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ABSTRACT
We propose an improved solution to the three-stage DNA motif prediction approach. The three-
stage approach uses only a subset of input sequences for initial motif prediction, and the initial
motifs obtained are employed for site detection in the remaining input subset of non-overlaps. The
currently available solution is not robust because motifs obtained from the initial subset are
represented as a position weight matrices, which results in high false positives. Our approach,
called DeepFinder, employs deep learning neural networks with features associated with binding
sites to construct a motif model. Furthermore, multiple prediction tools are used in the initial motif
prediction process to obtain a higher number of positive hits. Our features are engineered from the
context of binding sites, which are assumed to be enriched with specificity information of sites
recognized by transcription factor proteins. DeepFinder is evaluated using several performance
metrics on ten chromatin immunoprecipitation (ChIP) datasets. The results show marked
improvement of our solution in comparison with the existing solution. This indicates the
effectiveness and potential of our proposed DeepFinder for large-scale motif analysis.
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Introduction

The ability to identify transcription factor binding sites or
motifs in the genome is one of the keys to decipher
gene regulation mechanisms. Motifs are recurring
sequence patterns in a genome and are the binding sites
of transcription factors crucial for the regulation of pro-
tein production in cells. Analysis of motifs is important
for advancements of medical treatment and understand-
ing of cell processes [1]. Both wet-lab and computational
techniques have been widely employed for location
identification and analysis of motifs.

Motif analyses with chromatin immunoprecipitation
(ChIP) combined with massive parallel DNA sequencing
(ChIP-seq) followed by computational prediction have
enabled rapid genome-wide location prediction of thou-
sands of high-confidence candidate motif locations.
Genome-wide datasets have posed several challenges to
the computational algorithm design because of increas-
ing complexities of the sequence search space and the
requirement of a large amount of memory space. Early
methods for genome-wide motif discovery are based on
comparative genomic [2] and motif profile search. The
comparative genomic method is based on the principle
that functional elements (e.g. motifs) evolved from the

common ancestors are conserved, compared to their
surrounding non-functional bases. Therefore, such con-
served functional elements can be identified by perform-
ing conservation analysis between sequences of
orthologous or paralogous species using pair-wise and
multiple sequence alignment techniques. GenomeVISTA
[3], LAGAN/MLAGAN [4], MUMmer [5], AVID [6] and
MULAN [7] are examples of such tools. They are mostly
based on the dynamic programming algorithm such as
Smith–Waterman [8] for the local alignment and Needle-
man–Wunsch [9] for the global alignment. To speed up
the alignment of genomes, heuristic techniques such as
anchoring [6], threaded blockset [10] or greedy search
[11] have been employed. Although comparative geno-
mic methods enabled identification of conserved motifs,
these methods missed many functional motifs that are
not conserved [12]. The second group of methods uses a
database of annotated motif profiles to detect associ-
ated sites in input datasets [13–16]. Motifs are typically
represented as a position weight matrix (PWM) [17] or its
variants [18]. MATCH [13] combines the matrix and core
similarity score for scoring a sequence; MISCORE [14]
computes the average mismatch score between a
sequence and motif instances for scoring; the MAST [19]
score of a sequence is simply the sum of the PWM’s
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