

SYNTHESIS AND ANTIBACTERIAL ACTIVITIES OF ASPIRIN-CHALCONE DERIVATIVES

PHANG SAI FOONG 38393

Bachelor of Science with Honours

Resource Chemistry

2015

Synthesis and Antibacterial Activities of Aspirin-Chalcone Derivatives

Phang Sai Foong

A dissertation is submitted in partial fulfilment of the requirement for the Degree of Bachelor Science with Honours

(Resource Chemistry)

Faculty Resource Science and Technology Universiti Malaysia Sarawak

2015

ACKNOWLEDGEMENT

First of all, I would like to appreciate my supervisor, Assoc. Prof. Dr. Zainab Ngaini for guiding me along the way towards the way of completion of my research and thesis. Her critical point of view, useful advice and effective guidance had contributed greatly in the progress of my project.

Besides, I would like to address my appreciation to the lab assistants, technical staffs as well as the senior Ph. D and master students for their patient guidance since the beginning of my research. They have taught me the appropriate way to learn to use all the analytical instrument needed and gave me suitable comments in constant discussion.

In addition, I feel grateful to receive all the support from my family members and friends. They have provided substantial moral support for me whenever I encounter the difficulties in my work. Without them, I would never have such a great courage to complete my project today.

DECLARATION

I, Phang Sai Foong (38393), students from Resource Chemistry programme, Faculty of Resource Science and Technology hereby declare that the work entitled Synthesis and Antibacterial Activities of Aspirin-Chalcone Derivatives is my original work. I have not copied from any other students' work or from any other sources except where due reference or acknowledgement is made explicitly in the text, nor has any part been written for me by another person.

(PHANG SAI FOONG)

Date :

TABLE OF CONTENT

Acknowledgement		Ι
Declaration		II
Table of Contents		III-VI
List of Abbreviations.		VII
List of Tables, Figure	s and Schemes	VIII-XI
Abstract		1
1.0 Introduction		2
1.1 Aspirin		2
1.2 Chalcone.		2
1.3 Problem S	tatement	3
1.4 Objectives		3
2.0 Literature Review		4
2.1 Aspirin		4
2.1.1	Recent study of aspirin derivatives	4
2.2 Chalcone.		5
2.2.1	Antioxidant activity of chalcone	
	derivatives	6
2.2.2	Anti-inflammatory activity of chalcone	
	derivatives	7
2.2.3	Anticancer activity of chalcone	
	derivatives	8
2.2.4	Anti-infective activity of chalcone derivatives	9
	2.2.4.1 Antibacterial activity	9

	2.2.4.2 Antifungal activity	10
	2.2.4.3 Antiviral activity	10
	2.2.4.4 Antiparasitic activity	10
2.2.5	Recent studies of chalcone derivatives	11
2.2.6	Recent studies of aspirin-chalcone derivatives	21
3.0 Materials & Meth	nods	23
3.1 Materials.		23
3.2 Measurem	nents	23
3.3 General p	rocedure for alkylation of 4-hydroxybenzaldehyde,	
30		24
3.3.1	Synthesis of 4-(decyloxy)benzaldehyde, 30a	24
3.3.2	Synthesis of 4-(dodecyloxy)benzaldehyde, 30b	25
3.3.3	Synthesis of 4-(tetradecyloxy)benzaldehyde, 30c	26
3.4 General p	rocedure for synthesis of 4-hydroxyacetophenone with	
benzaldeh	yde derivatives, 31	26
3.4.1	Synthesis of (E)-3-(4-(decyloxy)phenyl)-1-(4-	
	hydroxyphenyl)prop-2-en-1-one, 31a	27
3.4.2	Synthesis of (E)-3-(4-(dodecyloxy)phenyl)-1-(4-	
	hydroxyphenyl)prop-2-en-1-one, 31b	28
3.4.3	Synthesis of (E)-1-(4-hydroxyphenyl)-3-(4-	
	(tetradecyloxy)phenyl)prop-2-en-1-one,	
	31c	29
3.5 General p	rocedure for synthesis of aspirin-chalcone derivatives,	
32		30

3.5.1	Synthesis of (E)-4-(3-(4-	
	(decyloxy)phenyl)acryloyl)phenyl 2-acetoxybenzoate,	
	32a	31
3.5.2	Synthesis of (E)-4-(3-(4-	
	(dodecyloxy)phenyl)acryloyl)phenyl 2-	
	acetoxybenzoate, 32b	32
3.5.3	Synthesis of (E)-4-(3-(4-	
	(tetradecyloxy)phenyl)acryloyl)phenyl 2-	
	acetoxybenzoate, 32c	33
3.6 Antibacter	ial Screening	34
4.0 Results and Discu	ssion	35
4.1 Synthe	esis of 4-(decyloxy)benzaldehyde,	
30 a		35
4.2 Synthe	esis of 4-(dodecyloxy)benzaldehyde,	
30b		39
4.3 Synthe	esis of 4-(tetradecyloxy)benzaldehyde,	
30c		43
4.4 Synthe	esis of (E)-3-(4-(decyloxy)phenyl)-1-(4-	
hydrox	xyphenyl)prop-2-en-1-one,	
31a		47
4.5 Synthe	esis of (E)-3-(4-(dodecyloxy)phenyl)-1-(4-	
hydrox	xyphenyl)prop-2-en-1-one, 31b	51
4.6 Synthe	esis of (E)-1-(4-hydroxyphenyl)-3-(4-	
(tetrad	ecyloxy)phenyl)prop-2-en-1-one, 31c	55

4.7 Synthesis of (E)-4-(3-(4-(decyloxy)phenyl)acryloyl)phenyl 2-	
acetoxybenzoate, 32a	59
4.8 Synthesis of (E)-4-(3-(4-(dodecyloxy)phenyl)acryloyl)phenyl	
2-acetoxybenzoate,	
32b	63
4.9 Synthesis of (E)-4-(3-(4-	
(tetradecyloxy)phenyl)acryloyl)phenyl 2-acetoxybenzoate,	
32c	67
4.10 Antibacterial activity	70
5.0 Conclusion and Recommendations	
6.0 References	74

LIST OF ABBREVIATIONS

¹ H NMR spectroscopy	Hydrogen Nuclear Magnetic Resonance
¹³ C NMR spectroscopy	Carbon-13 Nuclear Magnetic Resonance
CDCl ₃	Chloroform
DMSO	Dimethyl sulfoxide
FTIR	Fourier Transform Infrared Spectroscopy
MIC	Minimum inhibitory concentrations
ppm	Part per million
TLC	Thin layer chromatography

LIST OF FIGURES

	Figures	Pages
Figure 1.1	Structure of aspirin	2
Figure 1.2	Structure of chalcone	3
Figure 2.1	Structure of Ca-ASP	5
Figure 2.2	Structure of 2'-Omethylisoliquiritigenin	6
Figure 2.3	Structure of 2',3',4',6'-tetrahydroxychalcone	7
Figure 2.4	Structure of 2',4',6'-tris(methoxymethoxy)chalcone	7
Figure 2.5	Structure of flavokawin A	8
Figure 2.6	Structure of 2',4'-dihydroxy-6'-methoxy-3',5'- dimethylchalcone	8
Figure 2.7	Structure of 4-Hydroxyderricin	9
Figure 2.8	Structure of compound 10	9
Figure 2.9	Structure of isobavachalcone	10
Figure 2.10	Structure of compound 12	10
Figure 2.11	Structure of licochalcone	11
Figure 2.12	Structure of compound 20	16
Figure 2.13	Structure of 1-nonylimidazole	21
Figure 3.1	Structure of 4-(decyloxy)benzaldehyde	24
Figure 3.2	Structure of 4-(dodecyloxy)benzaldehyde	25
Figure 3.3	Structure of 4-(tetradecyloxy)benzaldehyde	26
Figure 3.4	Structure of (E)-3-(4-(decyloxy)phenyl)-1-(4- hydroxyphenyl)prop-2-en-1-one	27
Figure 3.5	Structure of (E)-3-(4-(dodecyloxy)phenyl)-1-(4- hydroxyphenyl)prop-2-en-1-one	28
Figure 3.6	Structure of (E)-1-(4-hydroxyphenyl)-3-(4- (tetradecvloxy)phenyl)prop-2-en-1-one	29
Figure 3.7	Structure of (E)-4-(3-(4-(decyloxy)phenyl)acryloyl)phenyl 2- acetoxybenzoate	31
Figure 3.8	Structure of (E)-4-(3-(4-(dodecyloxy)phenyl)acryloyl)phenyl 2- acetoxybenzoate	32
Figure 3.9	Structure of (E)-4-(3-(4-(tetradecyloxy)phenyl)acryloyl)phenyl 2-acetoxybenzoate	33
Figure 4.1	FT-IR spectrum of 30a	36
Figure 4.2	'HNMR spectrum of 30a	37
Figure 4.3	¹³ CNMR spectrum of 30a	38
Figure 4.4	FT-IR spectrum of 30b	40

Figure 4.5	¹ HNMR spectrum of 30b	41
Figure 4.6	¹³ CNMR spectrum of 30b	42
Figure 4.7	FT-IR spectrum of 30c	44
Figure 4.8	¹ HNMR spectrum of 30c	45
Figure 4.9	¹³ CNMR spectrum of 30c	46
Figure 4.10	FT-IR spectrum of 31a	48
Figure 4.11	¹ HNMR spectrum of 31a	49
Figure 4.12	¹³ CNMR spectrum of 31a	50
Figure 4.13	FT-IR spectrum of 31b	52
Figure 4.14	¹ HNMR spectrum of 31b	53
Figure 4.15	¹³ CNMR spectrum of 31	54
Figure 4.16	FT-IR spectrum of 31c	56
Figure 4.17	¹ HNMR spectrum of 31c	57
Figure 4.18	¹³ CNMR spectrum of 31c	58
Figure 4.19	FT-IR spectrum of 32a	60
Figure 4.20	¹ HNMR spectrum of 32a	61
Figure 4.21	¹³ CNMR spectrum of 32a	62
Figure 4.22	FT-IR spectrum of 32b	64
Figure 4.23	¹ HNMR spectrum of 32b	65
Figure 4.24	¹³ CNMR spectrum of 32b	66
Figure 4.25	FT-IR spectrum of 32c	68
Figure 4.26	¹ HNMR spectrum of 32c	69
Figure 4.27	¹³ CNMR spectrum of 32c	70
Figure 4.28	Antibacterial screening using Disc Diffusion Method	72

LIST OF SCHEMES

	Schemes	Pages
Scheme 1	Synthesis of aspirin	4
Scheme 2	Synthesis of chalcone	6
Scheme 3	Synthetic scheme for synthesizing the title compounds	12
Scheme 4	Synthesis of 3-[2-(2-hydroxy-4, 6-dimethoxyphenyl)-2-	13
	oxoethyl]-2-benzofuran-1 (3H)-one	
Scheme 5	Synthetic diagram of the chalcone derivatives 18a-h	14
Scheme 6	Synthetic diagram of the direct ester derivatives of diclofenac	15
	19a-h	
Scheme 7	Synthetic scheme for synthesizing the semicarbazone	16
	compounds	
Scheme 8	General scheme for the synthesis of compounds 21a-h	18
Scheme 9	General scheme for the synthesis of compounds 21i and 21j	18
Scheme 10	Synthesis of 4'- acetamidochalcones	19
Scheme 11	Synthesis of chlcone derivatives	20
Scheme 12	Synthesis of imidazole, 2-methylimidazole and 2-methyl-4-	20
	nitroimidazole	
Scheme 13	The synthesis of 28a-b	22
Scheme 14	The synthesis of 29a-b	22
Scheme 15	The synthesis of 30a-c	24
Scheme 16	The synthesis of 31a-c	26
Scheme 17	The synthesis of 32a-c	30
Scheme 18	The synthesis of 30a	35
Scheme 19	The synthesis of 30b	39
Scheme 20	The synthesis of 30c	43
Scheme 21	The synthesis of 31a	47
Scheme 22	The synthesis of 31b	51
Scheme 23	The synthesis of 31c	55
Scheme 24	The synthesis of 32a	59
Scheme 25	The synthesis of 32b	63
Scheme 26	The synthesis of 32c	67

LIST OF TABLES

	Tables	Pages
Table 1	Antibacterial Activity of E.coli	71
Table 2	Label of compounds on the MH agar plate	72

Synthesis and antibacterial activities of aspirin-chalcone derivatives

PHANG SAI FOONG

Department of Chemistry

Faculty of Resource Science and Technology

University Malaysia Sarawak

Abstract

In recent years, chalcone and its derivatives have been studied extensively in terms of their biological activities. In this study, the synthesis and characterization of aspirin-chalcone derivatives has been carried out. A series of aspirin-chalcone derivatives were successfully synthesized from the reaction of intermediates **31a-c** with acetylsalicyloyl chloride to yield final product of **32a-c** with overall yield of 21.8 % to 88.4 %. All the derivatives were characterized by FT-IR, ¹HNMR and ¹³CNMR. Disc diffusion method was then used to study the antibacterial activities of the new series. All of them showed the results of poor antibacterial properties. The structure that affected the strength of antibacterial properties was discussed.

Keyword: Aspirin, chalcone, aspirin derivatives, chalcone derivatives, antibacterial activities

Abstrak

Dalam tahun-tahun kebelakangan ini, chalcone dan derivatifnya telah dikaji secara meluas dari segi aktiviti biologi mereka. Dalam kajian ini, sintesis dan pencirian derivatif aspirin chalcone telah dijalankan. Satu siri derivatif aspirin - chalcone telah berjaya disintesis daripada reaksi **31a-c** dengan klorida acetylsalicyloyl untuk menghasilkan **32a-c** dengan hasil keseluruhan 21.8 % - 88.4 %. Semua derivatif telah dicirikan oleh FT- IR, ¹HNMR dan ¹³CNMR . Kaedah cakera resapan telah digunakan untuk mengkaji aktiviti antibakteria siri baru. Semua produk menunjukkan keputusan ciri-ciri antibakteria yang lemah. Struktur yang menjejaskan kekuatan ciri-ciri antibakteria telah dibincangkan .

Kata kunci : Aspirin , chalcone , derivatif aspirin , derivatif chalcone , aktiviti anti-bakteria

1.0 Introduction

1.1 Aspirin

Aspirin 1 is known as acetylsalicylic acid. It is a salicylate drug, which is used as an analgesic to relieve pains and minor aches. In addition, aspirin is antipyretic and always being applied to reduce fever and prescribed as an anti-inflammatory medication. For now, aspirin modifications have been conducted widely and many aspirin derivatives were proven to exhibit various biological properties such as antithrombic and antiplatelet (Lechi *et* al., 1996), anticancer (Lechi *et* al., 1996; Zheng *et* al., 2007) and antibacterial properties (Al-Bakri *et al.*, 2009). According to Karthikeyan *et al.* (2009), in the meta-analysis performed by the Antiplatelet Trialists' Collaboration, aspirin is reported to reduce the incidence of deep-vein thrombosis by 20% and that of pulmonary embolism by 69% in patients that have high risk for thromboembolic events.

1 Figure 1.1 : Structure of aspirin

1.2 Chalcone

Chalcone 2 is known as a group of compound consisting of two aromatic rings linked by an unsaturated α and β -ketone. There are various types of substituents on those two aromatic rings. Chalcone exists in most of the plants in nature. It is an intermediate precursor of

flavonoids and isoflavonoids. Chalcone has been applied widely in the field of biology and chemistry. Chalcone showed many biological properties including anticancer, antimalarial, antimicrobial, anti-inflammatory and antibacterial (Hsieh *et al.*, 1998; Ram *et al.*, 2000). In chemistry field, some studies showed that the photochemical and photophysical properties of chalcone enables it to be used as photoalignment and photocrosslinking unit in polymerization process, fluorescent dyes and light-emitting diodes (LEDs).

2 Figure 1.2 : Structure of chalcone

1.3 Problem Statement

Currently, there are less studies conducted on synthesizing aspirin-chalcone derivatives. So, we would like to conduct this study by synthesizing aspirin-chalcone derivatives with various substituents. Through the structure modification, it is possible to create a product which contains even stronger antibacterial properties.

1.4 Objectives

- 1. To synthesize hydroxyl chalcone derivatives with long alkyl chain.
- 2. To incorporate hydroxyl chalcone derivatives onto aspirin.
- 3. To characterize the synthesized compounds using FTIR, ¹H and ¹³C NMR.
- 4. To study the antibacterial activities of the synthesized compounds.

2.0 Literature Review

2.1 Aspirin

Aspirin is synthesized by reacting acetic anhydride and salicylic acid through esterification reaction. Phosphoric acid is applied as catalyst to speed up the reaction. At the end of the reaction, aspirin and acetic acid will be yield as main product and by product respectively.

Scheme 1 : Synthesis of aspirin

2.1.1 Recent study of aspirin derivatives

In the study carried out by Li *et al.* (2014), a novel aspirin derivatives, namely Ca-ASP **3** was prepared and characterized by reacting aspirin solution with hydroxylapatite (Hap) suspension. The anti-thrombotic and gastric mucosal protection properties study was carried out by using Winstar rats. Study shown that rats that consumed 5 mmol per kg body weight of Ca-ASP showed similar anti-thrombotic activity compared to those consumed same amount of aspirin, however, they suffered gastric mucosal damage in a much lower level compared to standard aspirin.

Figure 2.1 : Structure of Ca-ASP

In the study carried out by Balamani and Sekar (2011), simple new aspirin Enkephalin analogues were synthesized and evaluated for its analgesic activity studies. ACOH-inducing writhing test was then carried out on mice to evaluate their analgesic effects. The mean writhing values shown that Gly-Gly-Phe-Met-NH₂ sequence was important for the observed analgesic activity of compound Aspirin-Gly-Gly-Phe-Met-NH₂, while the Gly-Gly-Phe-Leu-NH₂ sequence was crucial for the observed analgesic activity of compound Aspirin-Gly-Gly-Phe-Leu-NH₂.

2.2 Chalcone

The general procedure to synthesis chalcone is by reacting equal molar of benzaldehyde and acetophenone in 95 % ethanol as a solvent. The mixture is stirred and cooled in an ice bath. To complete crystal the formation, it was filtered, wash in cold water and recrystallized with ethanol. The final product, chalcone is yielded.

Scheme 2 : Synthesis of chalcone

2.2.1 Antioxidant activity of chalcone derivatives

The antioxidant activity of 2'-*O*methylisoliquiritigenin **4**, isolated from the roots of *Dalbergia odorifera*, in lard was examined by Yu *et al.* (2007) by using oxidative stability instrument. As a result, greater antioxidant effects was obtained from this chalcone at 0.1 and 0.2 mM compared to butylated hydroxytoluene (BHT) and α -tocopherol. It was similar to α -tocopherol in inhibiting the decreasing of glutathione (GSH) level of rat lens induced by UV irradiation. The result could be useful to identify the mechanism of cataractogenesis.

Figure 2.2 : Structure of 2'-Omethylisoliquiritigenin

From the study conducted by Mohamad *et al.* (2004), the 2',3',4',6'-tetrahydroxychalcone **5** isolated from dried ripe fruits of *Alpinia rafflesiana* exhibited more potent DPPH radical-scavenging activity ($IC_{50} = 55 \mu M$) compared to vitamin C ($IC_{50} = 91 \mu M$) and α -tocopherol ($IC_{50} = 96 \mu M$). From the result, chalcones were found out to be potent radical scavengers if it has catechol pattern of substitution in ring B and pyrogallol-type hydroxylated ring A.

Figure 2.3 : Structure of 2',3',4',6'-tetrahydroxychalcone

2.2.2 Anti-inflammatory activity of chalcone derivatives

Heme oxygenase 1 (HO-1) is known as crucial anti-inflammatory enzyme induced in response to oxidative stress and cytokines. A report by Sawle *et al.* (2008) stated that some methoxychalcones possessed anti-inflammatory activity that correlated with their potency as HO-1 inducers. By sequentially increasing the number of methoxy substituents in the 3,4,5- and 3',4',5'-positions of the aryl rings, a progressive increase in HO-1 activity was obtained. Meanwhile, Jin *et al.* (2007) also reported that by the induction of HO-1, which was initiated by depletion of GSH, 2',4',6'-tris(methoxymethoxy)chalcone **6** exhibited potent anti-inflammatory activity.

Figure 2.4 : Structure of 2',4',6'-tris(methoxymethoxy)chalcone

6

The flavokawin A **7** isolated from *Piper methysticum* by Folmer *et al.* (2006), inhibited tumor necrosis factor (TNF)- α -induced I κ B α degradation and translocation of p50 and p65 NF- κ B subunits from the cytoplasm to the nucleus. Besides, important inflammation-related proteins such as p38-regulated/activated kinase, I $\kappa\beta$ kinase, Aurora B kinase, mitogen-activated protein kinase 3, dual-specificity tyrosine-phosphorylated and regulated kinase 1A, and also managed to be inhibited by flavokawin A.

7

Figure 2.5 : Structure of flavokawin A

2.2.3 Anticancer activity of chalcone derivatives

According to Amor *et al.* (2007), 2',4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone **8**, isolated from *Syzygium samarangense* showed significant differential cytotoxicity against the adenocarcinoma SKBR-3 cell lines and human mammary MCF-7 with IC₅₀ values of 12.8 x 10-4 nM and 15 x 10-4 nM respectively. Compared to former, the positive control doxorubicin had an IC₅₀ value of 27.6x10-4 nM against the SKBR-3 cells and an IC₅₀ value of 2.6 x 10-4 nM against the MCF-7 cell line.

Figure 2.6 : Structure of 2',4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone

Kimura *et al.* (2004) isolated 4-Hydroxyderricin **9** from *Angelica keiskei*. Given orally at a dose of 50 mg/kg x 2/day, this compound successfully inhibited lung metastasis and prolonged the survival time in mice after the removal of subcutaneous tumors by surgical operation. This compound had additional properties by inhibiting the reduction of the numbers of lymphocytes, CD4⁺, CD8⁺ and natural killer (NK)-T cells in the spleen of tumor-removed mice (Kimura *et al.* 2004).

Figure 2.7 : Structure of 4-Hydroxyderricin

2.2.4 Anti-infective activity of chalcone derivatives

2.2.4.1 Antibacterial activity

Compound **10** identified by Bowman *et al.* (2007) was concluded the most active against *S. aureus*, methicillin-resistant *S. aureus*, *S. epidermidis*, and *B. subtilis* with the MIC values 3.5, 3.0, 3.8, and 8.8 µM respectively. In comparison, the referent drug linezolid inhibited both *S. aureus* strains with recorded MIC values of 10.0 and 8.0 µM respectively.

10

Figure 2.8 : Structure of compound 10

2.2.4.2 Antifungal activity

Mbaveng *et al.* (2008) screened isobavachalcone **11** for its antifungal activity, and found out that it inhibited growth of *Microsporum audorium* (MIC = $0.3 \mu g/ml$), *Candida albicans* (MIC = $0.3 \mu g/ml$), *C. glabrata* (MIC = $0.3 \mu g/ml$) and *Trichophyton rubrum* (MIC = $1.2 \mu g/ml$).

11

Figure 2.9 : Structure of isobavachalcone

2.2.4.3 Antiviral activity

An attempt was made by Deng *et al.* to develop small molecules to inhibit HIV-1 integrase (IN), a crucial enzyme for viral replication. Compound **12** was synthesized successfully and in the presence of both Mn^{2+} and Mg^{2+} as cofactors, it showed potent inhibitory activity with an IC₅₀ value of 2 μ M against purified IN.

12

Figure 2.10 : Structure of compound 12

2.2.4.4 Antiparasitic activity

Licochalcone A **13**, the well-known antiparasitic compound is a potent membrane-active agent that undergoes transformation of normal erythrocytes into echinocytes in parallel with the inhibition of growth of *P. falciparum* cultures. Ziegler *et al.* (2004) managed to observed the erythrocyte membrane-modifying effect transiently in mice after intravenous administration.

13

Figure 2.11 : Structure of licochalcone

2.2.5 Recent studies of chalcone derivatives

In the study conducted by Singh *et al.* (2010), a new pharmacophore named 'Chalconesemicarbazone' was designed by pharmacophore hybridization of drug design. Singh *et al.* (2010) a series of novel 'chalconylsemicarbazide' derivatives by reacting substituted phenyl semicarbazide with various chalcone derivatives, which contained hydrogen acceptor site, hydrogen donor site and lipophilic site which may aid in receptors binding for pharmacological activities. Carrageenan-induced rat paw edema test was used to conduct *in vivo* determination of the anti-inflammatory activity. Meanwhile, to evaluate the analgesic activity, acetic acid-induced writhing test was used. Finally, the percentage of protection against the acetic acid-induced writhing was determined and calculated. The screening result shown that 1-(1,5-diphenylpenta-2,4-dienylidene)-4-(2-nitrophenyl) semicarbazide was most active.