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Abstrak

Negeri Sarawak telah mengalami wabak penyakit berjangkit tangan, kaki dan mulut (HFMD)
sejak tahun 1997. Pada tahun 2006, wabak penyakit tersebut telah mengakibatkan 13 kematian
dengan 14,423 kes direkodkan. Akibatnya arahan penutupan semua taska, tabika dan darjah satu
hingga tiga sekolah rendah untuk two minggu telah dilaksanakan dalam proses menghentikan
sebaran wabak tersebut. Setiap kali wabak penyakit berjangkit tangan, kaki dan mulut berlaku,
perasaan takut dan risau dalam komuniti akan timbul. Wabak penyakit tangan, kaki dan mulut
yang seterusnya dijanka akan berlaku pada tahun 2009. Model matematik telah digunakan
secara meluas untuk meramal dan memahami dinamik penyakit berjangkit. Dalam projek ini,
kami membina satu model matematik yang mudah untuk meramal sebaran wabak penyakit kaki,
tangan dan mulut dari segi bilangan mangsanya. Seterusnya dengan menggunakan model
tersebut, kami cuba menentukan parameter kritikal yang akan membantu dalam membantutkan
sebaran wabak terscbut. Kami membina model matematik untuk penyakit tangan, kaki dan
mulut berdasarkan kajian tentang ciri-ciri klinikalnya. Dengan menggunakan sistem persamaan
pembezaan kami menghubungkan semua parameter dalam model berkenaan. Kami
menyelesaikan sistem persamaan pembezaan tersebut berdasarkan analisis berangka dan
seterusnya memaparkan hasil penyelesaian tersebut.  Hasil dapatan tersebut juga dianalisiskan
bersama dengan data penyakti tangan, kaki dan mulut untuk tahun 2006. Model matematik
tersebut juga dianalisiskan berdasarkan penyelesaian titik pegun dan membandingkannya dengan
hasil analisis berangka. Hasil kajian mendapati jumlah individual yang dijangkiti serta tempoh
wabak penyakit dapat diperolehi melalui analisis berangka berdasarkan model matematik
tersebut. la juga mendapati bahawa parameter yang dapat mengawal sebaran jangkitan wabak

tersebut adalah bilangan yang belum dijangkiti.
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Abstract

(s

\
disease (HFMD). The outbreak of HFMD in year 2006 resulted in 13 deaths with 14,423 cases

ince 1997, every three years Sarawak had been experiencing outbreak of hand, foot and mouth

reported. It also resulted in closing of all nurseries, kindergartens and primary one to primary
three classes for about two weeks. Each outbreak of HFMD caused fear and anxiety in the
community. The next outbreak is predicted to be in year 2009. Mathematical models have been
widely used to predict and understand the dynamics of infectious disease. In this project we
build a simple mathematical model to predict the spread of HFMD in Sarawak in terms of
number of infected individuals per unit of time and the duration of the outbreak. Then using the
model we try to determine the critical parameter that can help in curbing the spread of HFMD.
We studied the clinical characteristics of HFMD)Based on that study, we built the HFMD
model. We formulated a system of differential equations that related all the parameters in
HFMD model. Using numerical analysis, we solved the equations and presented the numerical
results in graphical form. The results were analyzed with year 2006 outbreak and also through
obtaining the steady state solutions analytically and compare them with the numerical results.
Thus, the number of infected individuals and the duration of an outbreak can then be determined
from the obtained numerical results. It was found that the parameter that would be able to

control the spread of HFMD is the number of susceptible in the system.
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1 INTRODUCTION

1.1 Background

Hand, foot and mouth disease (HFMD) is caused by viruses from the group called
enteroviruses of the family called Picornoviridae (Podin, et al., 2006). 1t is most commonly
caused by Coxsackie virus (A16) and human enterovirus (HEV71) or other enteroviruses (Hand,
Foot and Mouth Disease, 2007). Other viruses associated with HFMD are Coxsackie virus A
(CAV) 4, 5, 9 and 10 and Coxsackie virus B (CBV) 2 and 5 (Ooi, et al., 2007) (Hand, Foot and
Mouth Disease, 2006). The disease is believed to be a common illness of infant and children.
Nevertheless, 2628 cases of HFMD with 31 deaths in Sarawak were recorded during an outbreak
in 1997 (Soal Jawab Penyakit Tangan, Kaki dan Mulut (HFMD) Bersama Ketua Pengarah
Kesihatan, 2006). The outbreak occurred again in 2000, 2003 and 2006. Table 1 shows the
number of cases and deaths related to HFMD outbreaks in Sarawak since 1997 (Hand Foot

Mouth Disease Outbreak in Sarawak, 2006, 2007; Hand, Foot and Mouth Discase, 2007).

Table 1 Number of cases and deaths related to HFMD outbreak in Sarawak

In Table 1 it can be seen that the number of cases related to HFMD outbreak in Sarawak
increased drastically to 14,423 cases as compared to those recorded in 1997, 2000 and 2003.

The summation of the total cases for the three previous outbreaks cannot even match the single



total number of cases recorded in year 2006. Serious action should be taken to address this

increase.

The outbreak in 2006 had prompted the Health Ministry of Malaysia to announce the
closure of all child care centres and kindergartens in Sarawak for 2 weeks on 3 March 2006
(Arahan Penutupan Sementara ke atas Semua Tadika, Pra-Sekolah, Tabika dan Taska Seluruh
Sarawak, 2006). As the spread of the disease did not subdued, all Primary on¢ to Primary three
classes in all primary schools in Sarawak were also ordered to be closed from 20 March to 26
March 2006 (Closure Directive -Director of Sarawak Health Department. 2006), Refer to
Appendix A and B. These closures were ordered in the hope that it would break the transmission
of the disease. The closure surely had caused problems for working parents who had to find
other alternatives in caring for the children that were affected by the closure. Parents were
requested to keep the children indoor and away from any crowded places such as supermarkets
and playgrounds. It can be seen that HFMD not only caused health problems but also social and
economical problems which are not easily quantifiable. As Barreto, Teixeira, and Carmo (2006)
puts it, the explosive characteristics and unpredictability of epidemics are a cause of fear,

insecurity, and panic for the community.

So, it is important especially in Sarawak to understand the spread of HFMD. The
outbreak in 2006 was predicted by Podin, et al. (2006) which acknowledged a trend for the
outbreak of HFMD every three years in Sarawak starting from the year 1997. The next outbreak
is predicted to be in 2009 and this was acknowledged by the authorities in Hand Foot Mouth
Disease Outbreak in Sarawak, 2006 (2007) and also in the article ‘Outbreak of HFMD Expected

Next Year (2008), Refer to Appendix C. It is only right that authorities concerned make



necessary preparation for the predicted outbreak in year 2009. We hope this project will be able

to help authorities concerned.

It should be noted that HFMD not only strike Sarawak but also Taiwan, Western
Australia and Singapore (McMinn, et al., 2001) and most recently China (Refer to Appendix D).
As reported by Lim (2008) (Refer to Appendix E) 16,778 persons had been infected by HFMD
in China since January 2008. In Taiwan it caused 78 deaths and 129,106 children infected
during the outbreak from March to December 1998 (Ho, 2000). In Singapore it caused 4 deaths
and 3526 infected during September to November 2000 outbreak. Study done by Chan. et al.
(2003) revealed that most of the infected were children below the age of four years and HEV71
was the most frequently isolated cases in Singapore. Chong, et al. (2003) compared the fatality
rate in Singapore with Taiwan and concluded that the difference could be due to genetic factors,
viral virulence or underreporting of non-fatal cases. The study done by Chen, et al. (2007) in
Taiwan also found that most of the cases were children below the age of four years.
Furthermore, HFMD is a common disease in Taiwan with the incidence peak observed during
the summer season. Chen, et al. (2007) attributed the outbreak of HFMD in Taiwan every two to

three years to the accumulation of susceptible individuals during this interval.

Experts in the field of virology acknowledged that the virus that caused HFMD seemed to
have evolved (Podin, et al., 2006). These together with the characteristics of HFMD such as no
immunity and no available vaccine (Hand, Foot and Mouth Disease, 2006) should be of great
concern to governments around the world and especially Sarawak where a trend for the outbreak
HFMD is said to occur every three years (Podin, et al., 2006). That is where mathematical

modelling of the spread of HFMD can be used.



A lot of modelling on the spread of diseases has been done for example on SARS
epidemic (Choi & Pak, 2003; Gumel, et al., 2004), HIV (Nowak & May, 2000), malaria
{Macdonald, 1957) to name a few., Wang and Sung (2004) did a mathematical modelling of the
spread of HFMD. They used SIR (Susceptible-Infected-Recovered) model to model the spread
of enteroviruses in Taiwan. The aim of their model is to see the association between the weather
and the occurrence of enteroviruses complicated severe cases in Taiwan. Other than that., no

mathematical modelling work has been done on HFMD cases in Sarawak.

With any mathematical model of infectious disease, the total number of infected persons
can be predicted when an outbreak occurs, as well as the duration of the outbreak. This work is
necessary as Podin, et al. (2006) stated that any extra knowledge on HFMD would be able to
help the authorities concerned to predict the spread of the disease effectively and take pre-

emptive measures in order to subdue the spread of HFM disease in time to come.

An outbreak is said to exist when there are more cases of a particular disease than
expected in a given area, or among a specific group of people, over a particular period of time.
Many epidemiologists use the terms "outbreak" and "epidemic” interchangeably: however. some
restrict the use of "epidemic” to situations involving large numbers of people over a wide
geographic area (Hand, Foot and Mouth Disease, 2006). Meanwhile, endemic is defined as a
disease that is constantly present in a given geographic area or population group; may also refer

to the usual prevalence of a disease.



1.2 Objectives

In order to model the dynamics of the spread of HFMD, we studied the model used in
Wang & Sung (2004). We identify the similarity and did some modification to come out with a
new model for the spread of HFMD in Sarawak. The project will focus on HFMD generally and
not specifically on any viruses such as Human Enterovirus 71 (HEV71) or Coxsackie viruses.

The objective of the research is to construct a simple mathematical model in order to:-

o predict the spread of HFMD in Sarawak in terms of number of infected persons;
e determine the duration of an outbreak when it happens; and

e determine factors that can help in preventing the outbreak.

1.3 Outlines

The dissertation is organized in the following way. Chapter 2 contains an overview of
the history of mathematical modelling on infectious disease. In addition, Chapter 2 will discuss
the classical STR model. Chapter 3 will discuss on the steps taken to model HFMD which
include the formulation of HFMD model and the differential equations involved in the model.
Then we will discuss how the values for the parameters are determined and the initial values
used for the model. Chapter 4 will discuss on the Runge-Kutta method used to solve the
differential equations on the model. The numerical results are also included in the same chapter.
In Chapter 5, the discussion is on the analysis of the model. First we will use the steady state to
analyze and then we will use the actual data obtained from the Sarawak Health Department. We

will state the conclusion and future works in Chapter 6.



2 LITERATURE REVIEW

2.1 A Brief History of Mathematical Modelling

Bailey (1975) gives a detailed description on the history of mathematical modelling for
disease. It states that Daniel Bernoulli in 1760 initiated the application of mathematics to the
study of infectious disease. Bernoulli used a simple mathematical model to evaluate the
effectiveness of the improvement of variolation to protect against smallpox infection. However,
their impact on public health policy and planning for the prevention of infection and associated
disease has been rather limited at that time. According to Caldwell (2004) this is due to the lack
of understanding of the mechanism of infectious spread. And so the development of
mathematical models of infectious disease took a setback. Only after the increased
understanding of contagious disease, did mathematical theories developed much faster.

According to Bailey (1975) the origins of modern theoretical epidemiology owe much to
the work of Hamer (1906), Ross (1911) and Kermack & McKendrick (1927). Hamer introduced
the concept of “mass action”™ for the transmission of directly transmitted viral and bacteria
infections. It is one of the most important concepts in mathematical epidemiology. According to
the concept, the course of an epidemic depends on the rate of contact between susceptible and
infectious individuals and is proportional to the product of the densities of susceptible and
infectious persons. The concept was originally formulated in a discrete-time model. but in 1908
Ronald Ross translated the problem into a continuous time framework. In 1927, Kermack and
McKendrick explored in more detail the concept of Hamer and Ross and introduced the
compartmental and deterministic model. Their model became a basic mathematical model for

modelling infectious disease.



However the model was only fully explored later in the century. With the increased and
availability of the processing power of computer various models have been introduced and
developed for infectious disease (Keeling M. J., 2005; Keeling M. , 2006). Mathematical models
have been developed for malaria disease, SARS, HIV and FMD (Brauer, 2005; Keeling &

Rohani, 2007).

2.2 Mathematical Model of Infectious Disease

Generally mathematical modelling is defined as the process of creating a mathematical
representation of some phenomenon in order to gain a better understanding of that phenomenon
(Mathematical Modeling, 2006). The phenomenon could be population growth, heat flow or in
this project the spread of disease. As summarized by Keeling & Rohani (2007) a mathematical
model is a model that is able to describe and represent a system using the language of
mathematics. Mathematical model of infectious disease is an attempt to use equation systems to
represent elements of the dynamics of infectious processes involving agent, host, and
environment (Barreto, Teixeira, & Carmo, 2006). To conclude, mathematical modelling of
infectious disease is described as a process of representing the disease using the language of
mathematics. In the process of modelling the disease, one has to find the relationship between

all the elements in the dynamics of the disease and relate them in mathematics equations.
Four steps to mathematical modelling (Mathematical Modeling, 2006) are:
1. Identifying the problem.
2. Stating the assumptions and start with a simple model.

3. Identifying variables and constants and their relationships.



4. Developing the equations that express the relationship between the variables and

constants.

Trottier & Philippe (2001) conformed to the steps in mathematical modelling by rewording and
rearranging the four steps to understanding the disease as the first step. Understanding the
disease would mean recognizing the duration of the period of infectivity, the incubation period if
any, and the immune status after infection. The second step is the collection of data on the
demographic, epidemiologic and biologic characteristics of the infection (transmission rate) and
the population birth and death rates. The third step is to choose a simple model that fits the
descriptions from the previous step. Finally, the last step is the formation of the equations of the
model. For building our HFMD model, we will use the four steps highlighted above. This will

be discussed in the following chapter.

From the description of the steps in mathematical modelling, it can be seen that
assumption is an important step in modelling the spread of disease. As Keeling & Rohani (2007)
puts it, a model is a conceptual tool that explains how an object or system of objects will behave.
In order to do that, the system has to be simplified in order to be modelled. In the process, only
the important aspects of the system are retained. This ensures a better understanding of the way

the system works. In modelling a distase we need to make assumptions about (Britton, 2005):-

e The population affected
e The way the disease is spread; and

e The mechanism of recovery from the disease.

However the simplifications also have their downsides. The model might be too simple

to be able to mimic the real thing. It is difficult to determine how simple a model should be or



even how complex it should be. This is also agreed by Keeling & Rohani (2007) who in their
writing stressed on the ‘usefulness’ of mathematical modelling based on three and yet conflicting
elements: accuracy, transparency and flexibility. It also emphasized that by definition all models
are “wrong” as they make some simplifying assumptions in even the most complex models. It
summarized that it is difficult to determine which model is “right” because of the assumptions
that were made. It stressed that what is important is that the model is able to capture the essential

features of a system.

It is the same with infectious disease. There are many factors that can contribute to the
spread of the infectious disease. Some assumptions have to be made in the process to model the
spread of the disease. Although it might not seem real, the model will be able to help in
understanding the disease better and in the end might help in preventing the spread of the

disease.

2.3 What mathematical models can do

As mentioned earlier, mathematical models can be used to help predict the spread of
infectious disease. They can be used to predict the development and spread of disease (Caldwell,
2004). In other words the model will be able to predict the number of infected persons during an
outbreak and the duration of the outbreak when it occurs. Keeling & Rohani (2007) mentioned
that models have two distinct roles namely prediction and understanding; with the previous being
the most obvious. Keeling M. (2006) listed four mains area that models can contribute; i.e.

planning, prediction, detection and understanding. In prediction, models would enable:

e The prediction of the large population-level epidemic from single individual-level

knowledge of epidemiological factors;



e The prediction of the long term behaviour from the early invasion dynamics; or

e The prediction of the impact of vaccination on the spread of infection.

The prediction from the model can be used to decide how resources such as medication,
vaccination, and others can be used during an outbreak. For example, models can be used to
determine a certain group of people for vaccination rather than all or whether total inoculation is

necessary to stop the spread of a disease.

Well-parameterised and carefully constructed models can be a powerful public health
tool. The prediction obtained from the model can help policy makers and health administration
in doing their work more effectively. The goal in modelling disease transmission is to

understand how to control it (Allman & Rhodes, 2004).

Model can be used to understand how various complexities affect the dynamics of the
spread of the disease in the real world. The models provide epidemiologists with an ideal world
in which individual factors can be examined in isolation and where every aspect of the discase
spread can be recorded in perfect detail. Examples given by Keeling & Rohani (2007) are the
effects of variable numbers of partners on the spread of sexually transmitted diseases and the
effects of increased transmission between children during school terms. Experimentation and
testing theories can be done using m'athematical models (Hethcote, 2000; Thieme, 2003). It can
be used to plan, implement, evaluate and optimize various detection, prevention and control
program for a particular disease. The model can be used to explore how a situation may develop

in response to different interventions. These can be done by changing the parameters’ values and

estimating key parameters from data. Models can be used experimentally to test a wide range of

10



control strategies and outbreak scenarios without any risks associated with testing during a real

epidemic (Keeling M. J., 2005).

Barreto, Teixeira, & Carmo (2006) agreed that mathematical models of infectious disease
is a powerful tool for understanding, for predicting situations and even for evaluating the
potential capacity of certain interventions to change the likelihood of new cases occurring. The
ability of model in predicting and understanding the dynamics of the disease is also
acknowledged by Murray (2002) and the models have the ability to pose possibie means of
control of the disease. However it stressed that the difficulty in transforming the complex
situations involved in the process of transmission of many infectious agents into mathematical
models is a limitation to their use in many situations. For this Keeling & Rohani (2007) stressed
that only by building from simple to a more complex models that the rich complexities and
dynamics that are observed in the real world can be understood. That is the approach that we are

taking as this is an initial mathematical model on HFMD.

Besides predicting the spread of the disease and understanding the dynamics of the
disease, the model can also be used as a guide to data collection. Trottier & Philippe (2001)
explains that modelling can guide the collection of data towards further understanding and
design programs for the control of the disease. Although one of the steps in building the model
is collection of data, sometimes the initial data collected may not be suitable for the use of the
model. Then the process of data collection has to be repeated. With the model, the process will

be casier as now we will know precisely what type of data need to be collected.

11



It should be stated clearly that models have their limitations. Models will not be able to
predict precisely the course of the epidemics nor who will be infected. To quote the following

from Keeling M. (2006):

Models will never be able 1o accurately predict if, or when a particular person, farm or

community will become infected. This is for two reasons:

s The transmission of infection is a stochastic process, such that no two epidemics are
identical;
o Models will always be an approximation, and rare or unforeseen behaviour events can

have a significant impact on the disease dynamics.

According to Keeling & Rohani (2007) a good model should be suited to its purpose;
namely a model designed to help to understand the behaviour of an infectious disease should
concentrate on the characteristics that are of importance while simplifying others. A model built
for accurate prediction should provide a comprehensive picture of the full dynamics and include
all the relevant features of the disease and host. The art of creating a good model is deciding
which of the disease features are important to capture the right dynamics and which can be
omitted to prevent the model from becoming too complicated to analyze (Allman & Rhodes.

2004). Caldwell (2004) stated that different models will be applied to different cases. So it can

be said that a good model is context dependent.

2.4 Types of Mathematical Models
Deterministic model or compartmental model is the most basic or classical mathematical
modelling. It is most useful when modelling for a large population and the total population is

taken to be constant. In the deterministic model, the populations are grouped into different

12



compartments depending on their status with regard to the infection under study. The population
can be divided into distinct classes using a string of letters that provides information about the
model structure. For example, a model with the population divided into the susceptible (§), the
infected (), and the recovered (R) are known as SIR model. Later, classes such as exposed (F)
are introduced which brings out the SEIR model. SIS (or an SIRS) model are used when
susceptibility can return after infection (or after loss of immunity). The susceptible (S) are the
population who do have the disease and can catch the disease if they come into contact with
infected person. The infected (1) are the population who have the disease and can transmit the
disease. The recovered (R) are those who have recovered from the disease and are immune to
the disease. The exposed (E) are those who have caught the disease but are not infective. They
are in their latent period. Britton (2005) introduced Carrier (C) which refers to individuals who

remain infectious for a long time but do not show any symptoms of the disease themselves.

It is important to identify the problem first as mentioned in the steps of mathematical
modelling. By identifying the problem means understanding the disease. In order to understand
the disease it is invaluable that the definition used in medical terms must be understood properly.
For the definition of the terms used in mathematical modelling of infectious disease, refer to

Barreto, Teixeira, & Carmo (2006) and Moghadas (2006).

The term incubation and latent period might overlap each other as shown in Figure 1.
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incubsation ?eﬁad y

Suscentible Exposed

. infectious

Infectious Period

Figure 1: The relationship of latency, incubation and infectious periods to the dynamics of the

disease. (Epidemiology Simulations)

Barreto, Teixeira, & Carmo (2006) also stressed on the importance of incubation period
and latent period. Incubation period is the interval between the effective exposure of the
susceptible host to an infectious agent and the appearance of signs and clinical symptoms of the
disease in that host. However during the period of incubation, the host can be infectious as
shown in figure 1. Most mathematical models ignore the incubation period when the duration is
just a few days (Murray, 2002). Latent period is the time from infection to onset of the ability to

infect. Some of the diseases such as HIV and tuberculosis have a very long latent period.

A combination of models can be derived from the classes based on the characteristics of
the disease. Model such as SI, SLS_", SIR, SEIR, ctc can be used to model a disease. ST model
only involve susceptible group and infected group whereas SIS model involves the infected
going back to being susceptible after leaving the infected class. As for SIR, the infected will
recover and be removed. For SEIR, it is used to model the diseases that have a latent period.

The structure of the difterent types of deterministic models can be seen in Figure 2.
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o1 Susceptible Infectious
SIS Susceptible Infectious

Susceptible Infectious Recoversd Immune
SIR - —*
QRS Busceptible | 4 | Infectious Recovered Immune

Susceptible Exposed Infectious Recovered MTmmune
SEIR ’ ' ’

Susceptible Exposed Infectious Recovered Tmmune
SEIRS - — —

Figure 2: Some of the common models used in infectious disease modelling

(Trottier & Philippe, 2001)

2.5 SIR Model
SIR (Susceptible-Infected-Recovered) model is considered a classical model. The SIR
model is a good starting model that can be refined as needed for particular diseases (Allman &

Rhodes, 2004). The classical SIR model is a close model where the total population is kept
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constant. There is no birth or death in the population. It is also known as compartmental as it
divides the population into groups based on their current status with relative to the disease. The
population is divided into three groups known as the susceptible (S), the infected () and the

recovered (R) as shown in figure 3.

S I R
Susceptible »  Infected

\ 4

Recovered

Figure 3: SIR model

A lot of literatures were written to explain the SIR model including Allman & Rhodes
(2004), Bailey (1975) and Murray (2002) among others. They all give a very detailed definitions
on terms used in the model. The susceptible (S) represents the population that can catch the
disecase. The infected (f) are those who currently have the disease and are contagious. The
recovered (R) are those who have recovered from the disease and have immunity against the

disease.

Looking at figure 3, the susceptible will move to the infected group when they contract
the disease. The possibility of contracting the disease is represented by the parameter /8 (the
parameter f will be discussed further in the section 2.6) which is known as the transmission
coefficient or transmission rate. After a period of time of being infected, the person will move to
the recovered group. This is known as the rate of recovery and is represented by y (the parameter
y will be discussed further in the section 2.6). The original mode] was used to model contagious

illness in a closed population over time.
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The SIR model makes the following assumptions (Weisstein, 2004):

e the population size is fixed;

e there is no births and no deaths due to disease, or death by natural causes;
¢ there is no incubation period;

¢ the duration of infectivity is the same as length of the disease; and

¢ the population is completely homogeneous with no age difference, spatial, or social

structure.

Clearly from Figure 3 and using the mass action principle, when the susceptible meets the

infected, a certain number of susceptible will contract the disease after a certain time. As a result
the number of susceptible will be reduced. Thus, the rate for the number of susceptible; % is
represented by - 51 where the negative signify the movement away from the group, thus
reducing the total number of susceptible. This is based on the mass action principle where the
number of infected is proportional to the product of the densities of susceptible and infectious
persons. The group of infected will then moved to the infective groups. So, the infective group
will increase and the rate is represented by 57 at time 7. Similarly, some of the infected will

recover and move to the recovered group with the rate of recovery, y. The rate for the number of
infected who will recover is represented by - ¥/ in which the negative sign means a reduction

from the group. Thus, the rate for the number of infective; % at time ¢ is fS1-yl. Whereas, the

dR . .
rate for the number of recovered; vt represented by y/ at time 1.
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Based on the brief descriptions above, the governing equations for each compartment can

be established. A system of three coupled nonlinear ordinary differential equations is thus

obtained:

.‘;_f = —BS(OI(t) Equation (1)
-j-: = BS(OI(L) — yI(t) Equation (2)
.“% = yI(t) , Equation (3)

Where ¢ is time, S(®) is the number of susceptible people, I(#) is the number of people infected,

R(1) is the number of people who have recovered and developed immunity to the infection, /5 is

.. . .. . s di dR
the transmission coefficient or transmission rate, and y is the recovery rate. i and o are

the rate of change for the number of each of the respective groups. In this model, the susceptible

will become infected. From being infected, the infected will go to the recovered class.

SIR models have been used to model foot and mouth disease in the UK to determine the

suitable measures to control the disease (Britton, 2005).

2.6 Critical Parameters and Threshold Values of SIR Model

In the SIR model, two parameters were introduced. The first is the f which is known as
the transmission coefficient or the transmission rate. Callahan (1996) explains the meaning of
transmission coefficient as the effective contact of the susceptible with the infective. Effective
contact refers to the contact that resulted in contracting the disease. The transmission coefficient
is determined by the product of the chances of the susceptible meeting the infective with the

probability of contacting the disease when the susceptible meets the infective.

If we assume & = chances of the susceptible meeting an infected per day; and
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p = the probability of the contacts leading to new infections
Then the transmission coefficient; f=a x p.

As such the transmission coefficient depends on the general health of the population and the

level of social interaction between its members.

Once infected, recovery is just a matter of time. If an infection has an infectiousness of
three days, it means that an infected person will recover after three days. Looking at the whole
infected population, there will be those who were just infected, some had been infected for two
days and some for three days. Those that were infected for three days will recover today. As

there is no definite information about all the groups, they are assumed to be of the same size.
Based on that, § of the infected population will recover everyday. So, for the parameter y. if an

infection has an infectiousness of & days, then every day there will always be some of the

infective who will recover from the illness and thus not able to infect any other susceptible.

Thus, the rate of recovery is represented by y = ;1(- persons per day.

In their model, Kermack and McKendrick introduced a so-called epidemiological
threshold. The threshold is known as reproductive ratio; Ry. Since then, Ry has become the~
single most important quantity in epide-miology (Bailey, 1975; Aliman & Rhodes. 2004; Barreto,
Teixeira, & Carmo, 2006). R, is defined as the expected number of secondary cases that would
arise from the introduction of a single primary case into a fully susceptible population. Allman

& Rhodes (2004) explains clearly how Ry is derived and its meaning.

Looking at equation (2) page 18, it can be seen that the rate of number of infected; % will

. . . } . . di
determine the size of the infected. The size of the infective increases when p > ( and an
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outbreak of the disease look evident. On the other hand, the infections is considered to be
> di e . . . .
subsiding when = < 0. Thus it is important to determine whether equation (2) is negative, zero

or positive.

Rewriting equation (2):

ar | .
o= BS@IO-yI(0)

da _ 1)(BS(H) - v) Equation (4)

dt
Clearly from equation (4), if I(t) = 0 then gé = 0. This is the natural course if the population is
discase free. Then there will be no infections. Since for an infection to happen If#) > 0, this

means that ‘—;—i— will be negative, zero or positive depending on what (8S(t) — y)is. Asf >0,

then it can be rephrased that

IfS(t >y th d1>0
f() ﬁ, endt "

y dl
IfS(t) = E—,then EE: 0.

14 dl .
IfS(t) <E,then E< 0

In order to establish the definition of the basic reproductive number; Ry, it is convenient to

rewrite equation (4) again:

dl

d=y (?5 S(8) - 1) 1(t) Equation (5)



to compare the quantity of —ﬁ-S (t) with 1. Mathematical epidemiologists have called this

quantity, gS (t) as the basic reproductive ratio.

R, determines the numbers of people infected by a single infected person before his

death or recovery. An infected person will infect less than one person before dying or
recovering, when Ry < 1. When this happens, the spread of the disease will phase out (% < 0).

The infection will not continue as each successive generation will be smaller than its previous

generation. When R, > 1, an infected person will infect more than one person, so the epidemic
will spread and eventually becomes an outbreak (g—i- > 0). The disease will spread initially as the

successive generation will be larger than the previous generation. Luckily, this increase does not
continue indefinitely. This is because the infection process reduces the number of susceptible,
and thus reduces the probability that an infectious individual contacts a susceptible within its
period of infectiousness. When Ry = 1, the epidemic will become an endemic in the population

as every infected person will infect one person before recovering.

So Ry is the key element in the infectious disease transmission dynamics. Some called it

the threshold value. Based on the definition of Ry = %S (t), it reveals that R, depends on the

rate of contact between individuals, the probability of transmission during the contact and the

time for which an infected person remains infective.

These are the components that can be used to control the disease from spreading. For
example; isolation and quarantine reduces the rate of contact; hygiene measures and drug

treatment reduce the probability of transmission. Drug treatment also reduces the length of
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infectious period. Vaccination can help by reducing the number of susceptible by directly

transferring the susceptible to the recovered class without going through the infected class.

2.7 Clinical Characteristics of HFMD
The following is a summary on the clinical characteristics of HFMD taken from multiple
studies done on HFMD. Only the essential features of HFMD that are taken into account for

modelling purpose are summarized here.

HFMD is caused by a group of viruses called enteroviruses or commonly known as gut-
viruses as they multiply in the gut (Lim, 2008). This group of enteroviruses include Coxsackie
virus (A16), human enterovirus (HEV71) (Hand, Foot and Mouth Disease, 2007) and Coxsackie
virus A (CAV) 4, 5, 9 and 10 and Coxsackie virus B (CBV) 2 and 5 (Ooi, et al., 2007) (Hand,
Foot and Mouth Disease, 2006). A person who 1s exposed to HFMD viruses will exhibit the

symptoms after three to seven days (Hand, Foot and Mouth Disease, 2007).

Fever is usually the first symptoms of HFMD followed by poor appetite, malaise and sore
throat. One or two days after the fever begins, small red spots develop in the mouth that blister
and often develop into ulcers. These are mostly found on the tongue, gums and inside of the
cheeks. The skin rash develops over one or two days with flat or raised red spots, some with
blisters on the palms of the hand and-the soles of the feet (Hand, Foot and Mouth Disease, 2007).
The name of the disease - hand, foot and mouth disease (HFMD) - is descriptive of the organs

that are commonly affected in the disease as described earlier (Lim, 2008).

HFMD is considered moderate to highly contagious with nearly 100% infection among
children (Soal Jawab Penyakit Tangan, Kaki dan Mulut (HFMD) Bersama Ketua Pengarah

Kesihatan, 2006). A person is most contagious during the first week of the illness. As the
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viruses are present in the throat and stools of an infected person, infection generally occurs via
the faecal-oral or via contact with skin lesions and oral secretions (Nerv, 2007). The virus may
continue to be excreted in the stools of infected persons up till one month. The spread of the

virus does not involve any vectors (Hand, Foot and Mouth Disease, 2007).

At the moment there is no specific antiviral drug to cure HFMD (Hand, Foot and Mouth
Disease, 2007). There is also no vaccine available for the treatment of HFMD. Infected person
is usually given medication to provide relieve from the pain caused by fever, aches or mouth
ulcers. Victims are asked to take plenty of liquid. An infected person will fully recover after 7
to 10 days (Hand, Foot and Mouth Disease, 2007; Soal Jawab Penyakit Tangan, Kaki dan Mulut

(HFMD) Bersama Ketua Pengarah Kesihatan, 2006).

There 1s no permanent immunity against HFMD as the disease is caused by a group of
viruses (Hand, Foot and Mouth Disease, 2007) much like the case of flu. A person who
recovered from the HFMD caused by Coxsackie A is susceptible to HFMD caused by
enteroviruses 71 or any other enteroviruses. For a summary on the information of HFMD issued

by the Health Ministry of Malaysia refer to Appendix F.

Based on the characteristics of HFMD we decided to use the SIR model. The reason for
this is because HFMD does not ex};ibit latency in their course of infection. Additional to this is
SIR model is a simple model but effective in modelling of infectious disease. However some
necessary modifications are made to the classical SIR model to incorporate the characteristics of

the disease better. The formulation of the HFMD model is further described in the next chapter.
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2.8 Related Works

Recent outbreak of HFMD in countries such as China, Taiwan, Western Australia and
Singapore had brought the world’s attention to HFMD due to complications of death related
cases. However, most of the researches done were specifically focused human enterovirus 71
(HEV71). Chang, et al., (2002) and Chen, (2007) researched on HEV71 in Taiwan while
McMinn, et al., (2001) did a phylogenetic analysis in Western Australia, Singapore and Malaysia
regarding HEV71. Chan, et al., (2003) studied HEV71 in Singapore while Chong, et al., (2003)
studied HFMD in general in Singapore. Studies done by Ooi, et al., (2007) and Podin, et al.,
(2006) on HFMD in Sarawak were also focused on HEV71 except for Chan, et al., (2000). It can
be said that most of the existing studies on HFMD were of clinical aspects based on HEV71 and
not on HFMD in general. These studies did not reveal anything regarding the transmission
coefficient and the immunity against HFMD which in our research revealed the importance of

these two variables in understanding the dynamics of HFMD.

The study done by Ooi, et al. (2007) revealed that the victims of HFMD were between
the ages of 0.5 to 5.9 years with the mean of 1.7 years while Podin, et al. (2006) revealed that the
victims were between the ages of 18 days to 155 months with the mean of 32.2 months. These
studies did not truly revealed the true age of the susceptible groups. Even though the results may
mean that the susceptible group might only be children below the age of four or younger, we still
maintain the susceptible group as children below the age of ten as all the studies are not
conclusive regarding the age of the susceptible. In addition, Sarawak Health Department issued

warning in which it is stated that the susceptible are those below the age of ten years old.

On the mathematical modelling side, Wang & Sung (2004) used the SIR model to

analyze the association between the weather and the occurrence of enterovirus complicated
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severe cases in Taiwan. The model was based on transformation function of seasonal factors in
order to determine the transmission coefficient. Urashima, Shindo, & Okabe (2003) attempted to
establish nonlinear mathematical models in order to simulate the incremental effects of global
warming on HFMD incidences in Tokyo. The two models tried to find the relationship between

the outbreaks of HFMD with the weather patterns in the respective countries.
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3 FORMULATION OF HFMD MODEL

3.1 Understanding and Identifying the Problem
In section 2.7 we have described and identified the essential features of the characteristics

of HFMD that we will use to model the disease. To summarize some of the essential features:-

» HFMD has an incubation period of three to six days;

¢ HFMD does not have a latent period;

* Recovered individuals are still susceptible to HFMD;

e At the moment there is no cure and an infected individual will fully recover in seven to

ten days time; and

No vector is involved in the spread of the disease.

Besides the essentials features listed above, there is still a lot of work that need to be done in
order to fully understand the dynamics of HFMD.  These can be achieved by building a
mathematical model for HFMD. As reviewed in Chapter 2, mathematical model can be used to
predict the spread of the disease and also to understand the dynamics of HFMD. It is crucial for
the authorities to be able to predict the number of infected and the duration of the outbreak when
it happens. By understanding the dynamics of the disease through mathematical model, we will
be able to determine the essential parameters that can help in curbing the spread of the disease.

These are problems that we hope to soive by building the HFMD model.

3.2 Characterization of the System
Based on the essential features of HFMD discussed in the previous section, the simplest
model to model the HFMD is the STR model with the possibility of the recovered going back 1o

become susceptible. The model takes into account the natural birth and death of the population
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as compared to the classical SIR in which the population is considered to be closed. Thus the
model that is employed is SIRS in which the recovered experience the loss of immunity and
return to the susceptible class. The model is modified from Hudson (2002) and Keeling &

Rohani (2007). The model is shown in Figure 4.
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Figure 4: The HFMD model

The number of the susceptible in the § class increases through natural birth and also
through recovered individuals who have lost their immunity against the disease. The rate of
natural birth is the product of the per capita natural birth rate (a) with the total number of
susceptible per unit time. In the model we assume that only the susceptible class experience
natural birth. The rate of recovered individuals who have lost their immunity is the product of
the rate for the lost of immunity (d) with the number of recovered in class R. At the same time,
individuals in § class also experiencéd natural death. The number of individual that die due to
natural death is the product of the natural death rate (y44) with the number of susceptible per unit

time.

A susceptible person will move to the infected class (I) when he or she is infected with
the disease even though the symptoms have not appeared. Using the “mass action™ principle

(Allman & Rhodes, 2004), a person will be infected through contact with an infective person.
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The number of infected is the product of transmission coefficient (/) with the number of
susceptible and the number of infected per unit of time. The infective class not only experienced
natural death but also death due to HFMD. The number of infected individuals that will die is
the product of the total of natural death rate with the rate of death due to HFMD (u, + py) with
the number of infected. As HFMD has an incubation period of three to six days which is
considered short, this duration is ignored (Murray, 2002). In the model, we assume that a person
infected with the virus will automatically become infective and capable of transmitting the

disease to a susceptible.

After a period of time, the infective will either be removed from the infective class due to
death caused by HFMD or recovered. The number of infected who will recover from the disease
is the product of the rate of recovery (y) with the number of infected. For HFMD, an infected

person will fully recover in seven to ten days.

An individual will have a short immunity or what is called as “waning immunity’ against
HFMD after recovery. Once the immunity is loss, the individual returns to the susceptible class
once more and 1s capable of being infected again. The rate is called the lost of immunity rate ().
Some of the individuals in the recovered class will also die because of natural death. The

number of death is the product of natural death rate (1) with the number of infected in class R.

To summarize for the HFMD model, the parameters involved in the model are:

o, the natural birth rate;

[ the transmisston coefficient;

*

y: the rate at which an infectious individual recovers per unit time;

¢ 0 the rate at which a recovered individual loses its immunity;
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s uy; the rate of natural death; and

e 4, the rate of death caused by the disease.

The following assumptions were made in order to model the HFMD disease.

That individuals are uninfected at birth (Hand, Foot and Mouth Disease, 2007);

e That newly infected hosts can transmit the disease immediately (Murray, 2002);

e There is no intervention to prevent the disease from spreading;

¢ The susceptible group is only made up of children below the age of ten years old (Hand,
Foot and Mouth Disease, 2007);

¢ Individuals mix at random within the population (homogeneous) (Allman & Rhodes,
2004);

e Age and sex of the individuals are not crucial variables (Allman & Rhodes, 2004);

¢ That infections occur randomly in proportion to the density of susceptible and infected

individuals and the transmission coefficient; §.

o The model is deterministic where all the parameters take on constant values (Trottier &

Philippe, 2001).

3.3 Formulation of the equations

From Figure 4, we can see that the number of susceptible in the § class increased per unit
of time through natural birth and also through the recovered individuals who have lost their
immunity. At the same unit of time, the number of susceptible in § class also decreased through
natural death and through being infected. So the rate of change for the number of susceptible in

S class per unit of time can be represented by
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as
— = aS(6) = BIOS() - woS() + 6R(E)

The number of infective in [ class per unit of time increased through the conversion of
the susceptible into the infective when they are infected. That number will decrease due to
recovery from the disease or through natural death and death due to HFMD. The equation that

relate all the parameters together for the rate of change for the number of infected in I class is

== BIOS(E) = yI(1) = (o + p)I(E)

When the infective recovered from the disease, they will move to the recovered class.
That is why the number of recovered in R class will increase per unit of time. However as there
is no lasting immunity for HFMD, the recovered will loss their immunity and move on to
become susceptible. This will decrease the number of recovered in R class. Not forgetting also
that the number of recovered will be decreased by natural death. The differential equation that
governs R class is

dR
¢ = YI(®) = SR — noR(®)

To summarize, the differential equations that model the HFMD are as follows:

-

ds

== aS(t) — BI(t)S(t) — peS(t) + SR(L) Equation (6)
2= BID)S() — ¥I(t) — (o + p)I(®) Equation (7)
8 = yI(t) - SR(t) - moR(t) Equation (8)

The system of equations (6) ~ (8) governs the dynamics of the spread of HFMD. As anticipated.

the system is coupled nonlinear ordinary differential equations.
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3.4 Parameters and Initial Values

The fastest way to study the behaviour of the model is through numerical solution. In
order to run such simulation, the parameters involve in the governing equations need to have
values. Due to the fact that the data that is available from the Sarawak Health Department
regarding the number of HFMD cases reported is collected on a weekly basis in the year 2006,
the unit time in our model will be weekly as well. This needs to be consistent for analyses

purposes.

As the data for the crude birth rate and crude death rate for the year 2006 is still not
available at the time of this project, we use the crude birth and crude death rate from the vear
2005 as estimates for the year 2006. According to Jabatan Perangkaan Malaysia (2006) the
crude birth rate for year 2005 = 15.2 per 1000 and the crude death rate = 5.6 per 1000. The

formula used to calculate the crude birth rate and crude death rate is as follow:

‘ No.of live birth in year — t
Crude birthrate = — — x 1000
Mid — year population in year — t

No.of death in year — t
Crude deathrate = —- e x 1000
Mid — year population in year — t

As we are interested in a week as per unit of time and percentage as the indicator. the natural

birth rate and death rate per week is obtained using the following steps.

Crude birth rate /

a= 0 1000 100% per week
15.2/

a = ———S%Q-@ X 100% per week
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a = 0.02923% per week

Crude death rate /

Up = ) 1000 X 100% per week
5.6/

Up = __1000 x 100% per week

52

to = 0.01077% per week

The fatality rate for HFMD = 0.9 per 1000 cases for the year 2006 (Hand Foot Mouth Disease
Outbreak in Sarawak, 2006, 2007). The formula used to calculate the fatality rate is given

below:

) No.of death recorded due to the disease in year — t
The fatality rate = - x 1000
Total population for the year —t

Thus to obtain the rate of death per week due to HFMD is

The fatality rate/
Uy = — 1000 % 100% per week

0.9
_ 1000 x 100%

Hy = 57 per week

-

Hy = 0.001731% per week

For the purpose of discussion, Sarawak Health Department did calculate the incidence rate for
HFMD for the year 2006. Yet it should be stressed here that the incidence rate given is
considered to be the probability of getting HFMD and not the transmission coefficient. This is

due to the formula that is being used to calculate the incidence rate.
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) The total number of cases reported for the year —t
Incidence rate = — x 100000
The total population in year — t

In this project we were not able to find any sources which have defined the value for the
parameter of transmission coefficient for HFMD. The transmission coefficient used by Wang &
Sung (2004) was estimated based on exponential transformation involving seasonal and ambient
temperature. As our mathematical model 1s deterministic based, this method for obtaining the
transmission coefficient is relevant. Therefore. we look for other diseases transmission
coefficient value and try to see the similarity so as to make a better assumption on the value.
Callahan (1996) wrote in his article that the transmission coefticient that he has provided for
measles; namely 0.00001 is within the range of used in epidemic studies. As for other diseases,
he equated the value with 0.00002. Allman & Rhodes (2004) provided some values ranging
from 0.001 to 0.000035 for transmission coefficient of diseases without specifically mentioning
the type of diseases. The range of values for the transmission coefficient existed as they
depended on the number of susceptible that was involved. As HFMD is considered moderate to
highly contagious with nearly 100% infection among children in Sarawak context (Soal Jawab
Penyakit Tangan, Kaki dan Mulut (HFMD) Bersama Ketua Pengarah Kesihatan, 2006), and
taking into account the perspective of the reproductive ratio, Ry for HFMD (Refer to section
5.2), we decided to estimate the transmission coefficient as 0.00015. We reached this estimated
value after we had run a few scenarios for transmission coefficient with value less than 0.00015

and more than 0.00015. Thus;

g = 0.00015
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As mentioned earlier, a victim of HFMD usually recovers in seven to ten days. Thus the
average number of days required for a person to recover is 8.5 days. Taking the average of the
duration of recovery period (Trottier & Philippe, 2002) and referring to the explanation in

section 2.6, then

1

Y= the period of infectiousness per day
! x 7 k
= er wee
Y the period of infectiousness P
’ k
= — per wee
Y=3gs?

y = 0.8235 per week

As HFMD is caused by a group of enteroviruses, a person who recovers from HFMD
does not incur permanent immunity. The infection will result in immunity to the specific virus,
but a second e¢pisode may occur following infection with a different virus belonging to the
enterovirus group (Nerv, 2007). In the research done by Ooi, et al., (2007), they did
acknowledge that there were cases where the victims had been hospitalized before due to

HFMD.

-

Due to the fact that the rate for the loss of immunity, § against HFMD is not known it is
thus appropriate to vary the value §. Using the same procedure for obtaining the rate of recovery

to get the rate of loss of immunity against HFMD, then

1
" the period of immunity

X 7 per week

Thus;
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8 = 0 per week; (Permanent immunity against HFMD)

6 = 7 per week; (Acquired immunity is 1 day (Wang & Sung, 2004).)

§d = 1 per week; (Acquired immunity is 7 days.)

§ = 0.07 per week; (Acquired immunity is 100 days.)

It will become apparent in the next chapter that, in order to model the spread of HFMD
using the model, the classes §, 7 and R must have initial values. As children below the age of ten
are more prone to be infected by the disease we assume the § class is made up of these children.
However the data collected regarding the total population of Sarawak only have the total
population for children below the age of nine years old. The next total population is for children
below the age of 12 years old (Jabatan Perangkaan Malaysia, 2006). So, we decide to use the
total number of population below the age of nine as the initial value for §. Therefore, the initial

value of § is taken to be S(@) = 550,700.

As for the class I, we used the data taken from the Sarawak Health Department. At the

beginning of 2006 outbreak, there were four cases reported initially. Thus, 1(0) = 4.

Since at the beginning of an outbreak, it is assumed that nobody has recovered from the disease,

thus, R(0) = 0.

Using all these parameters and initial values and substituting them into the system of equation
(6) - (8). we run simulation test to obtain results on the HFMD model. The results and

discussions are presented in Chapter 4.
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4 NUMERICAL RESULTS AND SIMULATIONS

4.1 Numerical Method

As stated in section 1.2, the objective of the research is to construct a simple
mathematical model which would be able to predict the number of infected persons during an
outbreak of HFMD and to determine the duration of the outbreak. The mathematical model for
HFMD that we had constructed in the previous chapter consisted of system of coupled nonlinear
differential equations. In order to achieve the objectives of the research we need to solve the
equations. We had also identified all the parameters that were required in order to solve the
equations. As the equations consist of nonlinear differential equations, we use numerical method

to solve the equations for the HFMD model.

The 4™ order Runge-Kutta method is chosen for the task. The main advantages of
Runge-Kutta methods are that they are easy to implement, they are very stable, and they are
“self-starting” (i.e., unlike multi-step methods, we do not have to treat the first few steps taken
by a single-step integration method as special cases) (Fitzpatrick, 2006). 4™ order Runge-Kutta

method is a numerical technique to solve ordinary differential equation (ODE) of the form
y = f(t,x), y(a) =7y, (Otto & Denier, 2005)

by using weighted averages of slopes near a point instead of the single slope involved by
following the tangent line at a point.
Let [a: b] be the interval over which an approximation to the solution is desired. (Thus 1

= g and ¢ = b are the initial and final values of the independent variable, respectively.) Partition
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(b;a), called the step size. Lett, = a and

this interval into N subintervals each of length h =

define
tk+1 - t;{ ‘+h, fOT k= 0,1,... ,N -1,

Notice that ty = b and the other t;, so-defined are the interior endpoints of the subintervals.

These collectively are the discrete values of the independent variable.

The initial value of the dependent variable is given by the initial condition, y(a) =

y(ty) = yo . The others discrete dependent variable values are computed iteratively as follows.
fork=0toN—1

51 = [t Vi)

h h
S3 =f(tk +§;Y1c +‘2‘52)
Sy = f{ty + h,yx + hs3)

teyr =t +h :

Sy + 28y, + 253+ 5,
6

Yes1 = Y+

This method is also a single-step numerical solver since it depends only on data obtained from
the preceding step. It is a fixed-step solver since the lengths of the subintervals of fa; b/ are all

equal.



The model consisted of systems of coupled nonlinear differential equations as described

in section 3.3. The parameters values are constant value and the functions on the right

ds dI

(Gt and %’-:-) are determined by the variables ¢ and (§(t), I(t), R(t)). To use the Runge-Kutta

ds diI dRr
— and ——t)are put

method to solve the systems of coupled nonlinear differential equations, e p y

in a vector function. The function must return a column vector with three components as the

right hand side has three parts. The transformation is shown in Appendix G.

MATLAB has ordinary differential equations (ODE) solver called ode45 (fourth/fifth
order), which implement Runge-Kutta methods (Hahn & Valentine, 2007). The function is
chosen due to the fact that it is simple to use and the result are very accurate (Palm, 2005). The
following numerical results are obtained by using the MATLAB function built in ode45. The

~ examples of programming code used in ode45 are shown in Appendix G.

4.2 Numerical Results

The following are the parameters and initial values that were discussed in section 3.4.
a = 0.02923%
Ho = 0.01077%
py = 0.001731%
f = 0.00015

y = 0.8235



As discussed earlier the rate for the loss of immunity § is unknown so for this project we will

keep the other parameters at the values above and vary § with the following values:

6 = 0 per week (Permanent immunity)

6 = 7 per week (Acquired immunity of one day)

6 = 1 per week (Acquired immunity of seven days)

6 = 0.07 per week (Acquired immunity of 100 days)

The numerical results for each of the cases above will be discussed.

4.2.1 Permanent Immunity (6 = 0 per week)
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Figure 5: The result for HFMD model with § = 0 or permanent immunity
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The purpose of running the test with § = 0 is to show that recovered individuals do not
have permanent immunity against HFMD. The result shows that in the long run the number of

infected will decrease until 0.

This result is in accordance with the results for all the SIR models in which the models
do not take into account the status of immunity (assuming permanent immunity). All the
susceptible will be infected and moved to become recovered. However, this is not the case for
HFMD. In Sarawak context, HFMD is endemic, meaning there is always cases of HFMD
reported. The authorities and the public are occasionally reminded to take precaution against

HFMD as reported in the newspaper in Appendix H.

As this result contradicted the actual situation; we can conclude that HFMD has no
permanent immunity and that the case of HFMD with § = 0 (permanent immunity) is not
possible. This is also due to the fact that HFMD is caused by a group of enteroviruses at
mentioned in section 2.7. An individual who is infected and recovered from HFMD will acquire
immunity against the specific virus but not against all the entroviruses. The individual is still
susceptible to HFMD caused by other enteroviruses (Hand, Foot and Mouth Disease, 2006).
Thus, it can be said that a recovered individual only acquired immunity for a certain period of
time and is capable of being infected-by HFMD again. The duration of the immunity however is
not known and need further research. Following are the results for § = 7 per week. & =
1 per week and § = 0.07 per week. The reason for having § as a variable is to try to find the
most reasonable rate for the loss of immunity against HFMD from the mathematical modelling

perspective.
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4.2.2 Acquire Immunity for 1 day (6 = 7 per week)

From the previous simulation, the mathematical model shows that HFMD do not have
permanent immunity when comparing it to the real situation in Sarawak. As the exact value for
the loss of immunity is unknown, we need to estimate the value for the loss of immunity. First,
we will used the value proposed by Wang & Sung (2004), in which they estimated that the loss
of immunity against HFMD is | days. Therefore, we simulate the mathematical mode! with

6 = 7 per week and the following results are obtained.
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Figure 6: The results for HFMD model with J = 7 per week.
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Figure 6 shows that HFMD is very contagious. In a period of less than half a week, the
disease had infected almost everyone in the population. This is shown by the susceptible line
which had gone down from 550,700 to almost zero during the period. This may seem unrealistic
but the result is a mathematical projection where there are no preventive steps taken against the
spread of the disease. Moreover during this same period, the infected population has reached its
maximum as shown in the Figure 6 (Legend @). Based on the graph, the susceptible, infected
and recovered population will reach a steady state. By visual inspection, these states were
achieved at approximately in less that a week time. The value obtained by numerical analysis for
the infected population was at 487,500 after 3 weeks. In addition, there is no sign that the value
will go down soon. These signified that the disease is still at an outbreak as the initial population
taken into account is 550,700. Based on the simulation result, the disease is still in an outbreak
stage for number of weeks to come as the infected line is still at a very big number and seemed to

reach a steady state.

This may be due to the fact that every recovered person experienced lost of immunity in
just 1 day. A faster replenishment of the susceptible pool existed and this provided the resources
for the disease to spread. Therefore in this case, the outbreak of HFMD will not subside. We

suspect that there exists an endemic equilibrium solution at limiting time.

4.2.3 Acquire Immunity for 7 days (8 = 1 per week)

In the previous simulation, we estimated the loss of immunity is 1 day. The result that
was obtained did not portray the actual scenario as the disease continued to be on an outbreak
with the number of infected at 487,500 even after three weeks. Therefore, we suspected that the
period for the loss of immunity is more than 1 day. Next, we simulated the model with the loss

of immunity of seven days, namely & is one per week. The result is shown in figure 7.
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Figure 7: The result for HFMD model with § = 1 per week

Figure 7 also shows that HFMD is very contagious in Sarawak. According to the graph,
the disease will infect almost everyone in less than half a week time. However, figure 7 shows
that the outbreak lasted for about two weeks where the number of infected were reduced to about
300,000. However, the number of infected is still very high after three weeks in which the
infected line seemed to reach a steady state. This may be contributed by the reason that the
recovered returns to the susceptible class in seven days time which is still quite short. This again

replenished the susceptible pool for the disease to spread. The significant thing is that by visual
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inspection on the graphs, the steady state for the number of susceptible is the same for both

Figure 6 and 7.

4.2.4 Acquire Immunity for 100 days (6 = 0.07 per week)

From Figure 6 and 7, we learnt that as the period for loss of immunity increases, the
number of infected decreases at limiting time. Thus, we suspected that the period for the loss of
immunity might be longer and decided to simulate the result for the loss of immunity against
HFMD as 100 days. (The simulation result for acquired immunity of 50 days is shown in

Appendix I) So, with 6 = 0.07 per week, the following result was obtained and shown in figure 8.
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Figure 8: The result for HFMD model with & = 0.07 per week
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Figure 8 also shows that HFMD is contagious. The number of infected also reached its
maximum in less that a week time. Comparing figure 8 with figure 6 and 7, it can be seen that
by the end of three weeks, the number of infected is smaller for § = 0.07 (loss of immunity = 100
days). The outbreak of the disease seemed to subside as the number of weeks increased. In
figure 8, it shows that the disease has become endemic as compared to figure 6 and 7 in which
the disease is still at an outbreak stage even after 3 weeks. Thus, we felt that the simulation in
figure 8 is nearer to the dynamics of HFMD that is experienced in Sarawak in which there are
constantly cases of HFMD disease reported even when the outbreak is over (Refer Appendix H).
The spread of the disease is slowing down after about 7 weeks of outbreak. This can be seen in
the number of susceptible, the infected and the recovered. The slope for all the three classes

seems to be reaching 0.

The increase in duration for the lost of immunity to 100 days may have contributed to this
effect. Based on the simulations results and comparing it to the general results of epidemic
simulations (Allman & Rhodes, 2004) and the situation of HFMD in Sarawak, we believe that

the duration for the immunity against HFMD after recovery is 100 days.

From all these results, we are able to conclude that the model can determine the
number of infected at certain period of time. The duration of outbreak can also be determined
using the HFMD model. The model also supported the clinical view that there is no permanent
immunity against HFMD. The model provides a better understanding of HFMD in which the
duration of the immunity affects the dynamics of the disease. It shows that HFMD is contagious

if there is no step taken to curb the spread of the disease.
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4.3 Critical Values

In order to determine the factors that can be used to curb the spread of the HFMD disease
we need to recall back the concept of reproductive ratio, R,. R, is defined as the number of
secondary cases which will arise with the introduction of an infective individual into the
population. We have look at how the concept is being used in section 2.6. Thus looking at
equation (7) from section 3.3 and using the same idea in obtaining the basic reproductive ratio

for the classical SIR model we obtain the following:-

dif

70 = BIOSE = 1) = (ko + 1)1 (®)

dl
2= 1OBS® =y = (ko + p)]

di
= I(t)[BS(t) — (¥ + po + 11)]

dt

a Bst) .

= = 1O +uo + 1) [{rﬂtomﬂ 1] Equation (9)

Since /() > 0 and (y + py + i1) > 0 then the behavior of ¥ s determined by how __Ps
dt : (y+uo+ps)

behaves with respect to the value 1. Therefore, the mathematical model for HFMD in which

natural birth, death and death caused by HFMD are taken into account, the reproductive ratio;

0= (Yfﬂs;,(?m) (Hudson. 2002) Equation (10)

. . . . . d
Analyzing R, we get three cases which will determine the direction of T
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NG di e . .
PS5O -1 thenZ < 0. As the rate for the number of infected is less that zero, this
(v +uo+u1) dt
means that the number of infected is decreasing and no new infections will occur. Thus

the disease will eventually subside.

o If _Bs® 1, then a._ 0. In this case, as the rate for the number of infected is zero, it
(y+ug+us) dt

means that the number of infected is at a constant value. Thus the disease will not spread

further as the number of infected will not increase.

o If 5O 1, then 2L50. Since the rate for the number of infected is greater that zero
{y+uo+i) dt

this means that the number of infected is increasing. Thus the disease will spread and

eventually become an outbreak.

Then by letting Ry = 1 and rearranging the expression for Equation (10) we obtain

S(8) = Y (Hudson, 2002) Equation (11)
Equation (11) is known as the threshold value for the model (Hudson, 2002), we can rewrite the

three cases above as:-

o S(t) = Yetin) thengit = ()

B
(Y+po+iy) dai -
e S(t)< — thendg<0,

(rpo+py) , di
e S(t)> — then =0

From the three cases above it can be said that the spread of HFMD is governed by S¢) in
Equation (11) which specifies the susceptible host density necessary to sustain the spread of
HFMD disease. The implication is that HFMD will not spread successfully if the number of
susceptible is less than this threshold value.
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By analyzing equation (11), it can be seen that the threshold is independent of the
parameter &, which is the rate for the loss of immunity and a, which is the natural birth rate.
Somehow the threshold value is only governed by the rate of recovery; vy, natural death rate; u,,
death due to HFMD; y, and also the transmission coefficient; f. The value for the parameter of
vy and u, were based on the information obtained from the Health Ministry Department of
Sarawak (Hand Foot Mouth Disease Outbreak in Sarawak, 2006, 2007) regarding HFMD while

o was obtained from Jabatan Perangkaan Malaysia (2006).

Solving equation (11), for all the simulations that we tested. the susceptible host density
value is 5,490. The meaning of this value is that if the number of susceptible is greater than
5,490 then the disease will spread and eventually become an outbreak. If the number of
susceptible is less than 5,490 then the disease will not spread. Therefore, if the number of
susceptible, namely those that are prone to be in contact with infective persons can be brought to
down to this value, we will be able to control the outbreak for the year 2006. This can be done
through quarantine of susceptible in order to minimize the chances of the susceptible coming into
contact with infective persons. This is a challenging task as the initial number of susceptible is
550,700 (Jabatan Perangkaan Malaysia, 2006). This might be the reason why the outbreak in

year 2006 was more severe as compared to other HFMD outbreaks in this country.

Analyzing equation (11) shows that the threshold value will increase when the value of
the transmission coefficient decrease. As the transmission coefficient decrease, this would mean
that the disease will be more difficult to spread. In order for the outbreak to happen the number
of susceptible need to be very big. If the value of the transmission coefficient is big, which

means that it is easier for an individual to contract the disease, then the number of susceptible
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required for the outbreak to happen will decrease. From this threshold value we can see that

there are two ways to reduce the outbreak of HFMD.

First is to reduce the transmission coefficient. In section 2.6 we mentioned that the

transmission coefficient; f = a x p, where

a = chances of the susceptible meeting an infected per day; and

p = the probability of the contacts leading to new infections

Thus in order to reduce the value of 5, we should reduce the value of @ and p. To reduce a, we
can use quarantine or isolation so that the chances of meeting per day can be reduced. The steps
taken by the authorities in announcing the closure of nurseries, kindergarten and primary classes
in year 2006 outbreak helped bring the value of @ down. To reduce the value of p, individuals
have to be taught about personal hygiene regarding the disease. Many flyers regarding HFMD

were distributed to schools and public in order to create awareness on HFMD.

Secondly is to control the threshold value of the susceptible host density. By estimating
the transmission coefficient during an outbreak, the threshold value can be calculated. Using this
value, authorities can plan effective measures to reduce the population to below the value. When

this is achieved the outbreak of the disease can be controlled.
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S MODEL ANALYSIS

The test results obtained in Chapter 4 shows that the model is able to achieve the

objectives of the research outlined in section 1.2, namely, to:-

o predict the spread of HFMD in Sarawak in terms of number of infected persons;
o determine the duration of an outbreak when it happens; and

e determine factors that can help in preventing the outbreak.

We analyse the mathematical model from two perspectives. The first one is to find the
steady state and the second approach is to compare the output of the HFMD model with the

actual data obtained from the Sarawak Health Department for the year 2006.

5.1 Steady State

The differential equations that model the HFMD as formulated in section 3.3 are: -

= = aS(t) - BIO)S(E) — peS(t) + SR(D) Equation (6)
== BIOS(E) = yI(O) — (o + p)I (1) Equation (7)
== yI(t) — 6R(t) — uoR(t) Equation (8)

-

as dl dR . .
At steady state we must have == 0, i 0 and e 0. Letting the steady state solutions be

(S, I(t), R()) = (S, I, R) and with %i— = (; equation (6) becomes

aS — BIS — upS + SR =0

Sla— BI—uy)+6R=0 Equation (12)
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When -‘Sg = 0; equation (8) becomes

yI—86R— usR=20

vI=R (S + o)
I= ﬁ:—#ﬂ—) Equation (13)
or R= (61}”0) Equation (14)

From equation (13), it is clearly seen that I is proportional to R and § while in equation (14) R is
proportional to I but at the same time has an inverse effect with §. As, the value for the
parameter gy and y are constant and only § is not known, this means that § plays an important

role in the dynamics of HFMD.
When g—i = 0; equation (7) becomes

BIS —yI = (po +p)I =0
I(BS — v — (o + 1)) =0

IBS—v—pmo—p) =0 Equation (15)

From the factorization in equation (15), there exist two cases:-
Case 1

If I # 0 (which means there exist infected individuals) then definitely (8S — y — pg — i4) = 0.

Thus,

BS = (v + po + 1y)
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S = Y+Hotpy

5 Equation (16)

Equation (16) that is obtained using the steady state process is the same as the threshold value of

the susceptible host density discussed in section 4.3 (Equation (11)) .

Substituting equation (14) and (16) into equation (12) to obtain the value for I at steady state.

Y+ Ho + 1y vl
————ﬂ————(a"'ﬁl—#o)-Fé‘m-O
Wrwotu)la—p) PFllytm+m) o v _
B B (6 + wo)
Bly+uo+p) o vl (rHuot+p)a—p)
B (6 + o) B

BIGy +#o + )8 + o) — BEYL _ (¥ + o + 11)(a =~ o)
B + o) B

(y + wo + 1)@ — uo )6 + o)
B

Iy + po + p) (8 + po) — 6yl =

(v + uo +p)(@ — po )+ 1)
B

I+ po +u)(@S + po) — 0yl =

_ (r+po+uy)a—pe )8+ py) . .
T Bl(y+po+u)(6+ po)-6v] Equation (17)

Substitute equation (17) into equation (14) in order to get the value for R at steady state.

yi
R= —m—
(6 + o)

Y+ to + ) (@ ~ po )6 + o)

R= (6 + wo)BL(y + po + 11)(8 + po) — Sy}
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y(r+uo+tu1)(a~po) )
T Bl(y+po+p1)(8+ po)-8y] Equation (18)

Substituting the parameter values discussed in section 4.2 with the various values of § (i.e.,
d=7,6 =1and 6 = 0.07) into equation (16), (17) and (18) the following results shown in

table 6 was obtained.

The S 5,490 5,490 5,490
Steady

= 1 7,362 4,743 729
Value R 866 3,905 8,565

Table 2: The steady state for .S, I and R with respect to o

The value for the steady state of S(#) is consistent with the results obtained from the
numerical analyses. The sfeady state for S(¢) can be seen clearly in Figure 6, 7 and 8 for all the
cases above. However the value for the steady state of I(#) and R(#) arc not visible from these
figures. We believe that it will take a longer duration (more than 52 weeks) for the disease to
reach the steady state. In order to validate the model, we run the test again for a longer period of

time of 100,000 weeks and the following results were obtained.
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Figure 10: Result for HFMD model at limiting time for & = | per week
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Figure 11: Result for HFMD model at limiting time for 6 = 0.07 per week

Table 3: The value obtained through the numerical analyses based on figure 9, 10 and 11 and the

CPU time taken to obtain the results
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The results in figure 9, 10 and 11 supported by table 3 also show that the steady state for

I(t) and R(¥) were as calculated above. In table 3 is also shown the processing time taken for the

simulations to achieve the steady state for each of values for § at 100,000 weeks. The processing

time is the longest for § = 7 as compare to § = 1 and § = 0.07. This maybe because § = 7

involve processing of larger number as compared to the other twos. The comparison on the

values obtained through steady state calculation and numerical analyses are shown in the table 4.

Values obtained through : :
o (per week) Classes Difference in
Numerical Steady State percentage (%)
Analyses Calculations

s 5490 5490 0
7 1 7369 7362 0.095
R 867 866 0.115

) 5490 5490 0
' 1 4752 4743 0.190
R 730 729 0.137
) 5493 5490 0.055
0.07 1 730 729 0.137
R 8590 8565 0.292

Table 4. The analyses on the difference of the values obtained through numerical analyses and

steady state calculation.

From table 4, it can be seen that the difference in the value obtained through numerical

analyses and steady state calculations do not differ very much.

percentage is only 0.3%.
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Case 2

If I{t) = 0 it would mean that a disease free equilibrium is achieved. This indirectly means that
there are no infective. Then, in equation (13); if Ift) = 0 then R(®) = 0. This will fit the disease
free equilibrium state where if there are no infective or infected individuals then there will be no

individual who needs to recover from the discase.

For equation (11), if I(t) = 0 and R(1) = 0, then

Sl@—u)=0

So either S@@) =0 or a = u,.

In order to achieve disease free equilibrium for HFMD where I(#) = 0, then there should
not be any susceptible or the rate for natural birth must equal to the rate for natural death from
the perspective of mathematical modelling. As there must be some infected or infective

individuals, thus I # 0.

The two cases of disease free equilibrium existed due to the nature of the model which
takes into account the natural birth rate for the increase in the susceptible class; namely SS(¢).
Thus to make the analysis more tractable we propose that for future work the recruitment rate

into the susceptible class should better be approximated with a constant rate.

5.2 Actual Data Validation

With the courtesy of Pengarah Kesihatan Negeri, Jabatan Kesihatan Negeri Sarawak, the
data for the HFMD outbreak of year 2006 were obtained. The data were in weekly format as

shown Figure 12.
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Figure 12: The number of infected during the outbreak of HFMD for year 2006

We used the data to validate the HFMD model. However, we have to change the initial
value of §; the total number of susceptible. Even though the total population of age nine and
below is 550700, this figure is not suitable to verify the model in the case of modelling the
spread of HFMD in Sarawak. The exact initial figure for the susceptible could be lower than this
because of several reasons. First, the age of the susceptible group could be lower than nine years
of age with some studies revealing that most of the infected are below six years of age with the
mean and median between 27 to 36 months of age (Podin, et al., 2006). Second, Sarawak is a

big state with an area of 124,449 square kilometres (Jabatan Perangkaan Malaysia, 2006). The
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population is dispersed throughout the country. Quite a majority of the population are still
staying in the rural areas such as interior of Kapit District and Baram District just to name a few.
Moreover the model made the assumption of using the mass action principle to determine the
transmission coefficient. The mass action principle takes into account the chances of the
susceptible meeting the infected. In interior area, the chances are lower as compared to town or
cities area. Therefore, the susceptible would refer to the population who are prone to be in
constant contact with infective. The disease seemed to spread among school going children
either in nurseries, kindergartens and primary schools. Furthermore, the reported cases of
HEMD are mainly from urban area such as Kuching, Sibu, Bintulu and Miri. Taking into

account all these factors, we decide to lower down the number of susceptible to 10,000.

Thus, the new initial values are $70) = 10,000, I{0) = 4 and R()) = 0. The other
parameters values are kept the same as listed in section 4.2 except for §. Based on the test
results in section 4.2.3, we decided to use the parameter value for the loss of immunity; 6 =
0.07 per week where the loss of immunity is 100 days since it gave the best simulated results
for the case of HFMD. We run the simulation with the new initial value for the susceptible and

the following result is shown in figure 13.
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Figure 13: The numerical result for $(0) = 10,000

Isolating the result for the number of infected from the number of susceptible and the recovered,

figure 14 is obtained.
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Figure 14: The number of infected with §(0) = 10,000
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For comparison purposes we superimpose Figure 12 and Figure 14 to get Figure 15.
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Figure 15: Results for the number infected based on actual data and the data simulated from the

model

The results from the mathematical model seem to overlap the graph for the actual data

around week 5 to week 8. This shows that the model is able to predict how the disease will
spread in terms of number of infected given the relevant parameters and initial values.

There is a drastic drop in the number of cases after week 12 for the actual data and this is

because steps were taken to curb the outbreak of the disease. According to the mathematical

model if the disease takes it own courses it will take a bit longer before the outbreak ease. The

model did predict that there will be a second wave at about 40 weeks but it will be milder. The
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actual data did record the second wave of the outbreak but at a shorter period of time which is 10
weeks ahead. Both the actual and the predicted data show that the disease is endemic even after
the outbreak is over. The value for the one predicted by the model is higher as the disease is
taking its own course while for the actual one, measures and action are taken to reduce the spread
of the disecase. Moreover, the actual data used were only for those cases that are reported to the
health authority. We believe there were cases that were not reported due to distant such as
interior area and also that were not referred to any clinic or hospital. These may contributed to
the reason that the number of infected predicted by the model is higher as compared to the actual

data.

5.3 Basic Reproductive Ratio
Using the initial value for the susceptible and the parameters values mentioned in section

5.2, we calculate the value for HFMD reproductive ratio; R, based on Equation (10).

BS(t)

0 = e Equation (10)
. 0.00015(10,000)

® ™ (0.8235 + 0.0001077 + 0.00001731)
R, =18

The reproductive ratio; Ry = 1.8 obtained, is indeed very high and signify that HFMD is very
contagious especially among children below the age of ten. Furthermore, the size of classes for
nurseries and kindergartens level are very small; mostly below 20 in Sarawak. A Ry, = 1.8
would mean every new infected children would infected almost 2 other children during the

outhreak.
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Through the model analyses, we were able to show that the mathematical model built for
the spread of HFMD in Sarawak is valid and stable. However we do admit that there are still

rooms for improvement.

o
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6 DISCUSSIONS

6.1 Conclusion

We have successfully developed an initial mathematical model for the spread of HFMD
in Sarawak. The model is a preliminary model which we hope will be developed further into a
better and precise model to predict the spread of HFMD. Despite its simplicity, the model was
able to achieve the three objectives listed in section 1.2, The model was able to predict the
number of persons infected during an outbreak. It was able to predict the duration of the
outbreak. Finally, the model was able to determine that the critical parameters that can be used
to help in the prevention of the outbreak are the number of susceptible and the transmission
coefficient. These were shown and discussed in Chapter 4. We have successfully analyzed the

mathematical model using the steady state and comparing the results with the actual data.
To conclude, the research is able to contribute to the following areas:

(i) The mathematical model is able to help the authorities concerned such as the Sarawak
Health Department in predicting the number of infected during an outbreak of HFMD
and thus enable them to plan appropriate actions for future outbreak.

(i1) Through the mathematical model, the dynamics of HFMD can be seen more clearly. We
are able to determine that the transmission coefficient, § and the loss of immunity, &
played important parts in the dynamics of HFMD.

(iii)The model has shown that one of the factors that can help in reducing the outbreak of
HFMD is to control the number of susceptible that will come into contact with the

infective. This proved that the action taken by the authorities in year 2006; namely the
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closure of nurseries, kindergartens and primary One to Three. was indeed the correct
procedure to reduce the outbreak.

(iv)This research had opened a new area in the study of HFMD in Sarawak from
mathematical modelling perspectives. We started off the research with a simple model

and hope that more will follow to improve the model.

It should be stressed here that the mathematical model for HFMD is only as accurate as
the data that we had used to build the model. Due to lacks of data regarding the transmission
coefficient value and the rate for the loss of immunity, we can only use estimated values.
Because of that, the results obtained from the model may not be that accurate. This is supported
by Keeling M. I. (2005) which stated that “FEven if all the mechanism were understood and
encoded, models would still be limited by the available data” and “It may be impossible to
produce a good predictive model simply due to the lack of sufficiently detailed data” (Keeling M.

, 2000).

To conclude we quote Callahan (1996) “Our goal is to gain insight into the workings of
an epidemic and to suggest how we might intervene to reduce its effects. So we start off with a
model while imperfect still captures some of the workings. The simplifications in the model will
be justified if we are led to inferences which help us understand how an epidemic works and how
we can deal with it if we wish, we can then refine the model, replacing the simple expressions

with others that mirror the reality more fully.”

We do hope that the authorities concerned can look into the use of this model in the next

outbreak when it happens. From the usage, further improvements can be made so that a better

65



and more accurate mathematical model can be derived to model the spread of HFMD in Sarawak

in years to come.

6.2 Future Work

As we progress through this project, we realized that there are still a lot of improvements
that can be made to the modelling of HFMD. The model that we used in this research is an open
model in which the demographic terms (birth and death rates) are taken into account. It is also
known as endemic model (Hethcote, 2000). For comparison study, a closed model or an

epidemic model can also be used to model the spread of HFMD as shown in figure 17.

A4
A 4

S d I r R

Figure 16: SIRS model without birth and death rate

These would simplify the mathematical equations to:

= = —BS(OI() + 8R(t) Equation (19)
g-'t. = BS(OI(t) — yI(t) Equation (20)
dR L

—= yI(t) — 8R(1) Equation (21)

Besides that our mathematical model used the concept of mass action to model the

dynamic of the disease. Another approach is to use the standard incidence formulation

(Hethcote, 2000). Based on standard incidence formulation, s(t) = S—fvtz i) = iz—) and

r(t) = %Q are the susceptible, infectious and recovered fractions respectively with the total
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population size; N = S(t) + I(t) + R(t). BI—E\?— = fiis the average number of contacts with

. . . . . It .
the infective per unit of time of one susceptible, and —fvlS = [Nis isthe number of new cases

per unit time due to S(t) = Ns susceptible. With these, the equations that are used in the model

will need to be changed respectively.

Runge-Kutta method was used to solve the coupled nonlinear differential equations for
the model because of its simplicity. However, Runge-Kutta method does not preserve the
essential properties of the model namely positivity in which case S¢), I(t) and R(t) must be of
positive values. Thus, it is better to solve the equations of the model using non-standard
positivity-preserving-finite-difference-discretization method as proposed by Gumel, Mickens. &

Corbett (2003) and Gumel, Patidar, & Spiteri (2005).

As mentioned in Chapter 3, the value for the transmission coefficient (f = 0.00015) that
was used in this model was just an estimate. The estimation is made based on Callahan (1996)
and Allman & Rhodes (2004) view on the general values for transmission coefficient for disease
spread. So far the only literature that offers an insight into the transmission coefficient value is
Wang & Sung (2004). However they determine the value using transformation function of
seasonal factors in which case is not relevant to our model which is deterministic in nature.
From the modelling view, we realized that by controlling or understanding the value of ., we
might be able to curb the spread of HFMD. So we hope there will be some researches to look
into the transmission coefficient of HFMD in Sarawak. Recalling that the transmission
coefficient is the product of the contact rate and the probability of transmitting the virus during

those contacts so further works can be focus on the contact rate. Chang, et al. (2004) did a study

on the transmission rate for HEV71 in Taiwan which is limited to houshold contact. They
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investigated patients at a children’s hospital in Taiwan and family members of these patients who
had signs and symptoms suggestive of HEV71. Patients and household members underwent
clinical evaluations, virological studies, questionaire-based interview, and were followed up for 6
months. Their ideas could be used to determine the contact rate for HFMD in Sarawak. As for
the probability of transmitting the virus during the contact, we might be able to made use of the
incidence rate formula published by the Sarawak Health Department on HFMD as discussed in

section 3.4,

Most literatures admitted that HFMD has no permanent immunity but no literatures hold
any insight to the value for the loss of immunity at the moment. Thus, the precise value of 6 is
unknown. Using the mathematical model, we were able to prove that there is no permanent
immunity against HFMD and also that the loss of immunity is not one day as proposed in Wang
& Sung (2004). Based on the model, we concluded that the immunity against HFMD is roughly
around 100 days after recovery. We hope there will be some researches either clinically or
mathematically to determine the exact value for the loss of immunity. With further works on

these two parameters a more precise model for the spread of HFMD in Sarawak can be obtained.

Finally, some focus should also be given to analyse the phase plane. The use of next
generation method or standard linearization to establish the local asymptotic stability of the

disease-free equilibrium, by way of finding the reproduction number is recommended.

Besides that, we hope this project has paved a new road for more researches to come.
We believe that the HFMD model can be modified to look into the effect of weather in the
outbreak of HFMD in Sarawak as was done in Taiwan by Wang & Sung (2004) and also to

support claim that outbreak of HFMD in Sarawak will happen every three years (Podin, et al..
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2006). A more precise model of HFMD would surely be able to help authorities concerned in

predicting the outbreak of HFMD and indirectly helping in curbing the spread of HFMD.
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7 APPENDIX

APPENDIX A.

CLOSIURE DIRECTIVE - DIRECTOR OF SARAWAK HEALTH DEPARTMENT

JABATAN KESIHATAN NEGER| SARAWAK
JALAN TUN ABANG HAJI OPENG

93590 KUCHING, SARAWAK, MALAYSIA

Tel: 082-246350 Fax: 032-247234
e ettt

Ruj. Kami: JKNSWHK/Ops/HFMD 2006/1/20
Tarikh: 3 Mac 2006

SEGERA

Pengarah

Jabatan Pelajaran Nederi Sarawak

Tingkat 10, Bangunan Tun Datuk Patinggi Tuanku Haji Bujang
Jalan Simpang Tiga

93604 Kuching.

Pengarah

Jabatan Kebajikan Masyarakat Negeri
Tingkat 11, Wisma Saberkas

Jalan Green

23564 Kuching.

Pengarah Perpaduan

Jabatan Perpaduan Negara dan Integrasi Nasional
Tingkat 9, Bangunan Sultan Iskandar

Jalan Simpang Tiga
§3350 Kuching.

Pengarah

Jabatan Kemajuan Masvarakat
Persekutuan Negeri Sarawak (KEMAS)
Tingkat 6, Bangunan Sultan Iskandar
Jalan Simpang Tiga

93350 Kuching.

Tuan/Puan,

ARAHAN PENUTUPAN SERTAMERTA KE ATAS SEMUA TADIKA, PRA-SEKOLAH,
TABIKA DAN TASKA SELURUH SARAWAK
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Saya dengan hormatnya merujuk kepada perkara di atas.

2. Sehubungan dengan pengumuman yang dibuat oleh YB Menteri Kesihatan Malaysia
hari ini, SEMUA TADIKA, pra-sekolah, TABIKA dan TASKA di seluruh negeri Sarawak
hendaklah ditutup sepenuhnya selama dua (2) minggu berkuatkuasa sertamerta
mutai hari int Jumaat 3 Mac 2006.

3. Tindakan ini diambil bagi memutuskan transmisi jangkitan ini tecara berkesan di
samping memudahkan kerja-kerja pembersihan dijalankan di premis-premis tersebut,

4. Oleh itu, tuan/puan adalah diminta untuk memaklumkan kepada premis-premis di
bawah jagaan masing-masing untuk berbuat demikian dan mematuhi arahan ini.
Sekian, terima kasih.

BERKHIDMAT UNTUK NEGARA

saya yang menjalankan tugas,

DR. YAO SIK KING
PENGARAH KESIHATAN NEGERI
SARAW AK,
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APPENDIX B.

TEXT ON THE PUBLIC ANNOUNCEMENT

BY
YB DATUK PATINGG! TAN SRI DR. GEORGE CHAN HONG NAM,
DEPUTY CHIEF MINISTER OF SARAWAK

ON

THE CLOSURE OF ALL PRIMARY ONE TO THREE CLASSES

IN ALL PRIMARY SCHOOLS AND PRE SCHOOLS
IN THE STATE OF SARAWAK

As the State Minister-In-charge of the State Disaster and Relief Committee. with the
consent of the Chief Minister of Sarawak and the Minister of Heaith Malaysla. | would
like to make the following orders:

1. I would like to announce that, after the current school holiday is over on 177
March 2008, | would like to order all primary one to three classes in ail the Primary
schools in the State of Sarawak to be closed from Monday 20" March 2006 to
Sunday 26" March 2006, We belleve this order of closure in the State of Sarawak
will further help break the transmission of Hand, Foot and Mouth Disease in the
State.

2. Simitarly, following the announcement by the Minister of Health on the 3"
March 2006, on the closure of all TASKA and similar premises | would iike this
closure to continue until 26™ March 2006 for the following:

) TASKA
i) TADIKA
iy TABIKA

Wy CHILD CARE CENTRES
vl NURSERIES
viy CHILD DAY CARE CENTRES
Vi)  PLAY SCHOOLS
vily  PRA SEKOLAH
x}  TUITION CENTRES CATERING TO STUDENTS BELOW 10 YEARS

i hope that all concerned will understand that this step is necessary In order o
controt the outhreak of Hand, Foot and Mouth Disease in the State of Sarawak.

I aiso hope that everybody will cooperate and abide by this order. so that we will not
need to extend the duration of this closure order in future.

THANK YOU.
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APPENDIXF.

Additional Information on HFMD

1. Agent of infection;

a It is a disease caused by viruses from enterovirus group apecificatly
Fram EV71 and Coxsackie group ALS,

2. clinical Signs and Symiptoms.
&  The signs and symptoms of the infection are 1::“?\:‘%31', sore throar, loss of
appelite, ulcer at the throat and mouth a5 well as blister rashes on the
]

hands, feet and diaper area {papulovesicuia Fes%u_ ns .

b. It affects mostly children below 10 vears of age. Duration of infection
normally {asts 7 to 10 days.

3. Mode of Spread.
HFHD is spread hy:
a. Direct contact with droplets from infected nerson through couahing and
sneezing, or oral secretion and nasal discharge, or through
contaminated hands to mouth.

D, Touching blister on the boady of an safected person.

4, Incubation period,

a. A person wili show signs and “ﬁ“i’ipm Ms 3o 7 days after exposurs to
the virus, Most patients will recover within a few days.

5. Period of Infection.

a It is very infectious at the acute stage especially from the cough and
sheeze aroplets, oral and nasal discharge and fiuid from the hlisters

b. The virdses may continue to be excreted in the stool of “he jnfectern
DECSONS for a few weeks,
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APPENDIX G.

a. Creating M-file named HFMD2006

function f = HFMD2006(t, X)

%The default value for the parameters
alpha = 0.000293;

muNull = 0.0001077;
mulOne = 0.00001731;
beta = 0,00015;
gamma = 0.8235;
deita = 0.07;

3 5(t) = x{(1);

g I(t) = x{2};

% R{t) = x{3);

% ds/dt = £{1);

2 dI/dt = £{(2}:

jo3
X
M
&3
Ias
I
Fy
(8]

f = zeros (3, 1);
f{l1} = alpha*x{1l)- beta*xz(1l)*x({2)~ mulNuil*x(l)+ delta*x(3);
£(2) = peta*x(1}*x{2) ~ gamma*x {2} - {muNull+mulne)*x{2);
£f(3) = gamma*x(2)~delta*x (3)~muNulli*x(3);

b. Initial values and calling the function ode45

>» %Initial value for the susceptible, infected and recovered class respectively
»>»> 80 = 10000;

>> I0 = 4;

>> RO = 0y

>

»>> %Grouping the initial value into vector
>> x0 = [80; I10; ROI:

>> MaxTime = 52;

»>» 3Calling the M-fiie and ocdedS function

>> {t,x] = oded5(@HFMD2006, [0,MaxTimel, x0};
>

»> %Ploting the infected line on the graph
>> plot{t,={:,2});
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Figure 17: The result for HFMD model with § = 0. 14 or acquired immunity of 50 days
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