. To solve this problem, repair services are needed so that the service life of the concrete can be extended. On the other hand, effective protection and maintenance are the keys in preserving the concrete structures, thus lowering the chance of concrete deterioration.

As the use of concrete keep increasing, more and more concrete structures would be found anywhere in the urban regions. This factor may rise the demand of repair or maintenance services. An alternate approach has been adopted. This alternate approach is to develop and implement special concretes that can perform beyond than the ordinary concrete. High Strength Concrete should be the earliest special concrete developed, where strength became the major concern in constructing highrise buildings for the past few decades. Following on, special new materials that can enhance the properties of concrete were found. Adding these special ingredients such as fibres or special cements, the performance of concrete achieving is reaching beyond the imagination.

Due to the increasing of special concretes in the construction industry, a term was introduced to represent all special concretes. High Performance Concrete (HPC) was the name given, where it can be defined as any concrete other than ordinary concrete that is produced with new methods and the capabilities of the final product would be better than the conventional one.

In HPC, the most significant difference between itself and ordinary is its watercement ratio (W/C). In HPC, the W/C can be as low as 0.30 while it is impossible for ordinary concrete. To achieve this, superplasticizer, which is a type of admixture, is used. With the combination with other type admixture such as air-entraining, setcontrolling agents and mineral admixture, the results obtained by the end of production will be much better than the use of one type of admixture.

Occasionally, there would be doubts sensed when bringing up the use of HPC issue in construction projects. So proper explanations on the benefits of HPC have to be implemented. The strength and durability advantages should be brought up first. With HPC, higher compressive strength can be achieved while providing better durability to meet challenges in the unfavourable environments. Following on should be the economic consideration advantage. The cost reduction of a project can be achieved by reduction in column size and numbers of beams due to higher strength. With more durable concrete, preservation services can be decreased thus reducing expenses after construction completion period. There are three objectives in this work or study. First, this work would like to introduce the advances in concrete technology particularly the advancement so-called High Performance Concrete. Secondly, this study hopefully would give readers clearer picture on the concept and production of HPC. Lastly, the author wanted to do literature review of the HPC applications around the globe.

This report contains six chapters. Following this introductory chapter, a discussion on the concrete technology mainly on the properties, problems and advances is presented in Chapter 2. Chapter 3 describes the concept of HPC, followed by the HPC production. Applications of HPC are described in Chapter 5 and finally, conclusions and recommendations by the author would be drawn in Chapter 6.

Chapter 2: Concrete Technology

2.1 Introduction

Concrete in the broadest sense is any product or mass made by the use of a cementing medium. To produce this medium, a reaction between hydraulic cement and water has to be created. Nowadays, this definition can describe a wide range of products. To be specific, concrete is made with several types of cement and also containing pozzolan, fly ash, blasting furnace slag, a 'regulated set' additive, sulphur, admixtures, polymers, fibres and so on; and these concretes can be heated, steam-cured, autoclaved, vacuum-treated, hydraulically pressured, shock-vibrated, extruded and sprayed ¹. In this project, consideration of concrete is taken as not more than a mixture of cement, water, aggregate and admixtures.

In construction, a structure can be fully made of concrete or steel, or even a combination between them. Steel is manufactured under carefully controlled conditions, thus it makes life easier in designing a steel structure where a designer just has to specify the correct steel that should be used with the help of a relevant standard. The case is different when constructing a concrete structure. It is easy to obtain concrete of specified quality from a ready-mix supplier. However, transporting, placing and compacting will create a great impact to the final product. Besides that, unlike steel, concrete can has an infinite choice of mixes. To obtain quality concrete, a great knowledge of concrete technology should be possessed.

2.2 Types of Concrete

There are three types of concrete. The terms *lightweight*, *normal* and *heavyweight* are used to describe it. Different terms are used above because of the different amount and distribution of each concrete component. The concrete component that derives the term will be the density of the aggregates. Compressive strength always has been used to differentiate the concrete. Table 2.1 below shows the types of concrete with its compressive strength 2 :

Туре	Compressive Strength (MPa)
Lightweight	< 20
Normal	20-40
Heavyweight	> 40

 Table 2.1
 Concrete category with respect to compressive strength

However, the above compressive strength is becoming unpopular nowadays. Compressive strength as high as 80 MPa can be achieved with High Performance Concrete (HPC). In Ajdukiewicz's writing (1999)³, he reported Very High Performance Concrete (VHPC) with strength resistance of 100 – 150 MPa and so called Ultra-High Performance Concrete (UHPC) with over 150 MPa compressive strength are the fields development most intensively. This shows that strength at 40 MPa is very common and easily achieved.