Aberration compensation of holographic particle images using digital holographic microscopy

Tamrin, K. F. and Rahmatullah, B. and Samuri, S. M. (2015) Aberration compensation of holographic particle images using digital holographic microscopy. Journal of Modern Optics. ISSN 0950-0340

[img]
Preview
PDF
Aberration compensation of holographic particle (abstract).pdf

Download (92kB) | Preview
Official URL: https://www.researchgate.net/publication/273338756

Abstract

Characterisation of small and large-scale vortices in turbulent flows demands a system with high spatial resolution. The measurement of high spatial resolution, three-dimensional vector displacements in fluid mechanics using holography, is usually hampered by aberration. Aberration poses some problems in particle image identification due to low fidelity of real image reconstruction. Phase mismatch between the recording and the reconstruction waves was identified as the main source of aberration in this study. This paper demonstrates how aberration compensation can be achieved by cross-correlating the complex amplitude of an aberrated reconstructed object with the phase conjugate of a known reference object in the plane of the hologram (frequency space). Results favourably show significant increase in Strehl ratio and suppression of background noise that are more pronounced for particle images of 10 and 5 microns. It is clear from the work conducted that wavefront aberration measurement and compensation of holographic microscopic objects are now possible with the use of a variant digital holographic microscope

Item Type: Article
Uncontrolled Keywords: aberration; digital holography; digital holographic microscopy; holographic microscope; compensation; holographic particle image velocimetry, unimas, university, universiti, Borneo, Malaysia, Sarawak, Kuching, Samarahan, ipta, education, research, Universiti Malaysia Sarawak
Subjects: T Technology > TJ Mechanical engineering and machinery
Divisions: Academic Faculties, Institutes and Centres > Faculty of Engineering
Faculties, Institutes, Centres > Faculty of Engineering
Depositing User: Karen Kornalius
Date Deposited: 25 Sep 2017 04:10
Last Modified: 25 Sep 2017 04:10
URI: http://ir.unimas.my/id/eprint/17769

Actions (For repository members only: login required)

View Item View Item