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Abstrak 

Negeri Sarawak telah mengalami wabak penyakit berjangkit tangan, kaki dan mulut (HFMD) 

sejak tahun 1997. Pada tahun 2006, wabak penyakit tersebut telah mengakibatkan 13 kematian 

dengan 14,423 kes direkodkan. Akibatnya arahan penutupan semua taska, tabika dan darjah satu 

hingga tiga sekolah rendah untuk two minggu telah dilaksanakan dalam proses menghentikan 

sebaran wabak tersebut. Setiap kali wabak penyakit berjangkit tangan, kaki dan mulut berlaku, 

perasaan takut dan risau dalam komuniti akan timbul. Wabak penyakit tangan, kaki dan mutut 

yang seterusnya dijanka akan berlaku pada tahun 2009. Model matematik telah digunakan 

secara meluas untuk meramal dan memahami dinamik penyakit berjangkit. Dalam projek ini, 

kami membina satu model matematik yang mudah untuk meramal sebaran wabak penyakit kaki, 

tangan dan mulut dari segi bilangan mangsanya. Seterusnya dengan menggunakan model 

tersebut, kami cuba menentukan parameter kritikal yang akan membantu dalam membantutkan 

sebaran wabak tersebut. Kami membina model matematik untuk penyakit tangan. kaki dan 

mulut berdasarkan kajian tentang ciri-ciri klinikalnya. Dengan menggunakan sistem persamaan 

pembezaan kami menghubungkan semua parameter dalam model berkenaan. Kami 

menyelesaikan sistem persamaan pembezaan terse but berdasarkan analisis berangka dan 

seterusnya memaparkan hasil penyelesaian tersebut. Hasil dapatan terse but juga dianalisiskan 

bersama dengan data penyakti tangan, kaki dan mulut untuk tahun 2006. Model matematik 

terse but juga dianalisiskan berdasarkan penyelesaian titik pegun dan membandingkannya dengan 

hasil analisis berangka. Hasil kajian mendapati jumlah individual yang dijangkiti serta tempoh 

wabak penyakit dapat diperolehi melalui analisis berangka berdasarkan model matematik 

tersebut. Ia juga mendapati bahawa parameter yang dapat mengawal sebaran jangkitan wabak 

tersebut adalah bilangan yang belum dijangkiti. 
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Abstract 

CSince 1997, every three years Sarawak had been experiencing outbreak of hand, foot and mouth 

disease (HFMD). The outbreak of HFMD in year 2006 resulted in 13 deaths with 14,423 cases 

reported. It also resulted in closing of all nurseries, kindergartens and primary one to primary 

three classes for about two weeks. Each outbreak of HFMD caused fear and anxiety in the 

community. The next outbreak is predicted to be in year 2009. Mathematical models have been 

widely used to predict and understand the dynamics of infectious disease. In this project we 

build a simple mathematical model to predict the spread of HFMD in Sarawak in terms of 

number of infected individuals per unit of time and the duration of the outbreak. Then using the 

model we try to determine the critical parameter that can help in curbing the spread of HFMD. 

We studied the clinical characteristics of HFMD)Based on that study, we built the HFMD 

model. We formulated a system of differential equations that related all the parameters in 

HFMD model. Using numerical analysis, we solved the equations and presented the numerical 

results in graphical form. The results were analyzed with year 2006 outbreak and also through 

obtaining the steady state solutions analytically and compare them with the numerical results. 

Thus, the number of infected individuals and the duration of an outbreak can then be determined 

from the obtained numerical results. It was found that the parameter that would be able to 

control the spread of HFMD is the number of susceptible in the system. 
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1 INTRODUCTION 

1.1 Background 

Hand, foot and mouth disease (HFMD) is caused by viruses from the group called 

enteroviruses of the family called Picomoviridae (Podin, et aI., 2006). It is most commonly 

caused by Coxsackie virus (A 16) and human enterovirus (HEV71) or other enteroviruses (Hand, 

Foot and Mouth Disease, 2007). Other viruses associated with HFMD are Coxsackie virus A 

(CA V) 4, 5, 9 and 10 and Coxsackie virus B (CBV) 2 and 5 (Ooi, et at., 2007) (Hand, Foot and 

Mouth Disease, 2006). The disease is believed to be a common illness of infant and children. 

Nevertheless, 2628 cases of HFMD with 31 deaths in Sarawak were recorded during an outbreak 

."
I 

in 1997 (Soal Jawab Penyakit Tangan, Kaki dan Mulut (HFMD) Bersama Ketua Pengarah 
" 

Kesihatan, 2006). The outbreak occurred again in 2000, 2003 and 2006. Table 1 shows the 

number of cases and deaths related to HFMD outbreaks in Sarawak since t997 (Hand Foot 

Mouth Disease Outbreak in Sarawak, 2006, 2007; Hand, Foot and Mouth Disease, 2007). 

3560 o 

2113 o 

14,423 13 

Table 1. Number of cases and deaths related to HFMD outbreak in Sarawak 

In Table 1 it can be seen that the number of cases related to HFMD outbreak in Sarawak 

increased drastically to 14,423 cases as compared to those recorded in 1997, 2000 and 2003. 

The summation of the total cases for the three previous outbreaks cannot even match the single 

1 
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total number of cases recorded in year 2006. Serious action should be taken to address this 

increase. 

The outbreak in 2006 had prompted the Health Ministry of Malaysia to announce the 

closure of all child care centres and kindergartens in Sarawak for 2 weeks on 3 March 2006 

(Arahan Penutupan Sementara ke atas Semua Tadika, Pra-Sekolah, Tabika dan Taska Seluruh 

Sarawak, 2006). As the spread of the disease did not subdued, all Primary one to Primary three 

classes in all primary schools in Sarawak were also ordered to be closed from 20 March to 26 

March 2006 (Closure Directive -Director of Sarawak Health Department. 2006), Refer to 

Appendix A and B. These closures were ordered in the hope that it would break the transmission 

of the disease. The closure surely had caused problems for working parents who had to find 

other alternatives in caring for the children that were affected by the closure. Parents were 

requested to keep the children indoor and away from any crowded places such as supermarkets 

and playgrounds. It can be seen that HFMD not only caused health problems but also social and 

economical problems which are not easily quantifiable. As Barreto, Teixeira, and Carmo (2006) 

puts it, the explosive characteristics and unpredictability of epidemics are a cause of fear, 

insecurity, and panic for the community. 

So, it is important especially in Sarawak to understand the spread of HFMD. The 

outbreak in 2006 was predicted by Podin, et al. (2006) which acknowledged a trend for the 

outbreak of HFMD every three years in Sarawak starting from the year 1997. The next outbreak 

is predicted to be in 2009 and this was acknowledged by the authorities in Hand Foot Mouth 

Disease Outbreak in Sarawak, 2006 (2007) and also in the article 'Outbreak of HFMD Expected 

Next Year (2008), Refer to Appendix C. It is only right that authorities concerned make 
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necessary preparation for the predicted outbreak in year 2009. We hope this project will be able 

to help authorities concerned. 

It should be noted that HFMD not only strike Sarawak but also Taiwan, Western 

Australia and Singapore (McMinn, et al., 2001) and most recently China (Refer to Appendix D). 

As reported by Lim (2008) (Refer to Appendix E) 16,778 persons had been infected by HFMD 

in China since January 2008. In Taiwan it caused 78 deaths and 129,106 children infected 

during the outbreak from March to December 1998 (Ho, 2000). In Singapore it caused 4 deaths 

and 3526 infected during September to November 2000 outbreak. Study done by Chan, et al. 

(2003) revealed that most of the infected were children below the age of four years and HEV71 

was the most frequently isolated cases in Singapore. Chong, et al. (2003) compared the fatality 

rate in Singapore with Taiwan and concluded that the difference could be due to genetic factors, 

viral virulence or underreporting of non-fatal cases. The study done by Chen, et al. (2007) in 

Taiwan also found that most of the cases were children below the age of four years. 

FurthernlOre, HFMD is a common disease in Taiwan with the incidence peak observed during 

the summer season. Chen, et al. (2007) attributed the outbreak ofHFMD in Taiwan every two to 

three years to the accumulation of susceptible individuals during this interval. 

Experts in the field of virology acknowledged that the virus that caused HFMD seemed to 

have evolved (Podin, et aI., 2006). These together with the characteristics of HFMD such as no ,.,. I 
immunity and no available vaccine (Hand, Foot and Mouth Disease, 2006) should be of great 

concern to governments around the world and especially Sarawak where a trend for the outbreak 

HFMD is said to occur every three years (Podin, et al., 2006). That is where mathematical 

modelling of the spread ofHFMD can be used. 

3 
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A lot of modelling on the spread of diseases has been done for example on SARS 

epidemic (Choi & Pak, 2003; Gumel, et ai., 2004), HIV (Nowak & May, 2000), malaria 

(Macdonald, 1957) to name a few. Wang and Sung (2004) did a mathematical modelling of the 

spread of HFMD. They used SIR (Susceptible-Infected-Recovered) model to model the spread 

of enteroviruses in Taiwan. The aim of their model is to see the association between the weather 

and the occurrence of enteroviruses complicated severe cases in Taiwan. Other than that no 

mathematical modelling work has been done on HFMD cases in Sarawak. 

With any mathematical model of infectious disease, the total number of infected persons 

can be predicted when an outbreak occurs, as well as the duration of the outbreak. This work is 

necessary as Podin, et ai. (2006) stated that any extra knowledge on HFMD would be able to 

help the authorities concerned to predict the spread of the disease effectively and take pre

emptive measures in order to subdue the spread of HFM disease in time to come. 

An outbreak is said to exist when there are more cases of a particular disease than 

expected in a given area, or among a specific group of people, over a particular period of time. 

Many epidemiologists use the terms "outbreak" and "epidemic" interchangeably: however. some 

restrict the use of "epidemic" to situations involving large numbers of people over a wide 

geographic area (Hand, Foot and Mouth Disease, 2006). Meanwhile, endemic is defined as a 

disease that is constantly present in a given geographic area or population group; may also refer 

to the usual prevalence of a disease. 

4 




1.2 Objectives 

In order to model the dynamics of the spread of HFMD, we studied the model used in 

Wang & Sung (2004). We identify the similarity and did some modification to come out with a 

new model for the spread of HFMD in Sarawak. The project will focus on HFMD generally and 

not specifically on any viruses such as Human Enterovirus 71 (HEV71) or Coxsackie viruses. 

The objective of the research is to construct a simple mathematical model in order to:-

• predict the spread of HFMD in Sarawak in terms of number of infected persons; 

• determine the duration of an outbreak when it happens; and 

• determine factors that can help in preventing the outbreak. 

1.3 Outlines 

The dissertation is organized in the following way. Chapter 2 contains an overview of 

the history of mathematical modelling on infectious disease. In addition, Chapter 2 will discuss 

the classical SIR modeL Chapter 3 will discuss on the steps taken to model HFMD which 

include the formulation of HFMD model and the differential equations involved in the modeL 

Then we will discuss how the values for the parameters are determined and the initial values 

used for the model. Chapter 4 will discuss on the Runge-Kutta method used to solve the 

-
differential equations on the modeL The numerical results are also included in the same chapter. 

In Chapter 5, the discussion is on the analysis of the model. First we will use the steady state to 

analyze and then we will use the actual data obtained from the Sarawak Health Department We 

will state the conclusion and future works in Chapter 6. 

5 
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2 LITERATURE REVIEW 

2.1 A Brief History of Mathematical Modelling 

Bailey (1975) gives a detailed description on the history of mathematical modelling for 

disease. It states that Daniel Bernoulli in 1760 initiated the application of mathematics to the 

study of infectious disease. Bernoulli used a simple mathematical model to evaluate the 

effectiveness of the improvement of variolation to protect against smallpox infection. However, 

their impact on public health policy and planning for the prevention of infection and associated 

disease has been rather limited at that time. According to Caldwell (2004) this is due to the lack 

of understanding of the mechanism of infectious spread. And so the development of 

mathematical models of infectious disease took a setback. Only after the increased 

understanding of contagious disease, did mathematical theories developed much faster. 

According to Bailey (1975) the origins of modern theoretical epidemiology owe much to 

the work of Hamer (1906), Ross (1911) and Kermack & McKendrick (1927). Hamer introduced 

the concept of "mass action" for the transmission of directly transmitted viral and bacteria 

infections. It is one of the most important concepts in mathematical epidemiology. According to 

the concept, the course of an epidemic depends on the rate of contact between susceptible and 

infectious individuals and is proportional to the product of the densities of susceptible and 

infectious persons. The concept was originally formulated in a discrete-time model. but in 1908 

Ronald Ross translated the problem into a continuous time framework. In 1927, Kermack and 

McKendrick explored in more detail the concept of Hamer and Ross and introduced the 

compartmental and deterministic model. Their model became a basic mathematical model for 

modelling infectious disease. 
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However the model was only fully explored later in the century. With the increased and 

availability of the processing power of computer various models have been introduced and 

developed for infectious disease (Keeling M. J., 2005; Keeling M. ,2006). Mathematical models 

have been developed for malaria disease, SARS, HIV and FMD (Brauer, 2005; Keeling & 

Rohani, 2007). 

2.2 Mathematical Model of Infectious Disease 

I 

Generally mathematical modelling is defined as the process of creating a mathematical 

representation of some phenomenon in order to gain a better understanding of that phenomenon 

(Mathematical Modeling, 2006). The phenomenon could be population growth, heat flow or in 

this project the spread of disease. As summarized by Keeling & Rohani (2007) a mathematical 

~ 
t 	 model is a model that is able to describe and represent a system using the language of 

mathematics. Mathematical model of infectious disease is an attempt to use equation systems to 

represent elements of the dynamics of infectious processes involving agent, host, and 

environment (Barreto, Teixeira, & Carmo, 2006). To conclude, mathematical modelling of 

infectious disease is described as a process of representing the disease using the language of 

mathematics. In the process of modelling the disease, one has to find the relationship between 

all the elements in the dynamics oft~e disease and relate them in mathematics equations. 

Four steps to mathematical modelling (Mathematical Modeling, 2006) are: 

1. Identifying the problem. 

2. Stating the assumptions and start with a simple modeL 

3. Identifying variables and constants and their relationships. 

7 
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4. 	 Developing the equations that express the relationship between the variables and 


constants. 


Trottier & Philippe (2001) conformed to the steps in mathematical modelling by rewording and 

rearranging the four steps to understanding the disease as the first step. Understanding the 

disease would mean recognizing the duration of the period of infectivity, the incubation period if 

any, and the immune status after infection. The second step is the collection of data on the 

demographic, epidemiologic and biologic characteristics of the infection (transmission rate) and 

the population birth and death rates. The third step is to choose a simple model that fits the 

descriptions from the previous step. Finally, the last step is the formation of the equations of the 

model. For building our HFMD model, we will use the four steps highlighted above. This will 

be discussed in the following chapter. 

From the description of the steps in mathematical modelling, it can be seen that 

assumption is an important step in modelling the spread of disease. As Keeling & Rohani (2007) .J:~ 

" " 

puts it, a model is a conceptual tool that explains how an object or system of objects will behave. 
,. 
" 

In order to do that, the system has to be simplified in order to be modelled. In the process, only 

the important aspects of the system are retained. This ensures a better understanding of the way 

the system works. In modelling a dis~ase we need to make assumptions about (Britton, 2005):

• 	 The population affected 

• 	 The way the disease is spread; and 

• 	 The mechanism of recovery from the disease. 

However the simplifications also have their downsides. The model might be too simple 

to be able to mimic the real thing. It is difficult to determine how simple a model should be or 

8 



even how complex it should be. This is also agreed by Keeling & Rohani (2007) who in their 

writing stressed on the 'usefulness' of mathematical modelling based on three and yet conflicting 

elements: accuracy, transparency and t1exibility. It also emphasized that by definition all models 

are "wrong" as they make some simplifying assumptions in even the most complex models. It 

summarized that it is difficult to determine which model is "right" because of the assumptions 

that were made. It stressed that what is important is that the model is able to capture the essential 

features of a system. 

It is the same with infectious disease. There are many factors that can contribute to the 

spread of the infectious disease. Some assumptions have to be made in the process to model the 

spread of the disease. Although it might not seem real, the model will be able to help in 

understanding the disease better and in the end might help in preventing the spread of the 

disease. 

2.3 What mathematical models can do 

As mentioned earlier, mathematical models can be used to help predict the spread of 

infectious disease. They can be used to predict the development and spread of disease (Caldwell, 

2004). In other words the model will be able to predict the number of infected persons during an 

outbreak and the duration of the outbreak when it occurs. Keeling & Rohani (2007) mentioned 

that models have two distinct roles namely prediction and understanding~ with the previous being 

the most obvious. Keeling M. (2006) listed four mains area that models can contribute~ i.e. 

planning, prediction, detection and understanding. In prediction, models would enable: 

• 	 The prediction of the large popUlation-level epidemic from single individual-level 

knowledge of epidemiological factors; 
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• The prediction of the long term behaviour from the early invasion dynamics; or 

• The prediction of the impact of vaccination on the spread of infection. 

The prediction from the model can be used to decide how resources such as medication, 

vaccination, and others can be used during an outbreak. For example, models can be used to 

determine a certain group of people for vaccination rather than all or whether total inoculation is 

necessary to stop the spread of a disease. 

Well-parameterised and carefully constructed models can be a powerful public health 

tooL The prediction obtained from the model can help policy makers and health administration 
••1 

in doing their work more effectively. The goal in modelling disease transmission is to 

understand how to control it (Allman & Rhodes, 2004). .'..I ': 
~ " I 

Model can be used to understand how various complexities affect the dynamics of the 

,"spread of the disease in the real world. The models provide epidemiologists with an ideal world 

in which individual factors can be examined in isolation and where every aspect of the disease 

spread can be recorded in perfect detail. Examples given by Keeling & Rohani (2007) are the 

effects of variable numbers of partners on the spread of sexually transmitted diseases and the 

effects of increased transmission between children during school terms. Experimentation and 

testing theories can be done using mathematical models (Hethcote, 2000; Thieme, 2003). It can 

be used to plan, implement, evaluate and optimize various detection, prevention and control 

program for a particular disease. The model can be used to explore how a situation may develop 

in response to different interventions. These can be done by changing the parameters' values and 

estimating key parameters from data. Models can be used experimentally to test a wide range of 

10 
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control strategies and outbreak scenarios without any risks associated with testing during a real 

epidemic (Keeling M. J., 2005). 

Barreto, Teixeira, & Carmo (2006) agreed that mathematical models of infectious disease 

IS a powerful tool for understanding, for predieting situations and even for evaluating the 

potential capacity of certain interventions to change the likelihood of new cases occurring. The 

ability of model in predicting and understanding the dynamics of the disease is also 

acknowledged by Murray (2002) and the models have the ability to pose possible means of 

control of the disease. However it stressed that the difficulty in transforming the complex 

situations involved in the process of transmission of many infectious agents into mathematical 

models is a limitation to their use in many situations. For this Keeling & Rohani (2007) stressed 

that only by building from simple to a more complex models that the rich complexities and .... 
,"', 

,': 

dynamics that are observed in the real world can be understood. That is the approach that we are 

taking as this is an initial mathematical model on HFMD. 

Besides predicting the spread of the disease and understanding the dynamics of the . 

disease, the model can also be used as a guide to data collection. Trottier & Philippe (2001) 

explains that modelling can guide the collection of data towards further understanding and 

design programs for the control of th~ disease. Although one of the steps in building the model 

is collection of data, sometimes the initial data collected may not be suitable for the use of the 

model. Then the process of data collection has to be repeated. With the model. the process will 

be easier as now we will know precisely what type of data need to be collected. 

11 
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It should be stated clearly that models have their limitations. Models will not be able to 

predict precisely the course of the epidemics nor who will be infected. To quote the following 

from Keeling M. (2006): 

.Models will never be able to accurately predict (f, or when a particular person, jarm or 

community will become infected. This isfor two reasons: 

• 	 The transmission of injection is a stochastic process, such that no two epidemics are 


identical; 


• 	 Models will always be an approximation, and rare or unforeseen behaviour events can 


have a significant impact on the disease dynamics. 


According to Keeling & Rohani (2007) a good model should be suited to its purpose; 
. 
. ,. : 
. 

namely a model designed to help to understand the behaviour of an infectious disease should 

concentrate on the characteristics that are of importance while simplifying others. A model built 

for accurate prediction should provide a comprehensive picture of the full dynamics and include 

all the relevant features of the disease and host. The art of creating a good model is deciding 

which of the disease features are important to capture the right dynamics and which can be 

omitted to prevent the model from becoming too complicated to analyze (Allman & Rhodes. 

2004). Caldwell (2004) stated that different models will be applied to different cases. So it can 

be said that a good model is context dependent. 

2.4 Types of Mathematical Models 

Deterministic model or compartmental model is the most basic or classical mathematical 

modelling. It is most useful when modelling for a large population and the total population is 

taken to be constant. In the deterministic model, the populations are grouped into different 
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compartments depending on their status with regard to the infection under study. The population 

can be divided into distinct classes using a string of letters that provides information about the 

model structure. For example, a model with the population divided into the susceptible (S), the 

infected (I), and the recovered (R) are known as SIR modeL Later, classes such as exposed (E) 

are introduced which brings out the SEIR model. SIS (or an SIRS) model are used when 

suseeptibility can retum after infection (or after loss of immunity). The susceptible (S) are the 

population who do have the disease and can catch the disease if they corne into contact with 

infected person. The infected (I) are the population who have the disease and ean transmit the 

disease. The reeovered (R) are those who have recovered from the disease and are immune to 

the disease. The exposed (E) are those who have caught the disease but are not infective. They ";. 

" 

are in their latent period. Britton (2005) introduced Carrier (C) which refers to individuals who 

remain infectious for a long time but do not show any symptoms of the disease themselves. 

It is important to identify the problem first as mentioned in the steps of mathematical 

modelling. By identifying the problem means understanding the disease. In order to understand 
" 

the disease it is invaluable that the definition used in medical terms must be understood properly. 

For the definition of the terms used in mathematical modelling of infectious disease, refer to 

Barreto, Teixeira, & Carmo (2006) an.d Moghadas (2006). 

The term incubation and latent period might overlap each other as shown in Figure 1. 

I 
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latency Period 

ExposedSusceptible 

Figure 1: The relationship oflatency, incubation and infectious periods to the dynamics of the 

disease. (Epidemiology Simulations) 

Barreto, Teixeira, & Carmo (2006) also stressed on the importance of incubation period 

and latent period. Incubation period is the interval between the effective exposure of the 

susceptible host to an infectious agent and the appearance of signs and cl inical symptoms of the 

disease in that host. However during the period of incubation, the host can be infectious as 

shown in figure 1. Most mathematical models ignore the incubation period when the duration is 

just a few days (Murray, 2002). Latent period is the time from infection to onset of the ability to 

infect. Some of the diseases such as HIV and tuberculosis have a very long latent period. 

A combination of models can be derived from the classes based on the characteristics of 

the disease. Model such as SI, SIS, SIR, SEIR, etc can be used to model a disease. SI model 

to 
1 

only involve susceptible group and infected group whereas SIS model involves the infected 

going back to being susceptible after leaving the infected class. As for SIR, the infected will 

recover and be removed. For SEIR, it is used to model the diseases that have a latent period. 

The structure of the different types of deterministic models can be seen in Figure 2. 
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Susceptible Infectious

SI .. 

Susceptible InfectiousSIS ... 

t 

Susceptible L....-Int:_ec_oti_oU_S_-,I_-+ I Recoveredl1mmune 
SIR 

Figure 2: Some of the common models used in infectious disease modelling 

(Trottier & Philippe, 2001) 

2.5 SIR Model 

SIR (Susceptible-Infected-Recovered) model is considered a classical modeL The SIR 

model is a good starting model that can be refined as needed for particular diseases (Allman & 

Rhodes, 2004). The classical SIR model is a close model where the total population is kept 
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constant. There is no birth or death in the population. It is also known as compartmental as it 

divides the population into groups based on their current status with relative to the disease. The 

population is divided into three groups known as the susceptible (S), the infected (I) and the 

recovered (R) as shown in figure 3. 

S 

Susceptible 
I 

p 
I 

Infected 
r 

R 

Recovered 

Figure 3: SIR model 

A lot of literatures were written to explain the SIR model including Allman & Rhodes 

(2004), Bailey (1975) and Murray (2002) among others. They all give a very detailed definitions 

on terms used in the model. The susceptible (S) represents the population that can catch the 

disease. The infected (I) are those who currently have the disease and are contagious. The 

recovered (R) are those who have recovered from the disease and have immunity against the 

disease. 

Looking at figure 3, the susceptible will move to the infected group when they contract 

the disease. The possibility of contracting the disease is represented by the parameter /1 (the 

parameter fi will be discussed further in the section 2.6) which is kno\\TI as the transmission 

coefficient or transmission rate. After a period of time of being infected, the person will move to 

the recovered group. This is known as the rate of recovery and is represented by )' (the parameter 

y will be discussed further in the section 2.6). The original model was used to model contagious 

illness in a closed population over time. 
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The SIR model makes the following assumptions (Weisstein, 2004): 

• 	 the population size is fixed; 

• 	 there is no births and no deaths due to disease, or death by natural causes; 

• 	 there is no incubation period; 

• 	 the duration of infectivity is the same as length of the disease; and 

• 	 the population is completely homogeneous with no age difference, spatial, or social 

structure. 

Clearly from Figure 3 and using the mass action principle, when the susceptible meets the 

infected, a certain number of susceptible will contract the disease after a certain time. As a result 

the number of susceptible will be reduced. Thus, the rate for the number of susceptible; :~ is 

represented by - pSI where the negative signify the movement away from the group, thus 

reducing the total number of susceptible. This is based on the mass action principle where the 

number of infected is proportional to the product of the densities of susceptible and infectious 

persons. The group of infected will then moved to the infective groups. So, the infective group 

will increase and the rate is represented by PSI at time t. Similarly, some of the infected will 

recover and move to the recovered group with the rate of recovery, y. The rate for the number of 

infected who will recover is represented by - yl in which the negative sign means a reduction j 

from the group. Thus, the rate for the number of infective; dl at time I is pSI- yl. Whereas, the 

dt 

rate for the number of recovered; dR is represented by yl at time t. 
dt 
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Based on the brief descriptions above, the governing equations for each compartment can 

be established. A system of three coupled nonlinear ordinary differential equations is thus 

obtained: 

-dS = -fJS(t)l(t) Equation (l)
dt 


:: = fJS(t)l(t) - yl(t) Equation (2) 


dR = let) Equation (3) dt y 

Where I is time, S(I) is the number of susceptible people, I(t) is the number of people infected, 

R(I) is the number of people who have recovered and developed immunity to the infection, fJ is , . 

.. fIi . . . d . h dS dl d dR .. • f ' 
.fthe transmISSIon coe IClent or transmISSIOn rate, an Y IS t e recovery rate. -, - an - are 

dt dt dt 

~ 
the rate of change for the number of each of the respective groups. In this model, the susceptible 

I 
will become infected. From being infected, the infected will go to the recovered class. . 

.'. I' 

SIR models have been used to model foot and mouth disease in the UK to determine the 

suitable measures to control the disease (Britton, 2005). 

2.6 Critical Parameters and Threshold Values of SIR Model 

In the SIR model, two parameters were introduced. The first is the fJ which is known as 

the transmission coefficient or the transmission rate. Callahan (1996) explains the meaning of 

transmission coefficient as the effective contact of the susceptible with the infective. Effective 

contact refers to the contact that resulted in contracting the disease. The transmission coeflicient 

is determined by the product of the chances of the susceptible meeting the infective with the 

probability of contacting the disease when the susceptible meets the infective. 

Ifwe assume a = chances of the susceptible meeting an infected per day; and 
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1 & Rhodes (2004) explains clearly how Ro is derived and its meaning. 

Looking at equation (2) page 18, it can be seen that the rate of number of infected; :: will 

h . h fi Th . h fi .. dldetermme. t e SIze 0 f t e m ecte . d. e SIze 0 f t e . mcreases 1 > 0 and anm ectlve w len 
dt 

19 

p the probability ofthe contacts leading to new infections 

Then the transmission coefficient; fJ = a x p. 

As such the transmission coefficient depends on the general health of the population and the 

level of social interaction between its members. 

Once infected, recovery is just a matter of time. If an infection has an infectiousness of 

three days, it means that an infected person will recover after three days. Looking at the whole 

infected population, there will be those who were just infected, some had been infected for two 

days and some for three days. Those that were infected for three days will recover today. As 

there is no definite information about all the groups, they are assumed to be of the same size. 

Based on that, ~ of the infected population wiJI recover everyday. So, for the parameter y, if an 

infection has an infectiousness of k days, then every day there will always be some of the 

infective who will recover irom the illness and thus not able to infect any other susceptible. 

Thus, the rate of recovery is represented by y = k1 
persons per day. 

In their model, Kermack and McKendrick introduced a so-called epidemiological 

threshold. The threshold is known as reproductive ratio; Ro. Since then, Ro has become the 

single most important quantity in epidemiology (Bailey, 1975; Allman & Rhodes, 2004; Barreto, 

Teixeira, & Carmo, 2006). Ro is defined as the expected number of secondary cases that would 

arise from the introduction of a single primary case into a fully susceptible population. Allman 



J 

outbreak of the disease look evident. On the other hand, the infections is considered to be 

subsiding when dI < O. Thus it is important to detemline whether equation (2) is negative, zero 
dt 

or positive. 

Rewriting equation (2): 

dl 

dt = flS(t)/(t) - yl(t) 


dl 
dt = /(t)(PS(t) - y) Equation (4) 


Clearly from equation (4), if /(t) = 0 then dI = 0. This is the natural course if the population is .. . ,
dt 

disease free. Then there will be no infections. Since for an infection to happen /(t) > 0, this 

means that dI will be negative, zero or positive depending on what (flS(t) - y) is. As f3 > 0,
dt 

then it can be rephrased that 

Y dl 
If Set) > /i,then dt > O. 

Y dl 
If Set) = f3,then dt = 0. 

If Set) < ~,then dI < 0 
fJ dt 

In order to establish the definition of the basic reproductive number; Ro, it is convenient to 

rewrite equation (4) again: 

Equation (5) 
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to compare the quantity of !!.. S (t) with 1. Mathematical epidemiologists have called this 
y 

quantity, !!..S(t) as the basic reproductive ratio. 
y 

Ro determines the numbers of people infected by a single infected person before his 

death or recovery. An infected person will infect less than one person before dying or 

recovering, when Ro < 1. When this happens, the spread of the disease will phase out (dl < 0).
dt 

The infection will not continue as each successive generation will be smaller than its previous 

generation. When Ro > 1, an infected person will infect more than one person, so the epidemic I 

I 

will spread and eventually becomes an outbreak (:~ > 0). The disease will spread initially as the 


successive generation will be larger than the previous generation. Luckily, this increase does not 


, continue indefinitely. This is because the infection process reduces the number of susceptible, 

and thus reduces the probability that an infectious individual contacts a susceptible within its 
" 

period of infectiousness. When Ro 1, the epidemic will become an endemic in the population , 

as every infected person will infect one person before recovering. 

So Ro is the key element in the infectious disease transmission dynamics. Some called it 

the threshold value. Based on the definition of Ro = !!..S(t), it reveals that Ro depends on the 
y 

rate of contact between individuals, the probability of transmission during the contact and the 


~ time for which an infected person remains infective. 


These are the components that can be used to control the disease from spreading. For 

example; isolation and quarantine reduces the rate of contact; hygiene measures and drug 

treatment reduce the probability of transmission. Drug treatment also reduces the length of 
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infectious period. Vaccination can help by reducing the number of susceptible by directly 

transferring the susceptible to the recovered class without going through the infected class. 

2.7 Clinical Characteristics of HFMD 

The following is a summary on the clinical characteristics of HFMD taken from mUltiple 

studies done on HFMD. Only the essential features of HFMD that are taken into account for 

modelling purpose are summarized here. 

HFMD is caused by a group of viruses called enteroviruses or commonly known as gut-

viruses as they multiply in the gut (Lim, 2008). This group of enteroviruses include Coxsackie 

virus (A 16), human enterovirus (HEV71) (Hand, Foot and Mouth Disease, 2007) and Coxsackie 

virus A (CA V) 4, 5, 9 and 10 and Coxsackie virus B (CBV) 2 and 5 (Ooi. et al., 2007) (Hand, 

Foot and Mouth Disease, 2006). A person who is exposed to HFMD viruses will exhibit the 

symptoms after three to seven days (Hand, Foot and Mouth Disease, 2007). 

.,
Fever is usually the first symptoms ofHFMD followed by poor appetite, malaise and sore .' 

throat. One or two days after the fever begins, small red spots develop in the mouth that blister 

and often develop into ulcers. These are mostly found on the tongue, gums and inside of the 

cheeks. The skin rash develops over one or two days with flat or raised red spots, some with 

blisters on the palms of the hand and the soles of the feet (Hand, Foot and Mouth Disease, 2007). 

The name of the disease - hand, foot and mouth disease (HFMD) is descriptive of the organs 

that are commonly affected in the disease as described earlier (Lim, 2008). 

1 
I HFMD is considered moderate to highly contagious with nearly 100% infection among 

1 children (Soal Jawab Penyakit Tangan, Kaki dan Mulut (HFMD) Bersama Ketua Pengarah 

Kesihatan, 2006). A person is most contagious during the first week of the illness. As the 
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viruses are present in the throat and stools of an infected person, infection generally occurs via 

the faecal-oral or via contact with skin lesions and oral secretions (Nerv, 2007). The virus may 

continue to be excreted in the stools of infected persons up till one month. The spread of the 

virus does not involve any vectors (Hand, Foot and Mouth Disease, 2007). 

At the moment there is no specific antiviral drug to cure HFMD (Hand, Foot and Mouth 

Disease, 2007). There is also no vaccine available for the treatment of HFMD. Infected person 

is usually given medication to provide relieve from the pain caused by fever, aches or mouth 

ulcers. Victims are asked to take plenty of liquid. An infected person will fully recover after 7 

to 10 days (Hand, Foot and Mouth Disease, 2007; Soal Jawab Penyakit Tangan, Kaki dan Mulut 

(HFMD) Bersama Ketua Pengarah Kesihatan, 2006). 

There is no permanent immunity against HFMD as the disease is caused by a group of 

viruses (Hand, Foot and Mouth Disease, 2007) much like the case of flu. A person who 

recovered from the HFMD caused by Coxsackie A is susceptible to HFMD caused by 

enteroviruses 71 or any other enteroviruses. For a summary on the information ofHFMD issued 

by the Health Ministry of Malaysia refer to Appendix F. 

Based on the characteristics of HFMD we decided to use the SIR model. The reason for 

this is because HFMD does not exhibit latency in their course of infection. Additional to this is 

SIR model is a simple model but effective in modelling of infectious disease. However some 

necessary modifications are made to the classical SIR model to incorporate the characteristics of 

1 the disease better. The formulation of the HFMD model is further described in the next chapter. 
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2.8 Related Works 

Recent outbreak of HFMD in countries such as China, Taiwan, Western Australia and 

Singapore had brought the world's attention to HFMD due to complications of death related 

cases. However, most of the researches done were specifically focused human enterovirus 71 

(HEV71). Chang, et aI., (2002) and Chen, (2007) researched on HEV71 in Taiwan while 

McMinn, et aI., (2001) did a phylogenetic analysis in Western Australia, Singapore and Malaysia 

regarding HEV71. Chan, et aI., (2003) studied HEV71 in Singapore while Chong, et aI., (2003) 

studied HFMD in general in Singapore. Studies done by Ooi, et aI., (2007) and Pod in, et al., 

(2006) on HFMD in Sarawak were also focused on HEV71 except for Chan, et aL (2000). It can 

be said that most of the existing studies on HFMD were of clinical aspects based on HEV71 and 

J not on HFMD in general. These studies did not reveal anything regarding the transmission 

\ 
coefficient and the immunity against HFMD which in our research revealed the importance of 

these two variables in understanding the dynamics of HFMD. 

The study done by Ooi, et al. (2007) revealed that the victims of HFMD were between 

the ages of 0.5 to 5.9 years with the mean of 1.7 years while Podin, et al. (2006) revealed that the 

victims were between the ages of 18 days to 155 months with the mean of 32.2 months. These 

studies did not truly revealed the tru~ age of the susceptible groups. Even though the results may 

mean that the susceptible group might only be children below the age of four or younger, we still 

maintain the susceptible group as children below the age of ten as all the studies are not 

conclusive regarding the age of the susceptible. In addition, Sarawak Health Department issued 

warning in which it is stated that the susceptible are those below the age of ten years old. 

On the mathematical modelling side, Wang & Sung (2004) used the SIR model to 

analyze the association between the weather and the occurrence of enterovirus complicated 
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severe cases in Taiwan. The model was based on transformation function of seasonal factors in 

order to determine the transmission coefficient. Urashima, Shindo, & Okabe (2003) attempted to 

establish nonlinear mathematical models in order to simulate the incremental effects of global 

warming on HFMD incidences in Tokyo. The two models tried to find the relationship between 

the outbreaks of HFMD with the weather patterns in the respective countries. 

•, I 
t' 
'I 
a 

" 
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FORMULATION OF HFMD MODEL 

3.1 Understanding and Identifying the Problem 

In section 2.7 we have described and identified the essential features of the characteristics 

ofHFMD that we will use to model the disease. To summarize some of the essential features:

• 	 HFMD has an incubation period of three to six days; 

• 	 HFMD does not have a latent period; 

• 	 Recovered individuals are still susceptible to HFMD; 

• 	 At the moment there is no cure and an infected individual will fully recover in seven to 

ten days time; and 

• 	 No vector is involved in the spread of the disease. 

Besides the essentials features listed above, there is still a lot of work that need to be done in 

order to fully understand the dynamics of HFMD. These can be achieved by building a 

mathematical model for HFMD. As reviewed in Chapter 2, mathematical model can be lIsed to 

predict the spread of the disease and also to understand the dynamics of HFMD. It is crucial for 

the authorities to be able to predict the number of infected and the duration of the outbreak when 

it happens. By understanding the dynamics of the disease through mathematical model, we will 

be able to determine the essential pammeters that can help in curbing the spread of the disease. 

These are problems that we hope to solve by building the IIFMD model. 

3.2 Characterization of the System 

Based on the essential features of HFMD discussed in the previous section, the simplest 

model to model the HFMD is the SIR model with the possibility of the recovered going back to 

become susceptible. The model takes into account the natural birth and death of the population 

26 
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as compared to the classical SIR in which the population is considered to be closed. Thus the 

model that is employed is SIRS in which the recovered experience the loss of immunity and 

return to the susceptible class. The model is modified from Hudson (2002) and Keeling & 

Rohani (2007). The model is shown in Figure 4. 

/10 + /1/10 /10 
a s p 

I 
y 

R 

, ,, 

Figure 4: The HFMD model 
: ' 

I 
I 

~ 

The number of the susceptible in the S class increases through natural birth and also 1 
.

through recovered individuals who have lost their immunity against the disease. The rate of 
\ 

natural birth is the product of the per capita natural birth rate (a) with the total number of 

susceptible per unit time. [n the model we assume that only the susceptible class experience 

natural birth. The rate of recovered individuals who have lost their immunity is the product of 

the rate for the lost of immunity (6) with the number of recovered in class R. At the same time, 

individuals in S class also experienced natural death. The number of individual that die due to 

natural death is the product of the natural death rate (flo) with the number of susceptible per unit 

I time. 

\ A susceptible person will move to the infected class (f) when he or she is infected with 


the disease even though the symptoms have not appeared. Using the "mass action" principle 


(Allman & Rhodes, 2004), a person will be infected through contact with an infective person. 
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The number of infected is the product of transmission coefficient (j3) with the number of 

susceptible and the number of infected per unit of time. The infective class not only experienced 

natural death but also death due to HFMD. The number of infected individuals that will die is 

the product of the total of natural death rate with the rate of death due to HFMD (/10 + /11) with 

the number of infected. As HFMD has an incubation period of three to six days which is 

considered short, this duration is ignored (Munay, 2002). In the modeL we assume that a person 

infected with the virus will automatically become intective and capable of transmitting the 

disease to a susceptible. 

After a period of time, the infective will either be removed from the infective class due to 

death caused by HFMD or recovered. The number of infected who will recover from the disease 

is the product of the rate of recovery (y) with the number of infected. For HFMD, an infected 

person will fully recover in seven to ten days. 

An individual will have a short immunity or what is called as 'waning immunity' against 

HFMD after recovery. Once the immunity is loss, the individual returns to the susceptible class 

once more and is capable of being infected again. The rate is called the lost of immunity rate (6). 

Some of the individuals in the recovered elass will also die because of natural death. The 

number of death is the product of nanIral death rate (/10) with the number of infected in class R. 

I 
To summarize for the HFMD model, the parameters involved in the model are: ~ 

I 
! 

• a; the natural birth rate; 

• fJ; the transmission coefficient; 

• y; the rate at which an infectious individual recovers per unit time; 

• 	 6; the rate at which a recovered individual loses its immunity; 
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• 	 pn; the rate of natural death; and 

• 	PJ; the rate of death caused by the disease. 

The following assumptions were made in order to model the HFMD disease. 

• 	 That individuals are uninfected at birth (Hand, Foot and Mouth Disease, 2007); 

• 	 That newly infected hosts can transmit the disease immediately (Murray, 2002); 

• 	 There is no intervention to prevent the disease from spreading; 

• 	 The susceptible group is only made up of children below the age of ten years old (Hand, 

Foot and Mouth Disease, 2007); 

• 	 Individuals mix at random within the population (homogeneous) (Allman & Rhodes, 

2004); 

• 	 Age and sex of the individuals are not crucial variables (Allman & Rhodes, 2004); 

• 	 That infections occur randomly in proportion to the density of susceptible and intected 

individuals and the transmission coefficient; f3. 

• 	 The model is deterministic where all the parameters take on constant values (Trottier & 

Philippe, 2001). 

3.3 Formulation of the equati~ns 

From Figure 4, we can see that the number of susceptible in the S class increased per unit 

of time through natural birth and also through the recovered individuals who have lost their 

immunity. At the same unit of time, the number of susceptible in S class also decreased through 

natural death and through being infected. So the rate of change for the number of susceptible in 

S class per unit of time can be represented by 
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dS 
dt = as(t) - (Jl(t)S(t) - floS(t) + 8R(t) 

The number of infective in 1 class per unit of time increased through the conversion of 

the susceptible into the infective when they are infected. That number will decrease due to 

recovery from the disease or through natural death and death due to HFMD. The equation that 

relate all the parameters together for the rate of change for the number of infected in I class is 

dl 

dt 
(Jl(t)S(t) yl(t)  (110 + fll)l(t) 

When the infective recovered from the disease, they will move to the recovered class. 

That is why the number of recovered in R class will increase per unit of time. However as there 

is no lasting immunity for HFMD, the recovered will loss their immunity and move on to 

become susceptible. This will decrease the number of recovered in R class. Not forgetting also 

that the number of recovered will be decreased by natural death. The differential equation that 

governs R class is 

dR 

dt 
yl(t)  8R(t)  floRet) 

To summarize, the differential equations that model the HFMD are as follows: 

l 
i 
I 

~ 

:~ = as(t)  pJ(t)S(t)  PoS(t) + 8R(t) 

dI 

dt 
pJ(t)S(t)  yJ(t)  (110 + Pl)l(t) 

dRdt = yJ(t)  8R(t)  PoR(t) 

The system of equations (6) - (8) governs the dynamics of the spread of HFMD. 

the system is coupled nonlinear ordinary differential equations. 

Equation (6) 

Equation (7) 

Equation (8) 

As anticipated. 
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3.4 Parameters and Initial Values 

The fastest way to study the behaviour of the model is through numerical solution. In 

order to run such simulation, the parameters involve in the governing equations need to have 

values. Due to the fact that the data that is available from the Sarawak Health Department 

regarding the number of HFMD cases reported is collected on a weekly basis in the year 2006, 

the unit time in our model will be weekly as well. This needs to be consistent for analyses 

purposes. 

As the data for the crude birth rate and crude death rate for the year 2006 is still not 

available at the time of this project, we use the crude birth and crude death rate from the year 

2005 as estimates for the year 2006. According to Jabatan Perangkaan Malaysia (2006) the 

crude birth rate for year 2005 = 15.2 per 1000 and the crude death rate = 5.6 per 1000. The 

formula used to calculate the crude birth rate and crude death rate is as follow: 

No. of live birth in year - t 
Crude birth rate = . x 1000

Mid - year population m year - t 

No. of death in year t 
Crude death rate = . . x 1000

M td - year population m year - t 

As we are interested in a week as per unit of time and percentage as the indicator. the natural 

birth rate and death rate per week is obtained using the following steps. 

Crude birth rate/ 
a= ______--=1:..::0:...;;:o~0 x 100% per week 

52 

15.2/ 
a = _----::1=0=0~0 x 100% per week 

52 
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\ a = 0.02923% per week 

Crude death rate/ 

fl ______---=1:;.;;0:...;;;0:..;;;.0 x 1000/£0 per week 

0= 52 

5.6/ 

flo = 1000 x 100% per week 


52 


flo =0.01077% per week 

The fatality rate for HFMD 0.9 per 1000 cases for the year 2006 (Hand Foot Mouth Disease 

Outbreak in Sarawak, 2006, 2007). The formula used to calculate the fatality rate is given 

below: 

, No. of death recorded due to the disease in year - t 
The fatality rate = x 1000" Total population for the year - t 

Thus to obtain the rate of death per week due to HFMD is 

The fatality rateI 

fl = 1000 x 100% per week


1 52 

fl1 = 0.001731% per weekI 
i 
1 

For the purpose of discussion, Sarawak Health Department did calculate the incidence rate for 

HFMD for the year 2006. Yet it should be stressed here that the incidence rate given is 

considered to be the probability of getting HFMD and not the transmission coefficient. This is 

due to the formula that is being used to calculate the incidence rate. 
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The total number of cases reported for the year - t 
Incidence rate = 	 x 100000··The total populatwn m year t 

In this project we were not able to find any sources which have defined the value for the 

parameter of transmission coefficient for HFMD. The transmission coefficient used by Wang & 

Sung (2004) was estimated based on exponential transformation involving seasonal and ambient 

temperature. As our mathematical model is deterministic based, this method for obtaining the 

transmission coefficient is relevant. Therefore, we look for other diseases transmission 

coefficient value and try to see the similarity so as to make a better assumption on the value. 

Callahan (1996) wrote in his article that the transmission coefficient that he has provided for 

measles; namely 0.00001 is within the range of used in epidemic studies. As for other diseases, 

he equated the value with 0.00002. Allman & Rhodes (2004) provided some values ranging 

from 0.00] to 0.000035 for transmission coefficient of diseases without specifically mentioning 

the type of diseases. The range of values for the transmission coefficient existed as they 

depended on the number of susceptible that was involved. As HFMD is considered moderate to 

highly contagious with nearly 100% infection among children in Sarawak context (Soal Jawab 

Penyakit Tangan, Kaki dan Mulut (HFMD) Bersama Ketua Pengarah Kesihatan, 2006), and 

taking into account the perspective of the reproductive ratio, Ro for HFMD (Refer to section 

~ 	 5.2), we decided to estimate the transmission coefficient as 0.00015. We reached this estimated 

value after we had run a few scenarios for transmission coefficient with value less than 0.00015 

and more than 0.00015. Thus; 

f3 0.00015 
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1 As mentioned earlier, a victim of HFMD usually recovers in seven to ten days. Thus the I 

average number of days required for a person to recover is 8.5 days. Taking the average of the 

duration of recovery period (Trottier & Philippe, 2002) and referring to the explanation in 

section 2.6, then 

1 
Y = h ' d t' t' per dayt e perla a m ectlOusness 

1 
y= x 7 per week

the period of infectiousness 

7 

y = 8.5 per week 


y = 0.8235 per week 

As HFMD is caused by a group of enteroviruses, a person who recovers from HFMD 

does not incur permanent immunity. The infection will result in immunity to the specific virus, 

but a second episode may occur following infection with a different virus belonging to the 

enterovirus group (Nerv, 2007). In the research done by Ooi, et aI., (2007), they did 

acknowledge that there were cases where the victims had been hospitalized before due to 

HFMD. 

Due to the fact that the rate for the loss of immunity, 8 against HFMD is not known it is 

thus appropriate to vary the value 8. Using the same procedure for obtaining the rate of recovery 

to get the rate of loss of immunity against HFMD, then 

1 
8 = . . . x 7 per week

the penod of tmmumty 

Thus; 
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8 = 0 per week; (Permanent immunity against HFMD) 

8 = 7 per week; (Acquired immunity is 1 day (Wang & Sung, 2004).) 

8 = 1 per week; (Acquired immunity is 7 days.) 

8 = 0.07 per week; (Acquired immunity is 100 days.) 

It will become apparent in the next chapter that, in order to model the spread of HFMD 

using the model, the classes S, 1 and R must have initial values. As children below the age often 

are more prone to be infected by the disease we assume the S class is made up of these children. 

However the data collected regarding the total population of Sarawak only have the total 

population for children below the age of nine years old. The next total population is for children 

below the age of 12 years old (Jabatan Perangkaan Malaysia, 2006). So, we decide to use the 

total number of population below the age of nine as the initial value for S. Therefore, the initial 

value ofS is taken to be S(O) = 550,700. 

As for the class I, we used the data taken from the Sarawak Health Department. At the 

beginning of2006 outbreak, there were four cases reported initially. Thus, leO) = 4. 

Since at the beginning of an outbreak, it is assumed that nobody has recovered from the disease, 

thus, R(O) = O. 

Using all these parameters and initial values and substituting them into the system of equation 

(6) - (8), we run simulation test to obtain results on the HFMD model. The results and 

discussions are presented in Chapter 4. 
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NUMERICAL RESULTS AND SIMULATIONS 

4.1 Numerical Method 

As stated in section ] .2, the objective of the research is to construct a simple 

mathematical model which would be able to predict the number of infected persons during an 

outbreak of HFMD and to detennine the duration of the outbreak. The mathematical model for 

HFMD that we had constructed in the previous chapter consisted of system of coupled nonlinear 

ditTerential equations. In order to achieve the objectives of the research we need to solve the 

equations. We had also identified all the parameters that were required in order to solve the 
:.1 

equations. As the equations consist of nonlinear differential equations, we use numerical method .' 

.j 

:~i 

.' 

.1to solve the equations for the HFMD model. 
" 
,~, 

The 4th order Runge-Kutta method is chosen for the task. The main advantages of .' 
". 
" Runge-Kutta methods are that they are easy to implement, they are very stable, and they are 

"self-starting" (i.e., unlike multi-step methods, we do not have to treat the first few steps taken 

by a single-step integration method as special cases) (Fitzpatrick, 2006). 4th order Runge-Kutta 

method is a numerical technique to solve ordinary differential equation (ODE) of the fonn 

y' = fet, x), yea) =Yo (Otto & Denier, 2005) 

by using weighted averages of slopes near a point instead of the single slope involved by 

following the tangent line at a point. 

Let [a: bJ be the interval over which an approximation to the solution is desired. (Thus I 

a and t = b are the initial and final values of the independent variable, respectively.) Partition 
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1 (b-a)

this interval into N subintervals each of length h = -N-' called the step size. Let to = a and 


define 

tk+1 = tk + h, for k = 0,1, ... ,N 1. 


Notice that tN = b and the other tk so-defined are the interior endpoints of the subintervals. 


These collectively are the discrete values of the independent variable. 


The initial value of the dependent variable is given by the initial condition, yea) = 

y(to) = Yo. The others discrete dependent variable values are computed iteratively as follows. 

for k = 0 to N - 1 

This method is also a single-step numerical solver since it depends only on data obtained from 

the preceding step. It is a fixed-step solver since the lengths of the subintervals of [a: hJ are all 

equal. 
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The model consisted of systems of coupled nonlinear differential equations as described 

In section 3.3. The parameters values are constant value and the functions on the right 

(dS, dd
l 

and dd
R

) are determined by the variables t and (S(t), I(t), R(t). To use the Runge-Kutta 
dt t t 

method to solve the systems of coupled nonlinear differential equations, (:!':: and :~)are put 

in a vector function. The function must return a column vector with three components as the 

right hand side has three parts. The transformation is shown in Appendix O. 

MATLAB has ordinary differential equations (ODE) solver called ode45 (fourthltifth 

order), which implement Runge-Kutta methods (Hahn & Valentine, 2007). The function is 

chosen due to the fact that it is simple to use and the result are very accurate (Palm, 2005). The 

following numerical results are obtained by using the MA TLAB function built in ode45. The 

examples of programming code used in ode45 are shown in Appendix O. 

4.2 N urnerieat Results 

The following are the parameters and initial values that were discussed in section 3.4. 

a = 0.02923% 

/10 = 0.01077% 


/11 = 0.001731% 


{J = 0.00015 


y = 0.8235 
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As discussed earlier the rate for the loss of immunity 8 is unknown so for this project we will 

keep the other parameters at the values above and vary 8 with the following values: 

8 = aper week (Permanent immunity) 

8 = 7 per week (Acquired immunity of one day) 

8 = 1 per week (Acquired immunity of seven days) 

8 = 0.07 per week (Acquired immunity of 100 days) 

The numerical results for each of the cases above will be discussed. 

4.2.1 Permanent Immunity (8 = 0 per week) 
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Figure 5: The result for HFMD model with 8 = 0 or permanent immunity 
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The purpose of running the test with () = a is to show that recovered individuals do not 

have pennanent immunity against HFMD. The result shows that in the long run the number of 

infected will decrease until O. 

This result is in accordance with the results for all the SIR models in which the models 

do not take into account the status of immunity (assuming pennanent immunity). All the 

susceptible will be infected and moved to become recovered. However, this is not the case for 

HFMD. In Sarawak context, HFMD is endemic, meaning there is always cases of HFMD 

reported. The authorities and the public are occasionally reminded to take precaution against 

HFMD as reported in the newspaper in Appendix H. 

As this result contradicted the actual situation; we can conclude that HFMD has no 

pennanent immunity and that the case of HFMD with () = a (permanent immunity) is not 

possible. This is also due to the fact that HFMD is caused by a group of enteroviruses at 

mentioned in section 2.7. An individual who is infected and recovered from HFMD will acquire 

immunity against the specific virus but not against all the entroviruses. The individual is still 

susceptible to HFMD caused by other enteroviruses (Hand, Foot and Mouth Disease, 2006). 

Thus, it can be said that a recovered individual only acquired immunity for a certain period of 

time and is capable of being infected-by HFMD again. The duration of the immunity however is 

not known and need further research. Following are the results for () 7 per week, () = 

1 per week and () = 0.07 per week. The reason for having () as a variable is to try to find the 

most reasonable rate for the loss of immunity against HFMD from the mathematical modelling 

perspective. 
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4.2.2 Acquire Immunity for 1 day (0 = 7 per week) 

From the previous simulation, the mathematical model shows that HFMD do not have 

permanent immunity when comparing it to the real situation in Sarawak. As the exact value for 

the loss of immunity is unknown, we need to estimate the value for the loss of immunity. First, 

we will used the value proposed by Wang & Sung (2004), in which they estimated that the loss 

of immunity against HFMD is I days. Therefore, we simulate the mathematical model with 

o= 7 per week and the following results are obtained. 
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Figure 6: The results for HFMD model with J =7 per week. 
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Figure 6 shows that HFMD is very contagious. In a period of less than half a week, the 

disease had infected almost everyone in the population. This is shown by the susceptible line 

which had gone down from 550,700 to almost zero during the period. This may seem unrealistic 

but the result is a mathematical projection where there are no preventive steps taken against the 

spread of the disease. Moreover during this same period, the infected population has reached its 

maximum as shown in the Figure 6 (Legend e). Based on the graph, the susceptible, infected 

and recovered population will reach a steady state. By visual inspection, these states were 

achieved at approximately in less that a week time. The value obtained by numerical analysis for 

the infected population was at 487,500 after 3 weeks. In addition, there is no sign that the value 

will go down soon. These signified that the disease is still at an outbreak as the initial population 

taken into account is 550,700. Based on the simulation result, the disease is still in an outbreak 

~, ,.. 
~. '~,stage for number of weeks to come as the infected line is still at a very big number and seemed to 

reach a steady state. 

This may be due to the fact that every recovered person experienced lost of immunity in 
.., 

just 1 day. A faster replenishment of the susceptible pool existed and this provided the resources 

for the disease to spread. Therefore in this case, the outbreak of HFMD will not subside. We 

suspect that there exists an endemic equilibrium solution at limiting time. 

4.2.3 	 Acquire Immunity for 7 days (6 = 1 per week) 

In the previous simulation, we estimated the loss of immunity is I day. The result that 

was obtained did not portray the actual scenario as the disease continued to be on an outbreak 

with the number of infected at 487,500 even after three weeks. Therefore, we suspected that the 

period for the loss of immunity is more than 1 day. Next, we simulated the model with the loss 

of immunity of seven days, namely 8 is one per week. The result is shown in figure 7. 
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Figure 7: The result for HFMD model with 8 = 1 per week 

Figure 7 also shows that HFMD is very contagious in Sarawak. According to the graph, 

the disease will infect almost everyone in less than half a week time. However, figure 7 shows 

that the outbreak lasted for about two weeks where the number of infected were reduced to about 

300,000. However, the number of infected is still very high after three weeks in which the 

infected line seemed to reach a steady state. This may be contributed by the reason that the 

recovered returns to the susceptible class in seven days time which is still quite short. This again 

replenished the susceptible pool for the disease to spread. The significant thing is that by visual 
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inspection on the graphs, the steady state for the number of susceptible is the same for both 

Figure 6 and 7. 

4.2.4 	 Acquire Immunity for 100 days (8 = 0.07 per week) 

From Figure 6 and 7, we learnt that as the period for loss of immunity increases, the 

number of infected decreases at limiting time. Thus, we suspected that the period for the loss of 

immunity might be longer and decided to simulate the result for the loss of immunity against 

HFMD as 100 days. (The simulation result for acquired immunity of 50 days is shown in 

Appendix I) So, with 6 =0.07 per week, the following result was obtained and shown in figure 8. 
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Figure 8: The result for HFMD model with 8 =0.07 per week 
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Figure 8 also shows that HFMD is contagious. The number of infected also reached its 

maximum in less that a week time. Comparing figure 8 with figure 6 and 7, it can be seen that 

by the end of three weeks, the number of infected is smaller for Ii = 0.07 (loss of immunity = 100 

days). The outbreak of the disease seemed to subside as the number of weeks increased. In 

figure 8, it shows that the disease has become endemic as compared to figure 6 and 7 in which 

the disease is still at an outbreak stage even after 3 weeks. Thus, we felt that the simulation in 

figure 8 is nearer to the dynamics of lIFMD that is experienced in Sarawak in which there are 

constantly cases of HFMD disease reported even when the outbreak is over (Refer Appendix H). 

The spread of the disease is slowing down after about 7 weeks of outbreak. This can be seen in 

the number of susceptible, the infected and the recovered. The slope for all the three classes 

, seems to be reaching O. 
"I, 

The increase in duration for the lost of immunity to 100 days may have contributed to this 

... .. ' effect. Based on the simulations results and comparing it to the general results of epidemic 

"..'" 

simulations (Allman & Rhodes, 2004) and the situation of HFMD in Sarawak, we believe that . 
the duration for the immunity against HFMD after recovery is 100 days. 

From all these results, we are able to conclude that the model can determine the 

number of infected at certain period of time. The duration of outbreak can also be determined 

using the HFMD model. The model also supported the clinical view that there is no permanent 

immunity against HFMD. The model provides a better understanding of HFMD in which the 

duration of the immunity affects the dynamics of the disease. It shows that HFMD is contagious 

if there is no step taken to curb the spread of the disease. 
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1 4.3 Critical Values 

In order to detennine the factors that can be used to curb the spread of the HFMD disease 

we need to recall back the concept of reproductive ratio, Ro. Ro is defined as the number of 

secondary cases which will arise with the introduction of an infective individual into the 

population. We have look at how the concept is being used in section 2.6. Thus looking at 

equation (7) from section 3.3 and using the same idea in obtaining the basic reproductive ratio 

for the classical SIR model we obtain the following:

dl 
fll(t)S(t) - yl(t) - (110 + I1l)l(t)

dt 

dl 
= l(t)[flS(t) - Y- (110 + Ill)]

dt 
~, , 

""dl .. ',
.j"..-- = l(t) [flS(t) - (y + 110 + 111)] It u'

dt II""

". 
111 

~ ,l'~- - J(t)( + + ) [PS(t) 1] Equation (9)
dt Y 110 111 (Y+~lO+Jlt)-

Since J(I) > 0 and (y + 110 + 111) > 0 then the behavior of dl is determined by how ( {3s(t) )

dt. Y+1l0+Jll 

behaves with respect to the value 1. Therefore, the mathematical model for HFMD in which 

natural birth, death and death caused by HFMD are taken into account, the reproductive ratio; 

R - PS(t) Equation (l0)o - (y+,uo+Jlt) (Hudson, 2002) 

Analyzing Ro, we get three cases which will detennine the direction of dl:_
dt 

.Ij~.. 
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• If ( (lS(t) ) < 1 then ~ < O. As the rate for the number of infected is less that zero, this 
Y+!lO+111 dt 

means that the number of infected is decreasing and no new infections will occur. Thus 

the disease will eventually subside. 

If (lS(t) = 1 then dl O. In this case, as the rate for the number of infected is zero, it• (Y+!lO+111) , dt 

means that the number of infected is at a constant value. Thus the disease will not spread 

further as the number of infected will not increase. 

• If ( (lS(t) ) > 1, then dl>O. Since the rate for the number of infected is greater that zero 
Y+!lO+111 dt 

this means that the number of infected is increasing. Thus the disease will spread and 

eventually become an outbreak. 

Then by letting Ro = 1 and rearranging the expression for Equation (10) we obtain 

"I'''' 
~ I'"

Equation (11) 


Equation (11) is known as the threshold value for the model (Hudson, 2002), we can rewrite the .. 


three cases above as:

sCt)= (Y+!lo+l1d th dl• en- 0 
(l dt 

Set) < (Y+!lO+111) h dl O·t en- < .• (l dt' 

Set) > (Y+!lO+111) then dl > 0• fJ dt 

From the three cases above it can be said that the spread of HFMD is governed by S(I) in 

Equation (11) which specifies the susceptible host density necessary to sustain the spread of 

HFMD disease. The implication is that HFMD will not spread successfully if the number of 

susceptible is less than this threshold value. 
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1 By analyzing equation (11), it can be seen that the threshold is independent of the 

parameter 0, which is the rate for the loss of immunity and a, which is the natural birth rate. 

Somehow the threshold value is only governed by the rate of recovery; y, natural death rate; /10, 

death due to HFMD~ /11 and also the transmission coefficient; p. The value for the parameter of 

y and /11 were based on the information obtained from the Health Ministry Department of 

Sarawak (Hand Foot Mouth Disease Outbreak in Sarawak, 2006, 2007) regarding HFMD while 

/10 was obtained from Jabatan Perangkaan Malaysia (2006). 

Solving equation (11), for all the simulations that we tested, the susceptible host density 

"value is 5,490. The meaning of this value is that if the number of susceptible is greater than .' .,
.'.' 
. d ,

5,490 then the disease will spread and eventually become an outbreak. If the number of .1 

.,1 

susceptible is less than 5,490 then the disease will not spread. Therefore, if the number of 
.. ' ., 

susceptible, namely those that are prone to be in contact with infective persons can be brought to ,
.' 

down to this value, we will be able to control the outbreak for the year 2006. This can be done 

through quarantine of susceptible in order to minimize the chances of the susceptible coming into 

contact with infective persons. This is a challenging task as the initial number of susceptible is 

550,700 (Jabatan Perangkaan Malaysia, 2006). This might be the reason why the outbreak in 

year 2006 was more severe as compc:red to other HFMD outbreaks in this country. 

Analyzing equation (11) shows that the threshold value wi\1 increase when the value of 

the transmission coefficient decrease. As the transmission coefficient decrease, this would mean 

that the disease will be more difficult to spread. In order for the outbreak to happen the number 

of susceptible need to be very big. If the value of the transmission coefficient is big, which 

means that it is easier for an individual to contract the disease, then the number of susceptible 
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1 required for the outbreak to happen will decrease. From this threshold value we can see that 
I 

there are two ways to reduce the outbreak ofHFMD. 

First is to reduce the transmission coefficient. In section 2.6 we mentioned that the 

transmission coefficient; fJ a x p, where 


a = chances of the susceptible meeting an infected per day; and 


p = the probability of the contacts leading to new infections 


Thus in order to reduce the value of fJ, we should reduce the value of a and p. To reduce a, we 

,,1 

can use quarantine or isolation so that the chances of meeting per day can be reduced. The steps 
mj 

" 
" 

taken by the authorities in announcing the closure of nurseries, kindergarten and primary classes 

in year 2006 outbreak helped bring the value of a down. To reduce the value of p, individuals 
"., 

have to be taught about personal hygiene regarding the disease. Many flyers regarding HFMD . 
" 

were distributed to schools and public in order to create awareness on HFMD. 

Secondly is to control the threshold value of the susceptible host density. By estimating " 
'" 

the transmission coefficient during an outbreak, the threshold value can be calculated. Using this 

value, authorities can plan effective measures to reduce the population to below the value. When 

this is achieved the outbreak of the disease can be controlled. 
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l 5 MODEL ANALYSIS 

The test results obtained in Chapter 4 shows that the model IS able to achieve the 

objectives of the research outlined in section 1.2, namely, to:

• predict the spread of HFMD in Sarawak in terms of number of infected persons; 

• determine the duration of an outbreak when it happens; and 

• determine factors that can help in preventing the outbreak. 

We analyse the mathematical model from two perspectives. The first one is to find the 

steady state and the second approach is to compare the output of the HFMD model with the 

actual data obtained from the Sarawak Health Department for the year 2006. 

5.1 Steady State 

The differential equations that model the HFMD as formulated in section 3.3 are: 

-dS == as(t) - (J1(t)S(t) - floS(t) + oR(t) Equation (6) 
,\.,.dt 

dl 
(J1(t)S(t) - yI(t) - (110 + fll)I(t) Equation (7) 

dt 


dR 
yI(t) - oR(t) - floRet) Equation (8) 


dt 

dS dl dR
At steady state we must have - == o. - == 0 and - == O. Letting the steady state solutions be 

dt'dt dt 

(S(t), l(t), R(t)) = (S, I, R) and with dS == 0; equation (6) becomes 
dt 

as - (JIS - floS + oR == 0 

Equation (12) 
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dR
When dt =0; equation (8) becomes 

yJ - 8R - floR = 0 

yJ =R (8 + flo) 

I = R (0+ Ito) 
y 

yl 
or R = (0+ Ito) 

Equation (13) 


Equation (14) 


From equation (13), it is clearly seen that I is proportional to Rand 8 while in equation (14) R is 

proportional to I but at the same time has an inverse effect with 8. As, the value for the 

parameter flo and yare constant and only 8 is not known, this means that 8 plays an important 

role in the dynamics of HFMD. 

:; ;:
dl

When dt = 0; equation (7) becomes .j 

'n" .. 
,", 

'. ,~ ,... 

Equation (15) 

From the factorization in equation (1 ~), there exist two cases:

Case 1 

If J =1= 0 (which means there exist infected individuals) then definitely (PS - y flo - fl1) = o. 

Thus, 

ps = (y + flo + fl1) 
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Equation (16) 

Equation (16) that is obtained using the steady state process is the same as the threshold value of 

the susceptible host density discussed in section 4.3 (Equation (11») . 

Substituting equation (14) and (16) into equation (12) to obtain the value for I at steady state. 

(y + J-lo + J-ll)(a - J-lo) flI(y + J-lo + J-ll) yI 
fl - fl + 0 (0 + J-lo) = 0 

flI(y + J-lo + J-ll) yI (y + J-lo + J-ll)(a - J-lo )
-------0--

fl (0 + J-lo) fl 

flI(y + J-lo + J-ll)(O + J-lo) - floyI (y + J-lo + J-ll)(a - J-lo ) 
= 

fl(o + J-lo) 	 fl 

.,' 
" . 

I(y + J-lo + J-ll)(O + J-lo) - oyI = (y + J-lo + J-ll)(~- J-lo )(0 + J-lo) 
, 

I = (y+lto+ltt)(a-Ito )(0+ Ito) Equation (17) 
Pl(y+lto+ltt)(O+ Ito)-oyj 

Substitute equation (17) into equation (14) in order to get the value for R at steady state. 

R = 	 -:--_y_I--:
(0 + J-lo) 

R = __y_(y_+---:J-l,--o_+_J-l~l)_(_a_-_J-l:--o:--)_(o_+_J-l_o_)---". 
(0 + J-lo)fl[(y + J-lo + J-ll)(O + J-lo) oy] 
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, 

R = Y(Y+1l0+1l1)(a-1l0) Equation (18) 
P[(Y+llo+1l1)(6+ llo)-6y] 

Substituting the parameter values discussed In section 4.2 with the various values of 0 (i.e., 

o= 7, 0 = 1 and 0 = 0.07) into equation (16), (17) and (18) the following results shown In 

table 6 was obtained. 

-. -- ..- - ~- - --. ' I 1"'i> .. l ',,_. 
I ... tl"~ ! ..: _i\;--=:~";~ I', •••~t:;"::";... '?t'''I .. . ,:-. :,. ~"'-;'-;!~t-""··' -t;- "_,-, - . .. ~":. I t • , ). ·...;_c!.,J:.'\:~:> 1: " 

The 5,490S 5,490 5,490 


Steady 

I 7,362 4,743 729

State 

Value 866 8,565R 3,905 

Table 2: The steady state for S, 1 and R with respect to b 

The value for the steady state of S(I) is consistent with the results obtained from the 

numerical analyses. The steady state for S(I) can be seen clearly in Figure 6, 7 and 8 for all the 

cases above. However the value for the steady state of 1(1) and R(I) arc not visible from these 

figures. We believe that it will take a longer duration (more than 52 weeks) for the disease to 

reach the steady state. In order to validate the model, we run the test again for a longer period of 

time of 100,000 weeks and the following results were obtained. 
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Figure 9: Result for HFMD model at limiting time for 8 = 7 per week 
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Figure 10: Result for HFMD model at limiting time for 8 = I per week 
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Figure II : Result for HFMD model at limiting time for 8 =0.07 per week 

8 (per week) 7 1 0.07 

Values 
at 

100,000 
weeks 

S 5490 , 5490 5493 

I 7369 4752 730 

R 867 3912 8590 

CPU Time iD seconds 580.51 116.27 6.50 

Table 3: The value obtained through the numerical analyses based on figure 9, 10 and II and the 


CPU time taken to obtain the results 
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The results in figure 9, 10 and 11 supported by table 3 also show that the steady state for 

/(t) and R(t) were as calculated above. In table 3 is also shown the processing time taken for the 

simulations to achieve the steady state for each of values for 0 at 100,000 weeks. The processing 

time is the longest for 0 = 7 as compare to 0 = 1 and 0 = 0.07 . This maybe because 0 = 7 

involve processing of larger number as compared to the other twos. The comparison on the 

values obtained through steady state calculation and numerical analyses are shown in the table 4. 

II 

d (per week) Classes 

Values obtained through 
Diffe."ence in 

percentage (%,)Numerical 
Analyses. . 

Steady Slate 
Calculations 

S 5490 5490 0 

7 J 7369 7362 0.095 

R 867 866 0.1 J 5 

S 5490 5490 0 

1 J 4752 4743 0.190 

R 730 729 0.137 

S 5493 5490 0.055 

0.07 J 730 729 0.137 

R 8590 8565 0.292 

Table 4: The analyses on the difference of the values obtained through numencal analyses and 

steady state calculation. 

From table 4, it can be seen that the difference in the value obtained through numerical 

analyses and steady state calculations do not differ very much. The highest difference in 

percentage is only 0.3%. 
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ease 2 

If I (t) = 0 it would mean that a di sease free equilibrium is achieved. This indirectly means that 

there are no infective. Then, in equation (13); if /(t) 0 then R(t) = O. This will fit the disease 

free equilibrium state where if there are no infective or infected individuals then there will be no 

individual who needs to recover from the disease. 

For equation (11), if /(t) = 0 and R(t) 0, then 

Sea  110) = 0 

So either S(t) 0 or a = 110

In order to achieve disease free equilibrium for HFMD where /(t) = 0, then there should 

not be any susceptible or the rate for natural birth must equal to the rate for natural death from 

the perspective of mathematical modelling. As there must be some infected or infective 

individuals, thus I =1= O. 

·1' 

''', 

The two cases of disease free equilibrium existed due to the nature of the model which 

takes into account the natural birth rate for the increase in the susceptible class; namely {JS(t). 

Thus to make the analysis more tractable we propose that for future work the recruitment rate 

into the susceptible class should better be approximated with a constant rate. 

5.2 Actnal Data Validation 

With the courtesy of Pengarah Kesihatan Negeri, Jabatan Kesihatan Negeri Sarawak, the 

data for the HFMD outbreak of year 2006 were obtained. The data were in weekly format as 

shown Figure 12. 
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Figure 12: The number of infected during the outbreak of HFMD for year 2006 

We used the data to validate the HFMD model. However, we have to change the initial 

value of S; the total number of susceptible. Even though the total population of age nine and 

below is 550700, this figure is not suitable to verify the model in the case of modelling the 

spread of HFMD in Sarawak. The exact initial figure for the susceptible could be lower than this 

because of several reasons. First, the age of the susceptible group could be lower than nine years 

of age with some studies revealing that most of the infected are below six years of age with the 

mean and median between 27 to 36 months of age (Podin, et aI., 2006). Second, Sarawak is a 

big state with an area of 124,449 square kilometres (Jabatan Perangkaan Malaysia, 2006). The 
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population is dispersed throughout the country. Quite a majority of the population are still 

staying in the rural areas such as interior of Kapit District and Baram District just to name a few. 

Moreover the model made the assumption of using the mass action principle to determine the 

transmission coefficient. The mass action principle takes into account the chances of the 

susceptible meeting the infected. In interior area, the chances are lower as compared to town or 

cities area. Therefore, the susceptible would refer to the population who are prone to be in 

constant contact with infective. The disease seemed to spread among school going children 

either in nurseries, kindergartens and primary schools. Furthermore, the reported cases of 

HFMD are mainly from urban area such as Kuching, Sibu, Bintulu and Miri. Taking into 

account all these factors, we decide to lower down the number of susceptible to 10,000. 

Thus, the new initial values are S(O) 10,000, /(0) = 4 and R(O) = O. The other 

parameters values are kept the same as listed in section 4.2 except for l). Based on the test 

results in section 4.2.3, we decided to use the parameter value for the loss of immunity~ l) = 

0.07 per week where the loss of immunity is 100 days since it gave the best simulated results , . 

for the case of HFMD. We run the simulation with the new initial value for the susceptible and 

the following result is shown in figure 13. 
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Figure 13: The numerical result for S(O) = 10,000 

Isolating the result for the number of infected from the number of susceptible and the recovered, 

figure 14 is obtained. 
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For comparison purposes we superimpose Figure 12 and Figure 14 to get Figure 15. 

1000 

Ul ~ (J) , I
Ul ,IC\l 800 
l> 

a 
Q3 
.0 600E 
::l t 
Z ,• 

•I 400 
,t 
• 

200 t 
J 

0 10 

~ 
1400 

---t-- Predicted 
- - Actual 

1200 

~~ 
,

, 
I, 
t,,, 

"\"	, 

.\. 

~ 

\ 

\. *"+~++'" 

~.. + 


'\..-~ 
20 30 40 50 60 

Weeks 

Figure 15: Results for the number infected based on actual data and the data simulated from the 

model 

The results from the mathema~ical model seem to overlap the graph for the actual data 

around week 5 to week 8. This shows that the model is able to predict how the disease will 

spread in terms of number of infected given the relevant parameters and initial values. 

There is a drastic drop in the number of cases after week 12 for the actual data and this is 

because steps were taken to curb the outbreak of the disease. According to the mathematical 

model if the disease takes it own courses it will take a bit longer before the outbreak ease. The 

model did predict that there will be a second wave at about 40 weeks but it will be milder. The 
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actual data did record the second wave of the outbreak but at a shorter period of time which is 10 

weeks ahead. Both the actual and the predicted data show that the disease is endemic even after 

the outbreak is over. The value for the one predicted by the model is higher as the disease is 

taking its own course while for the actual one, measures and action are taken to reduce the spread 

of the disease. Moreover, the actual data used were only for those cases that are reported to the 

health authority. We believe there were cases that were not reported due to distant such as 

interior area and also that were not referred to any clinic or hospital. These may contributed to 

the reason that the number of infected predicted by the model is higher as compared to the actual 

data. 

5.3 Basic Reproductive Ratio 

Using the initial value for the susceptible and the parameters values mentioned in section 

5.2, we calculate the value for HFMD reproductive ratio; Ro based on Equation (10). 

Equation (to) 

0.00015(10,000) 

Ro = (0.8235 + 0.0001077 + 0.00001731) 

Ro = 1.8 

The reproductive ratio; Ro = 1.8 obtained, is indeed very high and signify that HFMD is very 

contagious especially among children below the age of ten. Furthermore, the size of classes for 

nurseries and kindergartens level are very small; mostly below 20 in Sarawak. A Ro = 1.8 

would mean every new infected children would infected almost 2 other children during the 

outbreak. 

"." 
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Through the model analyses, we were able to show that the mathematical model built for 

the spread of HFMD in Sarawak is valid and stable. However we do admit that there are still 

rooms for improvement. 
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6 DISCUSSIONS 

6.1 Conclusion 

We have successfully developed an initial mathematical model for the spread of HFMD 

in Sarawak. The model is a preliminary model which we hope will be developed further into a 

better and precise model to predict the spread of HFMD. Despite its simplicity, the model was 

able to achieve the three objectives listed in section 1.2. The model was able to predict the 

number of persons infected during an outbreak. It was able to predict the duration of the 

outbreak. Finally, the model was able to determine that the critical parameters that can be used 

to help in the prevention of the outbreak are the number of susceptible and the transmission 

coefficient. These were shown and discussed in Chapter 4. We have successfully analyzed the 

mathematical model using the steady state and comparing the results with the actual data. 

To conclude, the research is able to contribute to the following areas: 

(i) The mathematical model is able to help the authorities concerned such as the Sarawak 

Health Department in predicting the number of infected during an outbreak of HFMD 

and thus enable them to plan appropriate actions for future outbreak. 

(ii) Through the mathematical model, the dynamics ofHFMD can be seen more clearly. We 

are able to determine that the transmission coefficient, f1 and the loss of immunity, (5 

played important parts in the dynamics of HFMD. 

(iii)The model has shown that one of the factors that can help in reducing the outbreak of 

HFMD is to control the number of susceptible that will come into contact with the 

infective. This proved that the action taken by the authorities in year 2006; namely the 

64 




closure of nurseries, kindergartens and primary One to Three, was indeed the correct 

procedure to reduce the outbreak. 

(iv)This research had opened a new area In the study of HFMD in Sarawak from 

mathematical modelling perspectives. We started off the research with a simple model 

and hope that more will follow to improve the model. 

It should be stressed here that the mathematical model for HFMD is only as accurate as 

the data that we had used to build the model. Due to lacks of data regarding the transmission 

coefficient value and the rate for the loss of immunity, we can only use estimated values. 

Because of that, the results obtained from the model may not be that accurate. This is supported 

by Keeling M. J. (2005) which stated that "Even if all the mechanism 'were understood and 

encoded, models would still be limited by the available data" and "It may be impossible to 

produce a good predictive model simply due to the lack ofsufficiently detailed data" (Keeling M. 

,2006). 

To conclude we quote Callahan (1996) "Our goal is to gain insight into the workings of 

an epidemic and to suggest how we might intervene to reduce its effects. So H'e start ofT with a 

model while imper.focl still captures some ofthe workings. The simpltfications in the model will 

bejusNfied ffwe are led to in.forences which help us understand how an epidemic 'works and hmt' 

we can deal with it ff we wish. we can then refine the model, replacing the simple expressions 

with others that mirror the reality more/idly." 

We do hope that the authorities concerned can look into the use of this model in the next 

outbreak when it happens. From the usage, further improvements can be made so that a better 

65 




pa 4 

and more accurate mathematical model can be deri ved to model the spread of HFMD in Sarawak 

in years to come. 

6.2 Future Work 

As we progress through this project, we realized that there are still a lot of improvements 

that can be made to the modelling of HFMD. The model that we used in this research is an open 

model in which the demographic terms (birth and death rates) are taken into account. It is also 

known as endemic model (Hethcote, 2000). For comparison study, a closed model or an 

epidemic model can also be used to model the spread of HFMD as shown in figure 17. 

~s~--~P--~~I~_I~--~Y--~~I~~R~ 
t I 

Figure 16: SIRS model without birth and death rate 

These would simplify the mathematical equations to: 

:: = -PS(t)/(t) + 6R(t) Equation (19) 

~~ = PS(t)/(t) - yl(t) Equation (20) 

-dR = yl(t) - 6R(t) Equation (21) 
dt 

Besides that our mathematical model used the concept of mass action to model the 

dynamic of the disease. Another approach is to use the standard incidence formulation 

(Hethcote, 2000). Based on standard incidence formulation, set) = N ,i(t) = Nand 

are the susceptible, infectious and recovered fractions respectively with the total ret) 
N 
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population size; N = Set) + let) + R(t). fJ I~) = fJi is the average number of contacts with 

the infective per unit of time of one susceptible, and fJ l~) S = fJNis is the number of new cases 

per unit time due to Set) = Ns susceptible. With these, the equations that are used in the model 

will need to be changed respectively. 

Runge-Kutta method was used to solve the coupled nonlinear differential equations for 

the model because of its simplicity. However. Runge-Kutta method does not preserve the 

essential properties of the model namely positivity in which case S(I), /(1) and R(I) must be of 

positive values. Thus, it is better to solve the equations of the model using non-standard 

positivity-preserving-finite-difference-discretization method as proposed by Gumel, Mickens, & 

Corbett (2003) and Gumet Patidar, & Spiteri (2005). 

As mentioned in Chapter 3, the value for the transmission coefficient (fJ = 0.00015) that 

was used in this model was just an estimate. The estimation is made based on Callahan (1996) 

and Allman & Rhodes (2004) view on the general values for transmission coefficient for disease 

spread. So far the only literature that offers an insight into the transmission coefficient value is 

Wang & Sung (2004). However they determine the value using transformation function of 

seasonal factors in which case is not relevant to our model which is detenninistic in nature. 

From the modelling view, we realized that by controlling or understanding the value of fJ, we 

might be able to curb the spread of HFMD. So we hope there will be some researches to look 

into the transmission coefficient of HFMD in Sarawak. Recalling that the transmission 

coefficient is the product of the contact rate and the probability of transmitting the virus during 

those contacts so further works can be focus on the contact rate. Chang, et al. (2004) did a study 

on the transmission rate for HEV71 in Taiwan which is limited to houshold contact. They 
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investigated patients at a children's hospital in Taiwan and family members of these patients who 

had signs and symptoms suggestive of HEV?l. Patients and household members underwent 

clinical evaluations, virological studies, questionaire-based interview, and were followed up for 6 

months. Their ideas could be used to determine the contact rate for HFMD in Sarawak. As for 

the probability of transmitting the virus during the contact, we might be able to made use of the 

incidence rate formula published by the Sarawak Health Department on HFMD as discussed in 

section 3.4. 

Most literatures admitted that HFMD has no permanent immunity but no literatures hold 

any insight to the value for the loss of immunity at the moment. Thus, the precise value of () is 

unknown. Using the mathematical model, we were able to prove that there is no permanent 

immunity against HFMD and also that the loss of immunity is not one day as proposed in Wang 

& Sung (2004). Based on the model, we concluded that the immunity against HFMD is roughly 

around 100 days after recovery_ We hope there will be some researches either clinically or 

mathematically to determine the exact value for the loss of immunity. With further works on 

these two parameters a more precise model for the spread of HFMD in Sarawak can be obtained. 

Finally, some focus should also be given to analyse the phase plane. The use of next 

generation method or standard linearization to establish the local asymptotic stability of the 

disease-free equilibrium, by way of finding the reproduction number is recommended. 

Besides that, we hope this project has paved a new road for more researches to come. 

We believe that the HFMD model can be modified to look into the effect of weather in the 

outbreak of HFMD in Sarawak as was done in Taiwan by Wang & Sung (2004) and also to 

support claim that outbreak of HFMD in Sarawak will happen every three years (Podin, et aL 
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2006). A more precise model of HFMD would surely be able to help authorities concerned in 

predicting the outbreak ofHFMD and indirectly helping in curbing the spread ofHFMD. 
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7 APPENDIX 

APPENDIX A. 

CLOSl"RE DIRECTlJE -DIRECTOR OF S-tRAJJ~4K HEALTH DEPART.UE.YT 

JABATAN KESIHATAN HEGERI SARAWAK 
JALAN TUN ABANG HAJI OPENG 

93590 KUCHING, SARAWAK, MALAYSIA 

Tel 032-2.f6J~O Fax: 032-~4 7 254 

Ruj. Karn!: JKNSWK/Ops/HFMD 200611 /20 
Tarikh: 3 Mac 2006 

SEGERA 

Pengarah 
Jabatan Pelajaran Negeri Sarawak 
Tingkat 10,. Bangunan Tun Datuk Patinggi Tuanku Hajj Bujang 
Jalan Simpang Tiga 
93604 Kuching. 

Pengarah 
J abatan Kebajikan Masyarakat Negeri 
Tingkat 11) Wi sma Saberkas 
Jalan Green 
93564 Kuchlng. 

Pen2arah Perpaduan 
Jabatan Perpaduan Negara dan Integrasi Nasional 
Tingkat 9, 6angunan Sultan Iskandar 
Jalan Simpang Tiga 
93350 Kucnine. 

Pengarah 
Jabatan Kemajuan Masyarakat 
Persekutuan Negeri Sarawak (KEMAS) 
Tingkat 6, Bangunan Sultan Iskandar 
Jalan Slmpang Tiga 
93350 Kuching. 

Tuan/Puan. 

ARAHAN PENUTUPAN SERTAMERTA KE ATAS SEMUA TAD1KA, PRA-SEKOLAH, 
TABIKA DAN TASKA SELURUH SARAWAK 
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Q 


Saya dengan hormatnya merujuk kel'ada perkara di atas, 

2, Sehubun~anden2an penQumuman yang dibuat oleh YB Menteri Kesihatan Malays.ia 
han Int, SEMUA TADtKA, pra-sekolah, TABIKA dan TASKA di seluruh nee.erj Sarawak 
hendaklan ditutup sepenuhnya setama dua (2) minggu berkuatkuasa sertamerta 
mula; hari in! Jumaat 3 Mac 2006. 

3. Tindal<,an in; diambll bag1 memutuskan transmisi jangkitan ;n; secar!1: berkesan ell 
samping memudahkan kerja·kerja pembersihan djjalankan di premis-premis ter:;ebut. 

4. Oleh itu. tuanipuan adalah diminta untuk memaklumkan kepada proemis-premis di 
bawah jagaan mas.ing-masin~ untuk berbuat demikian dan mematuhi arahan in" 

Sekian, terima kas.;h. 

BERI<HlDMAT UNTUK NEGARA 

Saya yang menjalankan tugi!lS, 

DR. YAO SIK KING 
PENGARAH KE'SIHATAN NEGERI 
SARAWAK. 
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APPENDIX B. 

TEXT ON THE PUBLIC ANNOUNCEM 
BY 


YB DATUK PATINGGI TAN SRI DR. GEORGE CHAN HONG NAM, 

DEPUTY CHiEF MINISTER OF SARAWAK 


ON 

THE CLOSURE OF ALL PRIMARY ONE TO THREE CLASSES 


IN ALL PRIMARY SCHOOLS AND PRE SCHOOLS 

IN THE STATE OF SARAWAK 


As the State Minister-in-charge of the State Dlsaster and Relief Committee. \vith the 
consent of the Chief Minister of Sarawak and the Minister of Health Malaysia. ! 'i,!ould 
like to make the following orders: 

1. I \.vould like to announce that. after the current school holiday IS over on 17"" 
March 2006. I 'vvou!d like to order aU primary one to three classes in all the Primary 
schools in the State of Saraviak to be closed from Monday 20 u1 March 2006 to 
Sunday 26u1 March 2006. We believe thIs order of closure in the State of Sarawak 
'tiill further help break the transmission of Hand. Foot and Mouth Disease in the 
State. 

2. Similarly. following the announcement by the Minister of Health on the 3'd 
March 2006. on the closure of all TASKA and similar premises j \vould like this 
closure to continue until 26:h t\·1arch 2006 for tl1e following: 

i) TASKA 

ii) TADIKA 

TABIKA 

IV) CHILD CARE CENTRES 

v) NURSERIES 

vl) CHILD DAY CARE CENTRES 

PLAY SCHOOLS 

PRASEKOLAH 

IX) TUITION CENTRES CA:.rERING TO STUDENTS BELOW 10 YEARS 

OLD 

hope that all concerned will understand that this step is necessary In order to 
control the outbreak of Hand. Foot and Mouth Disease In the State of Sar8lNak. 

I also hope that everybody V-IlI! cooperate and abide by thiS order. so that \Ve ;;;ill not 
need to extend the duration of this closure order In future. 

THANK YOU. 
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APPENDIXF. 

Additional Information on HFMD 

1. Agent of iufe{tion; 

.:t. 	 It is a Gl by ',,'ir-uses frOITl entemvu'us grou 
from EV71 and Coxsackie gro~jp A16. 

2. Ctinical Signs and Symptoms. 

a. 	 The signs and ~''r'rnptoms the infection an:: fever: son" 
uker at the throat and mouth as as bhstel 

and ). 

b. 	 It affect'S mostly children b>?lo~v 10 ve3r~> of::l912. Duration il1 Fection 
ncrll"tal'y 7 to 10 

HFHD is spreC'ld bl;'; 

a. 	 Direct contact with droplets frorn PHSOIl through and 
sneezing, or' oral secretion and nasal dischan:p:, 0" through 
contaminated h.3nds to mouth. 

b. Touchin9 on the body of all ;qfecttd person. 

4. Ill( ubation period. 

a. 	 A person '""ill shov\· 51<::1115 and 5'1n1ptorns 3 to 7 d.:=p,s after >:":«posu"e to 
the viru!;. [;lost patients vvill recover 'Nitilin a few davs. 

5. 	Period of Infection. 

a. 	 It is ver-y infectious at the acute staste atly front the and 
sneeZE: droplets, oral and nasal disch.:wge and f'ufd frorn the blisters. 

b. 	 The viruseS may (ontinue to iJe exereteel in the stool of ::i1e tee 
persons for c'l rew 
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APPENDIXG. 

a. Creating M-file named HFMD2006 

function HFMD2006(t, x) 

The default value for the parameters 

alpha 0.000293; 

muNull 0.0001077; 

muOne 0.00001731; 

beta 0.00015; 

gamrr.a 0.8235; 

delta 0.07; 


SIt) (1) ; 


I (t) x (2) ; 


R (t) x (3) ; 


dS/dt f (1) ; 

dI/dt (2) ; 

dR/dt f (3) ; 

= zeros (3, 1); 
f(l) a *x(l)- beta*x(I)*x(2)- muNuil*x(l)+ delta*x(3); 
f(2) beta*x(1)*x(2) gamma*x(2) -(::nuNull+::nuOne)*x(2); 
f(3) x(2)-delta*x(3)-muNull*x(3); 

b. Initial values and calling the function ode4.5 

> Hnitial value for the vely 

SO 0000; 

IO 4 ; 

RO 0; 


the initial value into vector 

xO [SO; 10; ROJ; 

MaxTime 52; 

%Calli~g the M- ie and ode45 function 

[t, xl ode45 (@HFMD2006, [a, MaxTime], xO); 


Plot the i~fected ine o~ the graph 

»plot(t,x(:, I); 
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APPENDIX H. 

:"',c. [l'nd 1\1 1II(.r '(1 • It \ JIll, ~~dl 'od . lJ ":Jlth ncpt \\- lOt\ 10 • I. url' "i(lml ioo ulldl'r (.mlm l 
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Figure 17: The result for HFMD model with {; = 0.14 or acquired immunity of 50 days 
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