
DEVELOPING AN ARCHITECTURE FOR THE PRODUCTION OF A GENERIC

MODEL OF THE LOCAL MANUFACTURING INDUSTRIES

Chiew Ling King

A Thesis submitted

in fulfilment of the requirements for the degree of

Master of Science in Information Technology

Faculty of Computer Science and Information Technology

UNIVERSITI MALAYSIA SARAWAK

2006

ACKNOWLEDGEMENT

I would like to sincerely thank my supervisor, Dr. Rosziati Ibrahim, for her patient

supervision and encouragement throughout this research. Without her, I would not have an

opportunity to have a breakthrough in my academic level. I would like to thank all who

have given me support and advice during my research. I would like to thank the Faculty of

Computer Science and Information Technology for providing an environment that is suitable

for doing my research. Lastly, I want to acknowledge Pelan Tindakan Pembangunan

Teknologi Perindustrian (PTPTP) for the financial support.

11

ABSTRACT

The primary purpose of this study is to devise the architecture of a system that can

develop a generic model of the restricted local small to medium sized manufacturing

industries. With this architecture, a modeling tool or demonstrator system can be developed

to capture the process flow of the manufacturing industries. This demonstrator system is

composed of three major components which are in the form of a graphical user interface.

These components are modeling tools, workplace and code generators. The modeling tools

consist of a Domain Process (DP) structure, a Process (P) structure, an Activity (A) structure

and a Relation structure which are used to represent different processes and relationships.

This modeling tool is used to capture the process flow of a manufacturing industry. The

workplace provides the area for the modeling structures to be constructed. This provides a

structured view of the process flow of the manufacturing industry. The Code generator is the

engine that is used to generate the coding templates from the model created on the

workplace. With these coding templates, processes for the customization of the functions

allow the software system to be developed according to the requirements of the modeler.

This research adopts a generic model from MIICI (Manufacturing Industry

Information and Command Infrastructure). However, MIICI presents a generic model of a

manufacturing industry in a mathematical form. Mathematical representations are not

common to Malaysian manufacturing industries and they are also difficult to understand by

the majority of people. Therefore, this research uses Domain Process, Process and Activity

structures to produce the architecture of a system that can develop a generic model of the

111

restricted local small to medium sized manufacturing industries. From there, a software

system can be constructed from the model of the application domain. Furthermore, the

developed model can serve as a media of communication for individuals from same

functions, fields and disciplines.

iv

ABSTRAK

Matlamat utama kajian ini adalah untuk menghasilkan senibina sistem yang boleh

membangunkan model generik sesuatu industri perkilangan bersaiz kecil ke sederhana

tempatan yang telah ditetapkan. Dengan terhasilnya senibina ini, peralatan permodelan

atau sistem demonstrator boleh dibangunkan untuk mendapatkan aliran proses dalam

industri perkilangan. Sistem demonstrator ini mengandungi tiga komponen utama dalam

bentuk antaramuka pengguna grafik. Komponen-komponen im adalah peralatan

permodelan , ruang kerja dan penjana kod. Peralatan permodelan ini mengandungi

struktur proses domain (DP), struktur proses (P), struktur aktiviti (A) dan struktur

pertalian yang digunakan untuk mewakili proses-proses dan pertalian-pertalian yang

berbeza. Peralatan permodelan ini digunakan untuk mendapatkan aliran proses dalam

industri perkilangan. Ruang kerja menyediakan ruang untuk pembinaan struktur-struktur

permodelan. Im seterusnya akan menyediakan pandangan struktur aliran proses dalam

industri perkilangan. Penjana kod ialah enjin yang akan digunakan untuk menjana

template kod daripada model yang dihasilkan oleh ruang kerja. Dengan template kod ini,

proses-proses penyelarasan fungsi-fungsi akan membolehkan sistem perisian dibina

mengikut kehendak jurumodel.

Kajian ini menggunakan model generik darf MIICI (Manufacturing Industy

Information and Command Infrastructure). Walau bagaimanapun, MIICI

mempersembahkan model generik industri perkilangan dalam bentuk matematik.

Persembahan sedemikian tidak lazim di dalam industri perkilangan di Malaysia dan is

V

juga agak sukar untuk difahami oleh kebanyakan orang. Oleh yang demikian, kajian ini

menggunakan struktur proses domain, proses dan aktiviti untuk menghasilkan senibina

sistem yang boleh membangunkan model generik sesuatu industri perkilangan bersaiz

kecil ke sederhana tempatan yang telah ditetapkan. Kemudian sistem perisian akan dapat

dibina daripada model yang diperolehi dari domain applikasi. Sebagai tambahan, model

yang telah dibangunkan boleh berkhidmat sebagai media komunikasi untuk individu-

individu daripada fungsi-fungsi, medan-medan dan disiplin-disiplin yang sama.

V1

TABLE OF CONTENTS
Acknowledgement

...
ii

Abstract
...

iii

Abstrak
... v

Table of Contents
.. vii

List of figures ... xii

List of tables ... xv

INTRODUCTION ...
1

1.1 Overview
..

1

1.2 Background and Justification of the Research
...

2.

1.3 Research Objectives
...

4

1.4 Research Scope ..
5

1.5 Research Tasks and Dissertation Outline
..

6

2 LITERATURE REVIEW ...
9

2.1 Introduction ...
9

2.2 Process Modeling ...
10

2.3 Plant Interflow Model
...

14

2.4 Architecture, Framework and Methodology
..

16

2.4.1 IDEF .. 18

2.4.1.1 IDEFO Function Modeling
... 18

2.4.1.2 IDEF3 Process Description Capture Method 21

2.4.2 CIMOSA ... 23

vii

2.4.3 GERAM
...

28

2.4.4 Object-Oriented Modeling ..
31

2.5 Comparison of reviewed Modeling Languages
..

35

2.6 Conclusion
...

37

3 OBJECT-ORIENTED REQUIREMENT ANALYSIS
... 38

3.1 Introduction ...
38

3.2 Domain Analysis ..
39

3.3 Modeling Tool Structure
..

41

3.3.1 Domain Process structure ...
43

3.3.2 Process structure ...
44

3.3.3 Activity structure ...
45

3.4 Relation Structure ..
46

3.5 The modeling tool components and activities ...
48

3.6 Use Case Driven Object Oriented Analysis
.. 49

3.6.1 Activity Diagram of the Modeling Tool
...

50

3.6.2 Use Case Model of the Modeling Tool
...

53

3.6.2.1 Create Model Use Case
..

54

3.6.2.2 Edit Model Use Case
...

55

3.6.2.3 Generate Coding Templates Use Case
................................. 55

3.6.2.4 Finish Modeling Activities Use Case
...................................

56

3.6.2.5 Store Operation Use Case
.. 56

3.6.2.6 Draw Process Flows Use Case
...

58

viii

3.6.3 Interaction Diagrams
..

67

3.6.4 Class Diagram ...
68

3.7 Conclusion
...

70

4

5

OBJECT-ORIENTED DESIGN OF MODELING TOOL
....................................

72

4.1 Introduction ..
72

4.2 Refine and complete the class diagram
..

73

4.2.1 Refine Attributes
..

73

4.2.2 Design Methods ..
73

4.3 Design Access Layer ...
76

4.4 Design View Layer
...

78

4.5 Architecture of Modeling Tool
..

81

4.6 Conclusion ..
86

IMPLEMENTATION OF MODELING TOOL APPLICATION
...........................

87

5.1 Introduction ...
87

5.2 Description of Modeling Tool Application
..

87

5.2.1 Modeling Tool Overview
..

87

5.2.2 Tools used for modeling ...
89

5.2.2.1 Domain Process Structure Representation
.......................... 90

5.2.2.2 Process Structure Representation
..................................... 91

5.2.2.3 Activity Structure Representation
..................................... 92

5.2.2.4 Relation Structure Representation
....................................

93

ix

5.2.2.5 Text Representation
..

94

5.2.3 Functionalities of Structure Controller
..

95

5.2.3.1 Decomposition Interface Object
...

95

5.2.3.2 Up Level Interface Object
..

97

5.2.4 Code Generator and File System Interface Objects
........................ 99

5.2.4.1 File System Interface Object
...

99

5.2.4.2 Code Generator Interface Object
....................................

101

5.3 Conclusion ..
102

6

7

APPLICATION OF MODELING TOOL AND TECHNIQUES
..........................

103

6.1 Introduction ..
103

6.2 Description of Manufacturing Process of FFM
.......................................

103

6.3 Define Scope and Bound Domain
..

105

6.4 Identify and Specify Process Structure
..

107

6.5 Identify and Specify Activity Structure
...

109

6.6 Identify and Classify Relation
..

111

6.7 Snapshots of the FFM Process Model
..

112

6.8 Conclusion ..
120

CONCLUSION ..
121

7.1 Introduction ..
121

7.2 Contribution ...
122

7.3 Recommendation for future research .. 123

X

BIBLIOGRAPHY
..

125

Appendix A Sequence diagrams used for use cases defined
............................

133

Appendix B Activity diagrams for methods identified
..................................

139

Appendix C Source Codes for the Application Developed for FFM to

calculate total of flour and time taken from the input raw

material ..
147

X1

LIST OF FIGURES

Figure 2.1: IDEFO Basic Structure Representations ...
19

Figure 2.2:

Figure 2.3:

Figure 2.4:

Figure 2.5:

Figure 2.6:

Figure 2.7:

Figure 3.1:

Figure 3.2:

Figure 3.3:

Figure 3.4:

Figure 3.5:

Figure 3.6:

Figure IT

Figure 3.8:

Figure 3.9:

Figure 3.10:

Figure 3.11:

Figure 3.12:

Figure 3.13:

Figure 3.14:

Decomposition Overview ...
20

Schematic Symbols
..

22

CIMOSA modeling framework
...

24

First level details of Domain Process - Requirement Definition
...............

26

First level details of Domain Process - Design Specification
.....................

27

GERAM framework components ..
30

Enterprise as Collection of Business Processes
.......................................

42

Modeling Tool Structures
..

42

Relations between Domain Processes ...
43

Decomposition activities of Domain Process to Process
............................

45

Activity structure ..
46

Relationship of a Relation Structure
...

47

The modeling activities in using the modeling tool
48

Activity Diagram of Modeling Process
...

52

Ilse Case Model of the Modeling Tool
...

54

Package of Store Operation
...

57

Package of Draw Process Flows .. 59

Package of Select Specific Element
..

61

Package of Use Attribute Functions
...

63

Package of Use Navigation Operator
.. 65

xii

Figure 3.15: Sequence Diagram of Create Model Use Case
..

68

Figure 3.16: Class Diagram of Modeling Tool
..

69

Figure 4.1: Activity Diagram for CMTElement class GetBoundRect method 74

Figure 4.2: Refined class diagram by adding details to the attributes 75

Figure 4.3: CMoToolDoc Class Diagram used as Access Layer for object storage

and interoperability ...
77

Figure 4.4: CMoToolView class diagram that is used as view layer for interaction

between user and modeling process layer
..

80

Figure 4.5 Relationships of View Layer, Modeling Process Layer and Access Layer
....

81

Figure 4.6: Architecture of Modeling Tool ..
86

Figure 5.1: Overview of Modeling Tool Application
...

88

Figure 5.2: Part of the source code used to create the application frame window
89

Figure 5.3: Icon used to represent the Domain Process Structure
..............................

90

Figure 5.4: Class definition for the Domain Process object
91

Figure 5.5: Icon used to represent Process Structure
...

92

Figure 5.6: Icon used to represent Activity Structure
..

93

Figure 5.7: Icon used to represent Relation Structure
...

94

Figure 5.8: Icon used to represent Text
...

95

Figure 5.9: Structure Controller with the functionality of decomposition a process 96

Figure 5.10: Example of source code for decomposing method
97

Figure 5.11: Structure Controller with the functionality of moving to upper level
..........

98

Figure 5.12: Example of source codes for Up Level functionality
................................

99

Figure 5.13: Interface Objects used for File System
.. 100

xiii

Figure 5.14: Example of the source code for opening a file
.......................................

100

Figure 5.15: Interface object used to represent Code Generator
................................ 101

Figure 5.16: Example of the source codes for Code Generator
................................... 102

Figure 6.1: Relationship of the processes at different levels
.................................... 112

Figure 6.2: Domain Process Structure with the objective of the modeling at Top

Level
... 113

Figure 6.3: Process Structures created at Level 2 where their parent is Cleaning

Domain Process Structure ... 114

Figure 6.4: Activity Structure with its parent WheatWeight Process Structure 115

Figure 6.5: Activity Structure with its parent Pre_Cleaning Process Structure 116

Figure 6.6: Activity Structure with its parent Clean_Temper Process Structure 116

Figure 6.7: Activity Structure with its parent Milling Domain Process created at

Level 2 ... 117

Figure 6.8: Indication of the completion of generation coding templates 117

Figure 6.9: Application developed from customization on coding templates

Generated
...

118

Figure 6.10: Class definition for Cleaning Domain Process (DP) structure 119

xiv

LIST OF TABLES

Table 2.1: CIMOSA modeling constructs and their elements
25

Table 2.2: Description of related terms in enterprise modeling
36

Table 2.3: Comparison of different modeling Languages
...

36

Table 3.1: Actor Actions and System Responses for Create Model Use Case
..............

55

Table 3.2: Actor Actions and System Responses for Edit Model Use Case
.................

55

Table 3.3: Actor Actions and System Responses for Generate Coding Template

Use Case ..
56

Table 3.4: Actor Actions and System Responses for Finish Modeling Activities

Use Case ..
56

Table 3.5: Actor Actions and System Responses for Save Operation Use Case 57

Table 3.6: Actor Actions and System Responses for Save As Operation Use Case........ 58

Table 3.7: Actor Actions and System Responses for Draw Top Level Use Case.......... 59

Table 3.8: Actor Actions and System Responses for Draw Middle Level Use Case...... 60

Table 3.9: Actor Actions and System Responses for Select Process Element Use

Case
..

60

Table 3.10: Actor Actions and System Responses for Select Activity Element Use

Case
..

61

Table 3.11: Actor Actions and System Responses for Draw Bottom Level Use Case
.....

62

Table 3.12: Actor Actions and System Responses for Use Modeling Elements Use

Case ..
62

Table 3.13: Actor Actions and System Responses for Use Relation Element Use

Case
..

63

xv

Table 3.14: Actor Actions and System Responses for Add Attributes Use Case 64

Table 3.15: Actor Actions and System Responses for Remove Attributes Use Case
.......

64

Table 3.16: Actor Actions and System Responses for Decompose Domain Process

Use Case ...
65

Table 3.17: Actor Actions and System Responses for Decompose Process Use Case 66

Table 3.18: Actor Actions and System Responses for Return to Domain Process

Use Case ..
66

Table 3.19: Actor Actions and System Responses for Return to Process Use Case
........

66

Table 3.20: Description of purposes of the classes identified at Object-Oriented

Analysis ..
70

Table 6.1: Descriptions of the functionalities of the Domain Process Structure

Involved ...
107

Table 6.2: Descriptions of the functionalities of the Process Structure involved in

Cleaning Domain Process Structure ...
108

Table 6.3: Descriptions of the functionalities of the Activity Structures involved

in WheatWeight, Pre_Cleaning and Clean_Temper Process Structures 110

Table 6.4: Descriptions of the functionalities of the Activity Structures involved

in Milling Domain Process Structure ..
110

Table 6.5: Results comparison between calculations made by FFM and Application ... 119

xvi

1 INTRODUCTION

1.1 Overview

This research presents a modeling tool that can be used to support operations of

small to medium sized manufacturing industries. According to Small and Medium

Industries Development Corporation (SMiDEC), manufacturing companies or

companies providing manufacturing related services with annual sales turnover not

exceeding RM25 million or with full-time employees not exceeding 150 in number, are

considered to be categorized as small to medium sized manufacturing industries.

In the manufacturing industry, there are many elements and operations that can be

modeled to reflect different aspects of the enterprise. Therefore, manufacturing

modeling is a process of building models of whole or parts of a manufacturing industry

such as process modeling, resource modeling, data modeling and others. Modeling

different aspects of a manufacturing industry is to prevent presenting an overly complex

model that covers all the aspects of the industry. Every complex system is best

approached through a small set of nearly independent views of a model; no single view

is sufficient. This dissertation presents a modeling tool that can capture the process flow

of an interested domain of the manufacturing industry. Captured processes can be

customized to develop an application that can cater the need of the interested domain. It

also describes the methodology developed for the use of the modeling tool in developing

the model for certain domain of a manufacturing industry.

I

1.2 Background and Justification of the Research

In a growing country like Malaysia, industrial development plays a very important

role in moving the economy of the country. Thus, manufacturing industries must be

prepared to meet the dynamic, competitive and rapid changing market in order to

survive.

The Manufacturing Industry Information and Command Infrastructure (MIICI)

project was initially brought by the International Institute for Software Technology in

United Nations University (UNU/IIST) with the intention to produce an industrial

system capable of producing results without consuming excessive resources and also

able to make quick decisions intelligently (Jan Goossenaerts & Dines Bjorner, 1994).

MIICI project emphasizes mathematical models of products, enterprises and businesses

environments as primarily tools for creating lean/agile supply-based industrial systems,

which are environmentally sustainable by utilizing advanced computation and

communication technology. From MIICI, this research is trying to adopt the concepts

from the generic model in order to provide a structural view of local manufacturing

industry process flows through the development of a framework for a generic model. A

generic model in MIICI is created through defining terms, constructing terminologies

and a mathematical framework to express the interflow models that matter for

manufacturing and trade. By formalizing and systematizing the mathematical

framework, a particular model can be constructed with the interflow of the phenomena

processes of a manufacturing industry. However, advancement of the information and

communication technology and manufacturing industries increasingly rely on using the

information and communication technology in the daily operations of the manufacturing

2

industry; urging the use of rigorous techniques in software development for

manufacturing operation with the context of market and industry today. This is applied

in MIICI, where requirements and necessary information are expressed in a

mathematical model and software development can be mechanically derived from the

model. Therefore, adopting the MIICI concepts to local manufacturing industries is of

importance because by developing framework for a generic model of local manufacturing

processes, software system can be constructed from the model of the application domain.

Software development processes through customization of the functionalities of the

software system can develop an application that is required by the manufacturing

industry.

As is already known, MIICI presents a generic model of a manufacturing industry in

a mathematical form. Mathematical representations are not common and are difficult to

understand for the majority of people. Different symbols are used to represent different

sets of information. Training needs to be provided for those who are interested in

following the methodology. However, source for skilled and trained instructors are not

many since this representations are created by MIICI itself. Besides that, MIICI

software development for a manufacturing industry should be understood within the

general methodology in which software systems are constructed on the basis of the

mathematical models of their application domain (Goossenaerts & Bjorner, 1994).

Thereby, knowledge of mathematical representations and manipulation is essential.

Therefore, developing a manufacturing model which is simple, less time consuming

and less training is required for local small to medium sized industries. This is because;

there is a constraint on budgets allocation for most local small to medium sized

3

industries on the advancement of information and communication technology. Modeling

can involve in different areas of a manufacturing industry like resource modeling which

mainly deals with resources handling and data modeling; which involves data flowing

and manipulation. However, representing different information on one single model

would present an ambiguous environment for a viewer to understand. Focus on

modeling process is required. Thereby, the process flow of the manufacturing industry is

taken into consideration. This is because a process can involve a set of activities

performed within a specific order of times with defined input and produce output

(Davenport, 1993). Then the sequence flow from one process to another process can

reflect the operations happening inside a manufacturing industry.

1.3 Research Objectives

In order to come out with a modeling tool that can facilitate the development of the

model for the local small to medium sized manufacturing industries, there are two

objectives that have to be achieved. There are:

" To come up with the architecture of a system that can develop a generic model of

the restricted small to medium sized manufacturing industries.

" To develop a demonstrator system based on the framework for the layout of the

process flow of the restricted small to medium sized manufacturing industries in

order to simulate the actions carried out by the processes.

The primary objective of this research is to come up with the architecture of a

system that can develop a model of the restricted manufacturing industry. Architecture

of a system is just like a "blue print" or "navigator" that assists in designing a system. It

4

also can serve as a guideline for the user of the system which has been developed.

Therefore, with the architecture of the system, a demonstrator system which is based on

the architecture can be designed.

The secondary objective is to develop a demonstrator system or modeling tool system

which is used to capture the process flow of a manufacturing industry. This

demonstrator system is composed of several components. These components are

modeling tools, a workplace and code generator. The modeling tools consist of several

components which are used to represent different processes and relationships. The

workplace is the area where the modeling tools are to be placed. The code generator is

the engine that is used to generate the coding templates from the model created on the

workplace.

This modeling tool system can be used to develop a model by capturing the process

flow of the restricted manufacturing industries. From here, a software system can be

developed to simulate the actions carried out by the processes through customization

process.

1.4 Research Scope

This research would mainly focuses on how information technology can be applied to

restricted small to medium sized local manufacturing industries. Major activities in a

manufacturing industry, whether the size of it is small, medium or big, have to be

performed on the shop floor. That means, the main concern in a manufacturing industry

is related to the activities happening inside the plant. Therefore, there are different

types of flows of data and activities happening around the manufacturing industry in

5

order to accomplish the task assigned to it. These flows can be categorized as process

flows, resource flows, data flows and others. These flows can be known as

manufacturing phenomena flows because these flows are the main events and incidents

that make the manufacturing operations run.

Different sizes of manufacturing industries and business orientation can determine

the complication of the manufacturing industry. For example, a manufacturing industry

that manufactures cars would involve a lot of processes, data, resources, agents and

other elements that are related to one another in order to produce the end product, the

car. One process might distribute many different related processes, data, resources and

other elements in order to accomplish the tasks of the process. Building a

manufacturing model in one single model to represent all the different types of flows,

objects, activities and others would be complicated and confusing. Therefore, there are

multiple views like information model, activity model, process model and other models

to represent different perspectives of a manufacturing industry.

This research is concerned on capturing processes involved in the local small to

medium sized manufacturing industries. Therefore, special attention will be on

processes in a manufacturing industry. From there, relationships are built between the

logical view and the physical view so that customization on the logical part will impact

on the real life through implementing some computing system.

1.5 Research Tasks and Dissertation Outline

In order to accomplish the research objectives stated at section 1.3, five specific

tasks were undertaken. These five specific tasks were; literature review, development of

6

modeling structures, the technique used to create the modeling tool, and testing the

modeling structures and modeling tool by creating an application through doing a case

study at a local manufacturing industry and the development of a subsequent research

plan. The following paragraphs will briefly outline the dissertation.

Chapter 1 presents the motivations and needs for the modeling tool to be developed.

It also presents the scope of the modeling to process modeling in small to medium sized

manufacturing industries. The ability to produce an application from the templates

generated depends on the ability to model the processes. This chapter also discusses the

objectives of the research and the tasks which were undertaken to realize these

objectives.

Chapter 2 reviews some of the current literature relevant to this research. It

discusses process modeling and reviews different modeling methods used in enterprise

modeling. These modeling methods are IDEFO Function Modeling, IDEF3 Process

Description Capture Method, Object-Oriented Modeling, CIMOSA, and GERAM.

Comparison of the modeling methods are made to find the difference among them.

In Chapter 3, the modeling scheme that is used in developing the modeling tool is

presented. The focus of the modeling scheme is on the processes in a manufacturing

industry. Thus, three different process structures are devised for capturing information

from the processes in a manufacturing industry. These process structures are Domain

Process (DP) structure, Process (P) structure and Activity (A) structure. Besides that, a

Relation structure is also being used to establish the connectivity and relationship

between processes in order to reflect the flow of the processes in a manufacturing

industry.

7

Chapter 4 presents designs and techniques for creating modeling tools that can

implement the modeling scheme that was discussed in Chapter 3.

Chapter 5 presents the results of the implementation of the modeling scheme, and

briefly discusses the outlook of the application developed from using the modeling

scheme.

Chapter 6 presents a trial of using the application developed from the modeling

scheme. FFM Flour Mills (Sarawak) Sdn Bhd is selected as a resource of trial. The

process flows from cleaning the raw materials to milling the raw materials into flour are

discussed and the results are presented.

Chapter 7 presents the conclusion of the research. A brief summary of the work and

significant accomplishments is provided. This chapter also provides recommendations

for future research.

8

2 LITERATURE REVIEW

2.1 Introduction

This chapter provides a review on the literatures relevant to this research. The focus

of the review is on enterprise modeling. An enterprise can be defined as a set of

interdependent actors, with at least partially overlapping goals, working together for a

period of time in order to achieve some of their goals. The actors utilize tools, their

knowledge and other resources in order to transform some kind of raw input (either goods

or information) into processed output that fulfils the needs of a customer. Their efforts are

influenced and constrained by their interrelationship with their environment (Lars et al,

1995). Thus the manufacturing industry is a part or the whole of the enterprise.

A model is an abstract representation of reality. Only those aspects of the real

system that are of interest to a modeler would be modeled. Thus, models are created for

different purposes. An enterprise, which is a complex system, may be represented in

different manners in order to describe a specific aspect of the enterprise. For examples,

process models, data models, plant layout models and product models, are different models

developed to represent different aspects of the enterprise. Therefore, an enterprise model is

a symbolic representation of the enterprise and the activities that carry out there. It

contains representations of individual facts, objects and relationships that occur within the

enterprise (Presley, 1997).

9

2.2 Process Modeling

Manufacturing modeling is the process of building models of whole or parts of a

manufacturing industry such as process modeling, resource modeling, data modeling, and

so on. In this research, the focus is on process modeling of a manufacturing industry.

Process Modeling is receiving a prominent position in the business field instead of

the proprietary of software engineering. This can be seen from the research work in

business process reengineering (BPR) and workflow management. In business process

reengineering (BPR), process model is used to evaluate current processes in order to revise

or create a new process to meet new organizational requirements or goals. Workflow

management is related to the work of reengineering and automating workflows. Workflow

is the executable image of a process, which is generated in a design phase (Bussler &

Jablonski, 1994).

According to Davenport (1993), a process is defined as a specific ordering of work

activities across time and place, with a beginning, an end and clearly identified inputs and

outputs: a structure for action. From this definition, a process model is a mapping of the

elements in a system as well as the relationship between elements in order to display the

specific purpose of the process. The process elements may consist of activities, actors,

objects, data, products and tools.

Generally, from process point of view, enterprise can be viewed as being composed of

different sets of business processes involving several organizational units. A business

process has its customers, composed of activities, which are process steps operated by

agents (humans or machines) in order to create value for customers. Thus process model

can be used to capture and represent business processes structurally and logically in

10

different perspectives of the enterprise. According to Curtis et al. (1992), process modeling

can facilitate understanding and communication by formalizing the process, support

process improvement and management by analysis of process behavior and performance

and can automate process guidance and execution support.

In an enterprise, people working under different sectors would have different needs

for enterprise models. If a single model were used to represent and contain all the data

related to the enterprise, then the model would become too complex and might not deliver

the required results. Therefore, there are different definitions of multiple views or

perspectives of an enterprise to represent the details that of interest to the modeler. For

example, The Automation & Robotics Research Institute (ARRI) describes a five-view

approach: business rule (or information) view defines the entities managed by the

enterprise and the rules governing their relationships and interactions; activity view

defines the functions performed by the enterprise (what is done); business process view

defines a time-sequenced set of process (how it is done); resource view defines the resources

and capabilities managed by the enterprise and organization view describes how the

enterprise is organized which includes the set of constraints and rules governing how it

manages itself and its processes (Whitman et al., 1998).

Curtis et al. (1992) proposes four common perspectives in process modeling. These

are: functional perspective, behavioral perspective, informational perspective and

organizational perspective. The functional perspective presents what process elements are

performed as well as what are the informational flows relevant to these process elements

that are represented. The process elements may be data, artifacts, objects and products.

The behavioral perspective represents when process elements are performed and how they

11

are performed. The informational perspective represents the structure and the relationship

of the informational entities produced by a process. The organizational perspective

represents by whom and where in the organization process elements are performed. Even

though there might be overlapping between views, there are significant portions of each

view that are not described in the other views. Thus, multiple views or perspectives of the

enterprise are needed for promoting understanding by reducing complexity. The reduction

of complexity is implemented by the reduction of details in one view but provide details that

are important to the question answered by the view.

In an enterprise, if there is a need for any improvement efforts to be carried out, a

common understanding of the enterprise is one of the critical steps in order to determine

the future conditions and direction of the enterprise. Thereby, attention is directed to

modeling because it is an approach that can facilitate a common understanding of the

enterprise. Through modeling, a model that is relevant to the concerns of the user can be

produced. Then the model can be used as a focus of discussion and this also provides a

means of communication in the enterprise. Models can also aid in improving activities by

serving as a foundation for analysis and design of new entity of the enterprise. According to

Frasier (1994), enterprise modeling enables the common understanding of all the pertinent

aspects, the clear description of business problems and requirements, the identification of

various design alternatives and a mechanism for the analysis of these options for design

implementation at strategic, tactical and operational levels.

Enterprise modeling has been adopted by many enterprises as a way to make

decisions, analysis and to design the structure of the enterprise and estimate the impact of

changes within an enterprise caused by external factors like change of government policies,

12

market trends and other events. This is true since a model is able to provide a version of a

real world system, which describes only essential system properties to the desired level of

detail by removing all the irrelevant details. In this section, discussion regarding the

contributions of the process modeling to the enterprise will be divided into three different

phases - analysis phase, design phase and implementation phase in order to have a better

view of the usefulness of process modeling.

Analysis always gives an impression of investigation in order to have better

understanding of current situations and gather the necessary information. The following

are a number of sources commenting on process model in analysis. According to Maull et al

(1995), the benefits gained from developing a business process model do not necessarily

result from having a completed or totally accurate model. The benefits are more likely to

result from the team communicating their understanding about the process model. This is

also stressed by Ould (1995) that process models have to play a role as a communication

facilitator. Process model needs to be able to facilitate communication among users of the

model such as identifying what is done and by whom, how things are carried out and what

things mean, so that the usefulness of process model can be appreciated. Therefore, process

model can act as a mechanism for understanding the processes involved and guidance for

further development. Davenport (1993) states that process analysis can help to ensure that

problems of an existing process are not repeated in the new process.

In the design phase, a process model on a conceptual level is created. This model can

assist in decision-making regarding the viability of the designed process as well as its value

to the enterprise. The decision is made based on certain aspects of organization which are

easily displayed on a process model like activity, roles, data flows, control and goals.

13

However, organizational aspects such as management styles, skills, staff motivation,

organizational power, norms and rewards are difficult to represent in process model.

The implementation phase carries out the decisions that are made at the design

phase. In order to execute the decisions (For example, introducing a new process), normally,

an IT system is introduced into the implementation phase, which enables the business to

evaluate and learn about the processes. This can be seen from the example of workflow

management systems, which incorporate IT systems in the workflow execution. In workflow

management the system is usually equipped with graphical user interfaces and high-level

process definition languages to support the control, communication and coordination of the

process. Senge (1993) points out that a process model can play the role of so-called

"transitional objects. " These are objects, which are used to facilitate learning about a

complex situation so that people are able to make a transition to a new viewpoint or state.

Process models make it possible to compose a microworld, a microcosm of reality where "it

is safe to play".

As a conclusion, a process model is useful to communicate a common understanding

of an entity of an enterprise, to reduce complexity and to analyze and design processes of an

enterprise prior to implementation.

2.3 Plant Interflow Model

In this section, the Plant Interflow Model, one of the models that are built by MIICI

is introduced. This section briefly describes MIICI mathematical notations used in

constructing the plant interflow model.

14

According to MIICI report (Goossenaerts & Bjorner, 1994), when constructing a

plant interflow model, static structural properties of a plant system, dynamic behavior over

instances of the templates in a plant structure and interface between the plant system and

plant operations need to be taken into consideration.

A plant structure is used to represent the static structural properties of a plant. This

plant structure is the result of joining a part-work structure and a cell-order structure. A

part-work structure contains part templates, which describe units of material, and work

templates, which describes units of change to materials. Therefore, a Part-Work structure

integrates information regarding materials and the work required for making products. As

for the cell-order structure, it contains cell templates and order templates. Cell Templates

describes cell(s), where a cell is a unit capable of sustaining the delivery or absorption of

parts and/or the execution of work (transforming information or material in response to

orders). Order templates describe order, where order is a unit of interaction. This

interaction is like an order that is sent by one cell (the sender) to another cell (the receiver).

This can be summarized as a plant structure that provides information regarding a set of

cells that are needed to sustain all work described in a part-work structure. In

mathematical definition, plant structure is defined as (C, 0, P, G) where

i. (C, O) is a cell-order structure

ii. (P, G) is a part work structure

Dynamic behavior of a plant system is defined over a plant structure by

instantiating, transforming and deleting instances of templates. This is quite similar to a

process of defining computational algorithms where their variables of data types are

instantiated and functions and procedures are used to transform the values of the

15

variables. Thereby, conditions that need to be satisfied by the dynamic behavior of the plant

system are expressed in a plant structure. Then, the execution of the cell instances in

response to the order instances demonstrates the dynamic behavior of the plant system.

The dynamic behavior of the plant system makes distinctions between the specification of a

plant system and an implementation of a plant system. The specification of a plant system

is the response to order instances the plant system produces and absorbs part instances.

The implementation of a plant system is cell instances implement a dynamic behavior in

response to the order instances which a plant system receives. The mathematical definition

for a plant system specification (PSS) is

(PS, {CSales , CPurchase}, Osales, OPurchase, psales
, pPurchase, PS, O_h p) and the mathematical

definition for a plant system implementation (PSI) for a PSS is

(PS. rep, O_h p. body)

Finally, the interface between the plant system and plant operations is concerned

about the interflow of the plant system with the shop floor activities. Thus, in defining the

interface between a plant system and a shop floor; work, part and order flows need to be

ensured are ordered in a time-space-material consistent manner, so that the work required

can be performed by the cells. This will ensure the plant system transforms according to

proceeding shop floor operations.

2.4 Architecture, Framework and Methodology

An architecture is a formal representation or description of a system. An enterprise

architecture is a "blueprint" or "picture" which assists in the design of an enterprise (Liles

& Presley, 1996). The most striking advantage is that architectures serve as a common tool

16

for all the employees across the entire enterprise. This in turn helps in enabling the top

management of the system to plan where it wants to be as well as develop strategies to get

there. According to Whitman et al. (2001), architectures are the building block of any

successful modern business strategy. Without it, management is running without direction

and has to depend on their own personal perception to make decisions, which might not be

shared throughout the enterprise.

Whitman et al. (2001) mentioned that when architectures are developed to cater for

a specific industry or sector they are called frameworks. The distinguishing difference

between architecture and framework is that architecture takes into the consideration of

bigger picture of an enterprise by integrating all possible views in order to achieve its goals.

On the other hand a framework is meant for a particular purpose, situation, industry or

sector. Thus, a framework can be considered as a solution designed to cover all the details

of the specific industry or situation where the requirements are based on the goals and

strategic resources of the specify industry or situation. For example, IAA (Insurance

Application Architecture) although the name implies it is architecture, actually IAA is a

generalized business framework for the insurance industry, where its main purpose is to

create and maintain a single view of clients and of the entire enterprise.

A model is built by using modeling tools in the way that is prescribed by modeling

methodologies. Methodology provides the guidelines and navigation to the users by

describing the processes involved in the modeling so that model development can be carried

out in a consistent and optimized path. Different methodologies may exist to cover different

aspects of an enterprise. For example, IDEFO (which will discuss in Section 2.4.1.1)

describes the functional aspect of an enterprise operation to any level of detail and

17

CIMOSA (which will discuss in Section 2.4.2) provides a methodology that covers design,

implementation, operation and maintenance of an enterprise. Section 2.4.1 to Section 2.4.4

will touch on different modeling languages to discuss on their functionalities and features

that are related to process modeling.

2.4.1 IDEF

IDEF's acronym for ICAM DEFinition where ICAM stands for Integrated Computer

Aided Manufacturing. IDEF was developed by the US Air Force. It consists of a suite of

modeling methods for describing different perspectives or views of an enterprise. For

examples, IDEFO for functional modeling, IDEF1 for information modeling, IDEF1x for

semantic modeling, IDEF2 for dynamic modeling, IDEF3 for process description, IDEF4 for

object oriented modeling and etc.

Since this research is focused on process modeling, thus IDEFO and IDEF3 will be

described in the next section.

2.4.1.1 IDEFO Function Modeling

IDEFO was evolved from Structured Analysis and Design (SADT) in the 1970s. Then

US Air Force commissioned the developers of SADT to produce a tool that could be used for

functional modeling in supporting the Air Force's Integrated Computer Aided

Manufacturing (ICAM). IDEFO is a modeling tool that can produce functional view of a

system. Information and objects, which are related to functions, can be adhered to the

model as well.

18

In an IDEFO functional model (see Figure 2.1), the boxes represent functions like

actions, activities, processes or operations, which are denoted by verb phrases inside the

boxes. Arrows in different positions indicate the different type of data being conveyed. The

data can be either information like current status or materials. A noun is used to denote

data.

Input is represented by an arrow entering from the left into the box and Output is

represented by an arrow leaving from the right of the box. An arrow entering from the top

represents Control and an arrow entering from the bottom represents Mechanism. The

basic structure of IDEFO can be seen at Figure 2.1.

Figure 2.1 IDEFO Basic Structure Representations

Input represents data needed to perform the function. Output represents the result from

the function. Control is the constraints or conditions that imposed to the `box' in order to

govern the implementation of the function. Mechanism represents the people, resources or

facilities that are required by the function to trigger the operations inside it. This means

that there is dependency between the input and output in identifying the transformations

required by the function and thus describes what is done by the function; control describes

19

why the function is implemented and mechanism describes how it is implemented. IDEFO

modeling focuses on what is done to the system, thus location of the boxes do not

necessarily imply sequence or time.

Decomposing or deconstructing a function (see Figure 2.2) into more detailed levels

of analysis is another characteristic of IDEFO modeling technique. The more general

diagram is known as the parent of the detailed diagram. Function can be decomposed into

sub-functions progressively to express further details. The granularity of the function

depends on the intention and interest of the modeler. This provides an environment where

communication is enhanced by providing the reader with a well-bounded topic with a

manageable amount of new information to learn from each diagram (IDEFO, 1993).

Although IDEFO basic structure is simple it is essential to represent and describe a process.

T-F[-Cýf-I-_
More Genera!

I

This is diagram is the
" parent" of ...

this diagram

_., ý

HsJ I LI I

More Do&i! lod

Figure 2.2 Decomposition Overview

20

2.4.1.2 IDEF3 Process Description Capture Method

The IDEF3 Process Description Capture Method was created specifically to capture

descriptions of a sequence of activities. The primary goal of IDEF3 is to provide a

structured method by which a domain expert can express knowledge about the operation of

a particular system or organization. Knowledge acquisition is enabled by direct capture of

assertions about the real-world processes and events in a form that is most natural for

capture. This includes the capture of assertions about the objects that participate in the

process, assertions about supporting objects, and the precedence and causality relations

between processes and events in the environment (Mayer et al., 1995). Thus, IDEF3 differs

from IDEFO where it focuses on "how" things work in an organization by capturing

descriptions of sequences of activities.

IDEF3 descriptions are developed from two different perspectives. There is Object-

Centered Description, which provides the summary of the allowable transitions of an object

and Process-Centered Description, which uses a scenario to capture knowledge about a

process and the network of relations that exists between processes. The description is to

indicate how things work in a particular situation in an enterprise. This literature will

consider the Process-Centered Description.

The five basic structures of IDEF3 Process-Centered Description that are used to

express facts are (i) units of behavior (UOBs), (ii) elaborations, (iii) junctions, (iv) links and

(v) referents.

UOBs are the basic syntactic unit used to represent a function, an activity, a process

or a scenario depending on the context of the description. Each UOB can be deconstructed

21

to consist of other UOBs with an elaboration associated to it. Elaboration is used to provide

detail about the participate process which cannot be shown in the process now description.

A process-centered description consists a set of UOBs, which are inter-related by

junctions and links. Junctions are used to represent the logic of process branching. They

express the synchronous and asynchronous behavior among UOBs and the convergence and

divergence of process flow. Links are the mechanisms that connect UOBs to form the

representation of dynamic processes. They are precedence link, relational link and object

flow link.

Referents are used to minimize the clutter of a diagram by referring to a previously

defined UOB without duplication of its definition to show that there is ex-UOB defined in a

specific point in the process without looping back. The development of IDEF3 is related to

the need to distinguish between the description of what a system is supposed to do and the

`model', which is used to predict the system, but captures precedence and causality

relations between situation and events in a form that is natural to domain experts.

l1ºftS% mb, lls _-
I. iit l: s

. -ý I'rvý ý Iý"i, ý ý I i nl.

LY>IiLaUel> -------º I. ýIa, umal I ink

IDba'Ret

. luncliýýn.

Reference
Type/ID

ý \ : wn ý\ ý. "�ýi��ý,,,, ý, : ý"+iý

() cllt () Kyuýhna,., nnc, lt

LocatoriPage #
F

Xc�i

Figure 2.3 Schematic Symbols

22

2.4.2 CIMOSA

CIMOSA was developed for ESPIRIT (European Strategic Program for Research and

Development in Information Technology) by AMICE (a consortium of 30 major European

vendors and users of CIM systems).

CIMOSA aims to support system designers with descriptive modeling of enterprise

operations which allows the identification of the needs for operational information as well

as the information produced during the operation itself.

CIMOSA modeling framework, which is shown in Figure 2.4 has three architecture

levels, which describe the dimension of genus with each supporting different views on a

particular enterprise model. The Generic Level contains the catalogue of basic building

blocks (components, constraints, rules and terms) where these building blocks are

applicable to a wide range of CIM implementations. The Partial Level contains a library of

partial models applicable to a specific category of manufacturing enterprises. A Particular

Level utilizes the ready prepared building blocks from the Generic and Partial Level and

develops the specific requirements and components for the enterprise.

CIMOSA implements a modular approach for enterprise modeling. This can be seen

as CIMOSA supports a complete system life cycle from requirement definition, design

specification and implementation description and defines four modeling views. The four

modeling views are: function view, which describes operational and behavioral aspects of an

enterprise; information view, which describe the inputs and outputs of functions; resource

view, which describes the structure of resources like machines, humans and control; and

organization view which defines in term of responsibilities and authorization for processes,

functionalities, information, resources and organization.

23

In the following section, discussion will focus on the function view of CIMOSA. In

CIMOSA, a set of business modeling constructs and elements are used to build model

(Table 2.1). The modeling process is represented as a set of Domain Processes (DP) with

Events and Results as a communication channel. DP can be decomposed into Business

Processes (BP) and Enterprise Activities (EA), where a set of Behavioral Rules (BRS) is

used to connect them.

Reference
Arcbieeclam

Generic
Level

Partial
Level

Puticvlar
Level

Figure 2.4 CIMOSA modeling framework

In this paragraph, some of terms used in CIMOSA are described in order to have a

better understanding of the terms used. Therefore, information from the sources, Kosanke

(1995), Kosanke and Zelm (1999) and Zelm et al. (1995) are used. In CIMOSA, Domain

Process (DP) is triggered by events and produces a result; it encapsulates a set of enterprise

functionalities and behavior, which are used to achieve defined objectives under given

constraints. It is at the top of a functional decomposition hierarchy thus it belongs to one

24

Domain, for example, DP cannot be used either by any other Domain or a Business Process.

As for Business Process (BP), it defines a behavior part and a structural part at all levels of

functional decomposition except top and bottom levels. It can employ one or more Business

Processes and/or Enterprise Activities and at the same time it can be employed by one or

more Domain Processes and/or Business Processes. Business Process is triggered by a

parent structure like Domain Process. Enterprise Activity (EA) is the construct that defines

a functional part and a structural part to describe the functionality in the Function View of

a particular enterprise at the Requirement Definition Modeling Level. It can be employed

by other Domain Processes and/or Business Processes but it does not employ any Business

Processes or Enterprise Activities. Behavioral Rule describes the action(s) to be taken in

the flow of control of a Domain Process or a Business Process. Functional Entities are

resources that are able to receive, send, process, and (optional) store information.

Functional Operation is the basic unit of work that is either executed, or not, at run time

and is the lowest level in the Function View.

Function Behavior Information Resource Organization
Modeling Construct
Domain Domain Process Enterprise Object Capability Set Organization cell
Enterprise Activity Business Process Object View Resource Organization Unit

Event (Functional Entity

Modeling Construct Element
Domain Relationship Behavior Rule Information Element Capability Organization Element
Objective Constraints Activity Behavior Object Relationship Resource Com onent
Functional Operation

Table 2.1 CIMOSA modeling constructs and their elements

25

DPI Requirement Definition
ý

Analysis

El

E3x

17 71 - M==U 1tfl BPI. 5 ýLA-P BP1.3
,

NX, & ý BPL1 YapýY/] BPI. 2
Domain 11 Behavior Operational{ Resource

Establishment Analysis Analysis Analysis
=775 = ZZ

7
BP1.4

ý.. ýý,,.....,..,..,

ßP1.6
Organization

Analysis

DP = Domain Process
BP = Business Process

rý 13P1.7 G4 E2R Consistency
Checking

m

event

0 Behavioural Rule

Figure 2.5 First level details of Domain Process - Requirement Definition

G4

In the Requirement Definition Modeling, functional contents and its process behavior are

described in two Business Processes. There are Behavioral Analysis and Operational

Analysis. In Behavioral Analysis, each domain process identified in Domain Establishment

(initial step of Requirement Definition Modeling) is further structured into Business

Processes and Enterprise Activities either through a top-down or bottom-up approach.

Operational Analysis details the Enterprise Activities that are produced in Behavioral

Analysis by identifying the operational information, resources and capabilities used and

needed as well as the new information that is produced in the enterprise operation.

26

I DP2 Design Specification

E32, 3
ý

Yr! rip'? 1 }', i--K

E4
H RDM W4

BP2.4
1 Information E1

Syst. Analysis

BP2.5 BP2.7
Resource IT Syst.

Syst. Analysis Design
ý4, 1. Consolidation jý

MIE==Ezýlý BP2.2
(lnPratuinal ý! ý

Design

ý
Behaviour

Desim esien

RP93

Iteration for Optimization

RDM = Requirements Definition Model

YIýýJ'ZZfZriiii//A

R1126
Organization

Design
7ý 2Z

ßP2.7
IT Syst.
Design

DP = Domain Process

BP = Business Process
¢4* event

m

En

E31 E2*

E 5 EZ!: ý

Behavioural Rule

Figure 2.6 First level details of Domain Process - Design Specification

The purpose of the Design Specification Modeling phase is to specify HOW the system

requirements should be implemented, taking into account the relevant enterprise policies,

constraints and system dynamics. In this phase, Behavior Design and Operational Design

are the two Business Processes concerned with the functional aspects of an enterprise. In

Behavior Design, identified Enterprise Activities in the Requirement Definition Modeling

phase would define activity behavior, which controls the execution of the identified

Functional Operations. In Operational Design, Enterprise Activities are decomposed into

Functional Operations. Each Functional Operation is executed by one Functional Entity

but a Functional Entity may be capable of executing more than one type of Functional

Operation.

27

2.4.3 GERAM

Generalized Enterprise Reference Architecture and Methodology (GERAM) was

developed by the IFIP-IFAC task force on Enterprise Integration. GERAM was developed

from the evaluation of existing enterprise integration architectures (CIMOSA, GRAI/GIM

and PERA). GERAM (version 1.6.3) is about those methods, models and tools, which are

needed to build and maintain the integrated enterprise, be it a part of an enterprise, a

single enterprise or a network of enterprises (virtual enterprise or extended enterprise).

GERAM is an enterprise reference architecture which has not been proposed for use

like CIMOSA, PERA and GRAI/GIM, but its intention is to gather existing enterprise

integration knowledge in an organized way to come up with a framework that has potential

for application to all types of enterprise. This can be seen from GERAM where it sets the

standard for the collection of tools and methods for any enterprise to more easily tackle

initial integration design and change processes which may occur. This is because the

adopted tools and methods would need to satisfy the defined criteria of the standard. Figure

2.7 shows the set of components identified in GERAM.

GERA (Generic Enterprise Reference Architecture) identifies the enterprise related

generic concepts to be used in enterprise engineering and integration. These concepts are

categorized into: human oriented concepts, dealing with all aspects concerning humans in

an enterprise; process oriented concepts, describing the functionalities and activities of an

enterprise; and technology oriented concepts, providing descriptions of the technology

involved in the enterprise operation and the enterprise engineering efforts. EEMs

(Enterprise Engineering Methodologies) is employed by GERA to describe the processes of

enterprise engineering and integration which can be in the form of process models or

28

structured procedures with detailed instructions for each enterprise engineering and

integration activity. As for process models, EMLs (Enterprise Modeling Languages) may be

defined as modeling constructs, used for the expression of the respective models by

representing different elements of the modeled enterprise. The methodology and the

languages are supported by enterprise engineering tools (EETs) in the process of enterprise

modeling to produce enterprise models (EMs), which can be used to guide the

implementation of the particular enterprise operational system (EOSs). EOSs might use

specific modules (EMOs) that provide prefabricated products as components in their

implementation of the enterprise.

Partial enterprise models (PEMs), which provide reusable models of human roles,

processes and technologies, enhance the process of modeling by removing the need to

develop from scratch. Generic Enterprise Modeling Concepts (GEMCs) are the most

generically used concepts and definition of enterprise modeling, which can be defined in

three form of increasing order of formality. There are glossaries - terminologies used in

enterprise modeling defined in natural language; meta-models - conceptual models

describing the relationships among modeling concepts of enterprise modeling languages;

and ontological theories - formal models define the meaning of modeling languages used

and enhance analysis capabilities of engineering tools.

In GERAM, GERA provides the view concept that allows different model views

concerning information, function, resource and organization of an enterprise of an

integrated model to be presented to the user. This is to reduce the apparent complexity of

the resulting enterprise model and highlight the aspects of the model that are to be

concentrated when using the model. In order to ease the description of process

29

representation by the user, four different model content views have been defined: Function,

Information, Organization and Resource. These views will represent their own respective

aspects of an enterprise.

GERA
Generalised Enterprise
Relerenae Arrhitoclure
iriontiries coxeprs of
enterprise intoyratia)

employs

EEM

Enterprise Engtneonng
Methodology

describe process of
&atefpnse eogineern7g

EMLs
Enterpnso Modelling Language
Provide mcde, 'Abng ccrrsbucts for

modeiRog urhuman role,
prccesses 3fld te: hnnrccp'es

ufilrse

implemented in

PEMs

Partial Enterprise Models

provide roussat1'e reºorence
modei's and dossgns of Human

(des_ procasses and
t . hnotcgies

GEMCs

Goner Enterprise Modelling
Correpts (Theories and Definitions)

öefov the rneaning d
enterpr: se, nodeYi»g ccvub-ucrs

I support --p

EETs
Enlerpri. o Engineering

Tools
sL, ppoR e, ierpnse e.)gu, aerng

I used to build

ý

L

EMOs

EnWpdGe Modules
provido impiomentahte

modules of human
professions, gpEVatianef
prooessas. teclrrolcgie"s

EMs

Enterprise Models
anterprrse dosigns, arrd modOs to

suj*cv r anSys, s and cxwaGon

I
used to implement

If
EOS

Enterprise Operational
Systems

supxr the oporaran of the
particui3r o iterprlse

Figure 2.7 GERAM framework components

30

In function view, functionalities (activities) and the behavior (flow of control) of the

business processes of an enterprise are represented. There are different types of activities

like decisional, transformational and support activities, which differ in their expressive

power; but they relate to some aspect of the enterprise function. During enterprise

operation, information is used and produced from pertinent activities. This information is

collected and structured to be presented in the information view. This can facilitate the

management and control of information flow. The resource view concerns the resources like

humans and technologies that are assigned to activities during enterprise operations. The

organization view describes responsibilities and authorities of an enterprise that are

identified in function, information and resource views and are presented in a structured

and organized way.

2.4.4 Object-Oriented Modeling

Object-oriented approach is all about object. An object can be seen as a "black box"

and it can communicate with other objects by sending and receiving messages. The "black

box" contains properties and behavior. The properties describe the current state of the

object and the way it acts and reacts is described by behavior. Moreover, there are several

important concepts associated with object-oriented approach which makes it different from

traditional techniques: encapsulation, message based communication, inheritance,

classification and polymorphism.

In this paragraph, object-oriented concepts that differentiate object-oriented

approaches from traditional techniques are briefly described (Bahrami, 1999).

Encapsulation, which is also known as information hiding, means that an object's data and

31

methods are bundle together and the data can be accessed by methods associated with the

object. Accessing data of the object by other objects can be achieved through the methods

associated with the object. In order to access the data of an object, communication between

objects needs to be established by sending messages to that particular object to request the

services. Inheritance is the attributes and methods of a class shared with its sub classes.

Sub classes can override data and methods of the superclass to introduce specialization of

classes. Inheritance and specialization promote the concept of reusability. Classification in

an object-oriented approach allows it to capture all the similar objects in one place. For

example, all the objects with the same attributes and behavior are instances of one class. As

for polymorphism, it means that a message sent to different objects can have different

interpretations and responses

There are a number of object-oriented modeling methodologies used in the business

and academic world. Different types of notations or diagram elements are employed by

these object-oriented modeling methodologies in their analysis and design. For example, the

Booch method, Jim Rumbaugh with his object modeling technique (OMT) and Ivar

Jacobson introduced the concept of use case and object-oriented software engineering

(OOSE). These provide system designers with many choices but create an ambiguity and

split environment because there are many similarities in these methods with a number of

annoying minor differences.

Unified Modeling Language (UML) is the result of collaboration of three main

modeling language methods in object-oriented industry. They are James Rumbaugh, Grady

Booch and Ivar Jacobson. UML was adopted by the Object Management Group (OMG) as

32

standard in 1999. In the following section, UML will be discussed as the object-oriented

modeling in this literature.

UML is a graphical language that can model object-oriented software systems as

well as for process modeling in the field of business (Ovidiu, 2000). UML provides different

types of diagrams that are able to map the processes in the business fields. This mapping is

trying to represent the real world phenomena by a set of formal notations, including the

necessary information. The result of the mapping is models, which present the logical views

of the business processes. UML then can take the models all the way through the

development of software objects. The process from mapping till the development of software

objects involves object-oriented analysis, object-oriented design and Implementation.

In this section, seven UML's diagrams that are considered to be related to business

modeling are discussed. They are class diagram, object diagram, use case diagram, activity

diagram, statechart diagram, sequence diagram and collaboration diagram. The discussion

of the diagrams revolves about the business process modeling therefore not completely

discussing UML diagrams. The information provided below is extracted from the sources of

Bahraini (1999), Ovidiu (2000), McUmber (2002), Jacobson et al. (1995) and Kueng et al.

(1996).

Class diagram can be used to represent static structure of the business process in

the real world. Different classes may be used to represent and describe different elements'

structures like information, products or organization by catching the attributes and

operations required. Associations and generalizations are used by class diagram to

represent relationships among the classes. An object diagram is an instance of a class

diagram, which shows details of the state of the class at specific situation. A Use case

33

diagram describes the functionality aspect of the business process by representing the

function of a business process with a specific flow of events in the system. Besides that, an

actor, which is anything that can interact with use case like humans or machines, can be

used to define the role it plays in the function of the business process. An Activity diagram

describes activities and work inside a use case or among several classes. It can be used by

business process modeling by defining a flow or sequence of activities that is happening in a

system.

Statechart diagram, interaction diagram and collaboration diagram can be used to

represent the dynamic aspects of business process. A Statechart diagram can represent the

lifecycle of objects in the business process by showing their states after receiving some

external stimuli, like a message, and how different events may affect those states over time.

Communication is a common activity that is happening in the business process. Interaction

among a set of objects can be represented by using a sequence diagram. A Sequence

diagram shows the messages exchanged among the objects by arranging the interaction in a

time sequence. A Collaboration diagram describes the interaction of a set of objects in a

particular context to achieve a desired outcome. It is similar to the sequence diagrams but

is capable of representing more complex interactions among the collaborating objects.

UML has been established and accepted as standard for software modeling

language. It can be used to model different aspects of business process by categorizing them

into object models, functional models and behavior models.

34

2.5 Comparison of reviewed Modeling Languages

In this section, different methods that are discussed in previous section are

evaluated. The purpose of comparison is not to compare against each other but to evaluate

their capabilities and their use in the context of enterprise modeling. This is because these

modeling languages are developed with different intentions to meet their own purposes.

This can be seen from Table 2.2 where CIMOSA met most of the requirements defined

because it is built with the enterprise modeling in mind. Since GERAM still cannot be used

as modeling language, it will not be part of the comparison.

Table 2.3 shows the comparison of these modeling languages. The comparison is

divided into modeling levels, modeling views and modeling related. In modeling levels,

there are three different levels that are taken into consideration: Requirement Definition,

Design Specification and Implementation Description and modeling views are categorized

into Function View, Information view, Organization view and Resource view. As for

modeling related, some of the modeling concerns are listed. There are decomposition,

reusability, modeling constructs, human roles, methodology support, information now and

workflow. Table 2.2 provides the descriptions of the "members" of modeling related.

35

Modeling Related Descriptions
Decomposition Concerned with the level of detail, which is from general to

detailed views of a system
Reusability Concerning using a partial model and promoting modularity

to reduce modeling time.
Modeling Constructs Constructs that are used for description and model elements

of an enterprise.
Human Roles Roles and location of human work in an enterprise
Methodology Support Describes the process of enterprise modeling
Information Flow Concerned with information used and produced during

enterprise operations.
Workflow Concern with sequence or order of the enterprise activities

that must be performed to achieve goal.

Table 2.2: Description of related terms in enterprise modeling

Modeling
Methods

Modeling
Features

W
A

Ä
0-4

Ö

O U
Modeling Levels

- Requirement Definition Y Y Y Y

- Design Specification L L Y Y

- Implementation
Description

N N Y I,

Modeling Views

- Function View Y Y Y Y

- Information View L L Y y
- Organization View N N N Y

- Resource View L N N Y
Modeling Related

- Decomposition Y Y L Y

- Reusability N N Y Y

- Modeling Constructs y y y y
- Human Roles N N N L
- Methodology Support Y Y Y Y
- Information Flow y y -Y -Y

- Workflow N Y L Y

Table 2.3: Comparison of different modeling Languages.

Legend for Table 2.2:
Y = Supported
L = Support is limited
N = No supported.

36

2.6 Conclusion

In this chapter, we can see from the above that there have been different types of

modeling tools created to perform enterprise modeling. However, this literature only

reviews a few of them. There are a lot different modeling tools, architectures and

methodologies that exist in different contexts. For examples, PERA, GRAI-GIM, TOVE,

IEM, IDEF suite, SADT and others. Some are meant for business process re-engineering,

some for enterprise re-engineering and enterprise integration, and other fields. They cover

different requirements and aspects of enterprises with different syntax, semantic, graphical

notation, procedures and structure. However, they all capture the reality with logical

representation to perform their intended purposes. Based on the reviewed modeling tools

discussed in this chapter, the next chapter will discuss the modeling scheme that is used to

develop the architecture of the demonstrator for the system. Object-oriented analysis will

also be discussed in the next chapter.

37

3 OBJECT-ORIENTED REQUIREMENT ANALYSIS

3.1 Introduction

This chapter elaborates on the structure and the functionalities of the components

that compose the modeling tool. The modeling tool that is developed needs to achieve the

objectives of this research (as mentioned in Chapter 1). Therefore, the requirement of the

modeling tool is that it can be used to capture the relevant processes of the manufacturing

industry. Through these processes, coding templates related to the processes can be

generated based on the model developed. Then users can customize the coding templates

based on their requirements to simulate the actual processes in the manufacturing

industry. The model, which is produced by the modeling tool, is concerned with what the

processes of the manufacturing industry do, and coding templates can be used to customize

how the processes do this.

In order to develop a modeling tool for a manufacturing industry that can meet the

objectives of this research, object-oriented analysis will be used to understand and capture

a complete and clear view of the requirements of the modeling tool. In object-oriented

analysis, a use-case approach will be used where a use case is typically an interaction

between a user and a system that captures users' goals and needs (Bahraini, 1999). Then,

architecture of the model tool that can develop the generic model of manufacturing industry

will be produced. The architecture of the model tool will be discussed in Chapter 4.

In order to come up with an architecture of the model tool, a feasibility study on the

domain analysis needs to be done properly. This is because; results from the domain

analysis provide a basic framework for the beginning of modeling. It can be seen that

38

through domain analysis, boundaries and perspectives of the manufacturing industries are

defined for the modeling tool to be used to perform the task of modeling. This is necessary

since every complex system like manufacturing industries is best approached through

providing an independent view of a model with a defined scope to reflect the purpose of

modeling.

3.2 Domain Analysis

In software engineering, domain analysis is used for software modeling of complex

systems. The implementation of domain analysis is to collect and classify information

related to the problems in a domain of investigation so that good decision can be made

during requirement analysis and other stages of the software engineering process

(Lethbrigde & Laganiere., 2001).

Domain can be defined as a territory over which rule or control is exercised

(Dictionary. com, 2005). That means, in a particular field or a region, the interests of the

dominion are exercised. Some domains can be very broad, such as airline reservation,

others might be narrower, such as scheduling batch process. Therefore, it is important to

define the domain so that the elements, structure, behavior and their relationship of the

manufacturing industry can be defined. The domain of this research is concerned with the

process flow modeling, with the primary focus on functional aspects of the manufacturing

industry. Following is an elaboration of the defined domain of this research.

In this research context, process flow is defined as a series of activities where

changes on physical objects and information can be observed in the designated environment

(Davenport, 1993). According to Lin et al. (2002), relation, behavior and agent are the main

39

components needed in representing the functional perspective. A relation is the interaction

between processes. Behavior denotes how a process executes actions and activities inside it

and an agent, also named as social actor or role. It can be interpreted as an agent conducts

itself to perform some activities according to its relation with other agents. Therefore, this

can be viewed as a process with a specific role to perform some activities that meet its

intention by following the relation with other processes. An activity indicates what a

process does. As for the designated environment, it is a manufacturing industry where it

can cover a wide boundary. Thus, the term plant is used to narrow the scope. According to

Goossenaerts and Bjorner (1994), a plant is a phenomena (process) flow capable of

sustaining the transformation of inputs parts into output parts. The input parts to the

plant can be supply orders from the plant like materials needed by the plant to perform the

daily operations or presented by the market to the plant for processing or absorption. The

output parts are the results that are ordered by customers or patterns determined by the

plant so that they can be delivered to the market. The basic idea is that the plant can be

thought of as operating as a set of interrelated processes. As can see, nowadays

manufacturing industries already can range from a heavy high technology sectors which

involves many and complex processes, to small sized sectors which only involve a few

simple processes to produce output to cope with the demands of the market. Thus, this

research narrows the scope of the plant so that the modeling tool is applicable to small to

medium sized manufacturing industries.

40

3.3 Modeling Tool Structure

Based on the domain analysis, the main elements of the modeling tool are the

processes and the relations of the processes. Through process, activities and behavior

aspects of the processes can be described. Relation of the processes denotes input and

output of the processes. However, input and output of the processes might involve data.

Thereby, a data handling aspect would be taken into consideration.

Since process is the focus, the structure of the modeling tool would need to able to

cover the process flows in a plant. According to Presley et al. (1993), an enterprise is a

collection of enterprise activities organized into a set of business processes which cooperate

to produce desired enterprise results. This shows that enterprise activities are important

for the existence of an enterprise. An enterprise activity is any organized behavior which

transforms inputs into outputs (Liles & Presley, 1996). This can be seen from Figure 3.1

which takes a system view of an enterprise. There are several sets of boxes which represent

enterprise activities logically organized into shaded ellipses. They are business processes,

which are organized into an enterprise represented by the larger box. This architecture can

be viewed as the enterprise itself and is represented as a system, which takes inputs and

transforms them into output.

Three structures are defined in this modeling tool structure. They are Domain

Process structure, Process structure and Activity structure. This is due to the fact that the

processes in a manufacturing industry can be divided into different categories. For

example, production processes, packaging processes. These processes can each be made up

of several sub processes where each of these sub processes performs their own activities.

These structures implicitly form a domain or boundary for job of a different nature of

41

processes in manufacturing industries. Interrelated processes are gathered in one domain

to perform their activities. Figure 3.2 shows the scenario described. The details regarding

these structures will be further elaborated in sections 3.3.1 to 3.3.3.

Figure 3.1: Enterprise as Collection of Business Processes

Domain Process Structure
I

Actiýtv ý truýire

0 ý rº ý

\/
Process Structures

QK I IActivity Structure

Figure 3.2: Modeling Tool Structures

Applying these structures in the modeling tool will provide a descriptive schema regarding

the model developed. Interrelated processes of the plant are gathered into one domain, the

sequence of the process flows is ordered and labeling enhances the understanding of the

42

model developed. Further, coding templates generated based on the model developed using

these structures can form the basis for a computer system to support a particular behavior

of the plant. Thereby, these structures are the fundamental modeling concepts and the

semantics of the research adopted that can facilitate the communication of the complex

relationship of information and activities in the manufacturing industries.

3.3.1 Domain Process structure

Domain Process is the structure that exists in the highest level of the structure of

the modeling tool's hierarchy of a domain. It is used to depict the major functions that make

up the complete flow of processes of a system or subject area in the highest abstraction. The

purpose of Domain Process (DP) structure is to provide a general view of a model that is

going to be developed. This view is developed based on the intention of the modeler so that

the modeler has explicit control in setting the model scope and orientation.

1 DPI 2
DP2

Figure 3.3: Relations between Domain Processes

Domain Process is a representation of a set of possible related processes and

functions under it. All the detail regarding the Domain Process (DP) are presented in the

next level by decomposing the Domain Process (DP) structure. Domain Process (DP)

structure can be decomposed into next level of details by either using Process (P) structure

or Activity (A) structure. Domain Process (DP) structure accepts inputs as external

43

resources that would be used, as data has to be available inside the Domain Process (DP).

The Domain Process (DP) can treat these data as its attributes. These attributes can be

used as factors that trigger the operations inside it and generate results. These results are

the output from the Domain Process (DP) to be delivered to another Domain Process (DP).

They can also be the input to the Domain Process (DP) if the Domain Process (DP) needs

them. Figure 3.3 illustrates this further, where Al is the input to the DP1 (DP stands for

Domain Process) and it produces the result of A2. Simultaneously, A2 also acts as input to

DP2. This forms a kind of interaction or relationship between Domain Processes (DP). A set

of Domain Processes (DP) exchange results and requests form the structure of the plant

operation.

3.3.2 Process structure

A Process (P) structure is a structure that comes into existence after the Domain

Process (DP) has been decomposed into next level of details. Process (P) structures created

at child level in return provide additional detail regarding the parent process. Thus,

Process (P) structures at the child level can be considered as components that make up

their parent process. This can be seen from Figure 3.4.

Process can be used to define structural parts and behavior parts of a Domain

Process (DP). Process (P) structure can accept input from external sources in order to meet

its own needs as its attributes. Process (P) structure can generate results as in Domain

Process (DP) structure, where this result can act as an input to the next Process (P)

structure. There is association between parent and child processes where at child level;

they are bounded within the scope of its parent. The amount of new information and control

44

is manageable by its parent so that the child level can perform the intended operation and

produce the intended results.

Hence, creating a child level with Process (P) structure can provide a clearer and

more organized structural view of the model developed. The level where the Process (P)

structure appears is known as middle level.

DPI

P1 i-_, 2

Top Level

Middle Level

DP = Domain
Process

P = Process

Figure 3.4 Decomposition activities of Domain Process to Process

3.3.3 Activity structure

Activity (A) structure defines functional part that would be employed by Domain

Process (DP) structures or Process (P) structures. At this level, decomposition into the next

level is no longer allowed. Therefore, it is known as Bottom Level, where functions or

methods of its Domain Process (DP) structure or Process (P) structure would be created to

implement the activities that need to perform so that the intended results can be produced.

If Domain Process (DP) structure is directly decomposed into Activity (A) structure,

then Process (P) structure would no longer come into existence. The same goes for Process

(P) structure. This can be seen in Figure 3.5 where there are two diagrams showing this

45

case. This not only tells us that the bottom level has been reached, but also indicates the

completion of the structuring of a particular Domain Process (DP) structure.

Activity (A) structure can accept new input as its variables. The roles of input and

output are the same as described in the Domain Process (DP) structure and Process (P)

structure.

Figure 3.5: Activity structure

3.4 Relation Structure

A Relation Structure can be used as Input Relation and Output Relation. Input

Relation is associated on the left side of a process structure. It denotes the data that are

needed by the process structure. Output Relation is associated on the right side of a process

structure. It denotes the result generated by a process structure. For example, in Figure

3.6, R2 is a Relation structure that carries the output from Process 1 and input to Process 2.

Therefore, in a Relation structure, it can have one set of data that is used by two different

process structures; this set of data is differentiated as input from one process structure and

output at the other process structure. This input and output forms the foundation of

relationship and connectivity of a process flow.

46

Besides this, there are two sources of information for defining Relation structure,

which are; predefined kind and post-defined kind. Predefined kind is the one that used to

indicate the beginning point of a level. This can be seen from Figure 3.6 where R1 connects

to Process 1 indicating the beginning point of the process flow. Since Predefined kind

Relation structure does not have any process structure associated with it at the beginning

of the Predefined kind Relation structure, then Predefined kind Relation structure can only

accept input. Post-defined kind Relation structure participates in building relationships

between process structures when there is a relation and connectivity required for the

process structures. Therefore, a Relation Structure that connects two process structures

like R2 or R3 in Figure 3.6 is known as Post-defined kind Relation Structure.

A Relation structure that is not associated to the left side of a process structure is

not allowed to come into existence. This is because there is no destination for the result

generated from a process structure.

Rl Process 1 R2 , po Process 2 R30 Process 3

Figure 3.6: Relationship of a Relation Structure

47

3.5 The modeling tool components and activities

Goals Data
Collection H Builds ý Code

Generation HCustomization

1
Outputs

Figure 3.7: The modeling activities in using the modeling tool

Domain Process (DP) structure, Process (P) structure and Activity (A) structure are

three major components of the modeling tool that are essential in modeling of the process

flow of a manufacturing industry in this research. In IDEFO (1993), a box in rectangle

shape containing name and number is used to represent a function. Based on this, a process

box in rectangle shape is used to represent the processes in a manufacturing industry.

However, there are three different process structures used in the modeling tool, thus three

different denotations are employed to represent each of them at the left bottom corner of

the process box. These denotations are DP for Domain Process structure, P for Process

structure and A for Activity structure. As for relationship between processes, a directed line

with arrowhead is used to denote the interaction. With these, they can graphically show

what the processes in the domain are, and describe the structure and relationship among

processes by visual notation.

These graphical notations provide the visual rendering of the model's elements; they

are sets of symbols that can be best used by following the guidelines. There are six

modeling activities that can be implemented as shown in Figure 3.7. Goal definition is first

48

in the process of model development. This is important because through defining the goal, a

boundary of the modeling can be defined and the modeler only needs to model the part that

is essential, without capturing everything into a single model. Moreover, it can help the

modeler to stay focused on the problem at hand. This would present a view that is essential

and a more easily understood model. After defining the goal, the modeler needs to perform

data collection. This is to gather and classify all the relevant information and behavior of

the processes.

Then the process of modeling is performed based on the data collected by using

modeling components provided. At this stage, the modeler can choose to depict the model in

a graphical representation or choose to generate the coding templates. Using the generated

coding templates, the modeler can perform customization of the processes. Output of this

customization is an application that can simulate the actions performed by the real

processes in manufacturing plant.

With these modeling components and modeling activities, a model of a system or

subject area can be constructed to meet different usages. For a new system, they can be

used to define the requirements and specify the operations. As for existing system, they can

support analysis and understanding of the system or subject area and provide logic for

potential changes of the system.

3.6 Use Case Driven Object Oriented Analysis

Analysis is the process of transforming a problem definition from a fuzzy set of facts and

myths into a coherent statement of a system's requirements (Bahrami, 1999). The main

intent of this activity is to capture complete, unambiguous and consistent requirements of

49

the system that must do to meet the users' requirements and needs. To meet the users'

requirements, it is necessary to understand them through finding out how users use the

system.

In object-oriented analysis (OOA), a unified approach is used to analyze the system

where actors (outside) and use cases (inside) are two initial important elements used to

define the system's behavior. They can be used to fill out the work started by domain

analysis on describing what the system does rather than how it does it from the user's

perspective. The following sub-sections describe the modeling tool system requirements

specification in terms of the objectives of the research defined in Chapter 1 and literature

reviews in Chapter 2.

3.6.1 Activity Diagram of the Modeling Tool

The analysis process begins with developing an activity diagram of the modeling process

of the modeling tool. Activity diagram can be used to provide a view of flows and describes

actions taken in the modeling tool. The main idea of developing an activity diagram at the

first place is to get a basic model which can provide better understanding of what sort of

activities are performed in the modeling tool. This helps the modeler to get familiar with

user requirements and provides aid in developing use cases.

Figure 3.8 shows the major activities of using the modeling tool to develop a model. The

modeler has the options to create a new workspace which allows the development of a new

model or retrieving an existing model. Creating a new model; modeler needs to define the

purpose of developing the model. Then the modeler can start to develop the model at three

different levels. These are Top Level, Middle Level and Bottom Level. The modeler can use

50

decompose and up level methods to navigate around these three levels. Once the model is

completely developed, then the modeler can generate the coding templates based on the

model developed to customize the processes. The modeler can also save the model developed

for future retrieval.

51

Select Options

[Create
Workspace]

i

Open Existing
Workspace

ý
Generate New

Workspace

Define
Modeling Goal

Draw Top
Level's Process

Flow

Continue
Drawing

Process Flow

[Top
Level]

[No
Decompose]

[Decompose

[Middle rraw
Middle Level]

vel's Process
Flow

[No
[Up Levell Decom ose

[Decompose]
[Bottom ýLjtjJýLevel

Draw Bottom Level]
Level's Process

Flow

[Coding [Save]
Template] [Save

Generate Code Save

Templates Developed
Model

[Save]

No Save

Figure 3.8: Activity Diagram of Modeling Process

[No Save

52

3.6.2 Use Case Model of the Modeling Tool

A Use Case Model basically is made out from actor and use case. The actors are the

external factors like hardware, human or other system that interact with a use case. Use

cases are scenarios that represent the flow of events that are initialized by the actors,

which can tell the use of the system then to understand the system requirements. The

Actor represents a role with respect to the system. Therefore, a single actor may interact

with many use cases and a use case may have several actors interacting with it. This is

because an actor can have many roles and a use case may need different roles to complete

the task. Figure 3.9 shows the Use Case Model of the Modeling Tool. In this Use Case

Model, two actors are defined. They are Modeler and Programmer. Modeler in this case

would be the one that understands the process flows inside the plant based on the goal of

developing the model. The Modeler can perform different activities of the modeling tool

which are elaborated by different use cases as shown in Figure 3.9. These use cases will be

discussed later. As for the programmer, this is the category of users who will perform the

customization of the coding templates generated by the modeling tool.

53

Figure 3.9: Use Case Model of the Modeling Tool

3.6.2.1 Create Model Use Case

The purpose of this use case is to show the scenario of developing a new model that

can represent the process flows of a plant according to the intention of the modeler.

However, the modeler needs to define the objective of developing the model before the

modeler can start to create it. Table 3.1 shows the sequence of interaction between a

Modeler and the system of a Create Model use case.

54

Actor Actions System Responses
1. Uses the modeling tool by starting 2. Display the application's window

the application executable file. without workspace.
3. Selects `New ... 'command. 4. Display `Goal Definition' dialogue.
5. Specify the objective of developing 6. Objective defined displays in the title

the model. bar.
7. Perform Draw Process Flows. 8. Display the process flow of the model

at the workspace.

Table 3.1: Actor Actions and System Responses for Create Model Use Case

3.6.2.2 Edit Model Use Case

The purpose of Edit Model use case is to perform modification like adding, deleting,

and changing the modeling elements of the model developed during the Create Model use

case. Thus, the model must exist before any editing can be performed. Table 3.1 shows the

sequence of interaction between a Modeler and the system of a Create Model use case.

Actor Actions System Responses
1. Uses the modeling tool by starting 2. Display the application's window

the application executable file. without workspace.
3. Selects `Open

...
'command. 4. Display `File Open' dialogue.

5. Specify the model name.
6. Confirm selection 7. Remove dialogue from display.

8. Display the model of the model name
specified.

9. Perform Draw Process Flows 10. Display the modified process flows of
the model at the workspace.

Table 3.2: Actor Actions and System Responses for Edit Model Use Case

3.6.2.3 Generate Coding Templates Use Case

The purpose of this use case is to generate coding templates according to the model

developed for programmer to perform customization. Thus, the model must exist and be

complete in order that customization work can be performed by programmer. Table 3.3

55

shows the sequence of interaction between a Modeler and the system of Generate Coding

Template use case.

Actor Actions System Responses
1. Selects code generation command 2. Display indication of generating

from the modeling tool application. coding template in progress.
3. Display message box to indicate

completion of generation.

Table 3.3: Actor Actions and System Responses for Generate Coding Template Use Case

3.6.2.4 Finish Modeling Activities Use Case

The purpose of this use case is to exit or close the application after performing

whatever necessary activities of modeling. Thus, the modeling tool application must be

executed. Table 3.4 shows the sequence of interaction between a Modeler and the system of

a Finish Modeling Activities use case.

Actor Actions System Responses
1. Select `Exit ... ' command. 2. Remove the application's window.
Actor Actions
1. Select `Exit ... ' command.

Table 3.4: Actor Actions and System Responses for Finish Modeling Activities Use Case

3.6.2.5 Store Operation Use Case

The purpose of this use case is to save the model developed to the local storage.

Thus, the modeler must provide a name to the model developed. This use case can be

described with more details by creating child use cases. The purpose of creating child use

case is to gather all the related use cases into a package to facilitate management of

complexities and reduce the number of use cases in the package. Thereby Store Operation

System Responses
2. Remove the application's window.

56

use case can be packaged into the services it renders. Figure 3.10 shows the Package of the

Store Operation which consists of two child use cases. They are Save Operation use case

and Save As Operation use case.

Store Operation

Figure 3.10: Package of Store Operation.

The purpose of Save Operation use case is to save the model developed to the specific

file directory. The modeler only needs to specify the name of the model once to save the

model and use the save operation to save the same model without the need to enter the

name of the model. Table 3.5 shows the sequence of interaction between a Modeler and the

system of Save Operation use case.

Actor Actions System Responses
1. Selects `Save... ' command. 2. Display save dialogue.
3. Specify model name.
4. Confirm selection. 5. Store the model developed to local file

system.

Table 3.5: Actor Actions and System Responses for Save Operation Use Case

The Save As Operation use case extends the Save Operation use case. This

relationship is known as extends association. Extend association is used when there is one

use case that is similar to another use case but does a bit more or is more specialized; it is

57

like a subclass in object-oriented concept (Bahrami, 1993). This use case is used to let the

Modeler save the model developed into different name or directory from the original one.

Table 3.6 shows the sequence of interaction between a Modeler and the system of Save As

Operation use case.

Actor Actions System Responses
1. Selects `Save As... ' command. 2. Display save as dialogue.
3. Specify a model name.
4. Select a directory if necessary.
5. Confirm Selection 6. Store the model developed to local file

system with the name specified and
into directory specified.

Table 3.6: Actor Actions and System Responses for Save As Operation Use Case

3.6.2.6 Draw Process Flows Use Case

The purpose of this use case is to depict a scenario of the modeler used modeling

elements like process, relation and text to develop a specific model. During drawing process

flows, a concept of Modeling Tool Structure (mentioned at Section 3.3) would be applied.

Draw Process Flows use case is a general use case which can be detailed by creating several

child use cases. Figure 3.11 shows the Package of Draw Process Flows which provides

details regarding Draw Process Flows use case.

Draw Top Level use case is used to depict the scenario of drawing the process flows

at the top level of the model. In this case, the workspace of the modeling tool must be ready

before the Modeler can begin to draw the process flows. The Modeler can use different

modeling element to draw the process flows at the top level but Process (P) structure and

58

Activity (A) structure are not available for use. Table 3.7 shows the sequence of interaction

between a Modeler and the system of Draw Top Level use case.

Actor Actions System Responses
1. Select specific modeling elements 2. The selected modeling element

from the application window and displays at the specific location
place it on the workspace. within the workspace.

Table 3.7: Actor Actions and System Responses for Draw Top Level Use Case.

Draw Process Flows

Figure 3.11: Package of Draw Process Flows

Draw Middle Level use case is used to depict the scenario of drawing the process

flows at the middle level of the model. In order for the Modeler to draw process flows at the

middle level, the workspace of the modeling tool must be ready for use, the top level of the

model must exist and the Modeler cannot use Domain Process (DP) structure in developing

59

the middle level process flows. Table 3.8 shows the sequence of interaction between a

Modeler and the system of Draw Middle Level use case.

Actor Actions System Responses
1. Select specific modeling elements 2. The selected modeling element

from the application window and displays at the specific location
place it on the workspace. within the workspace.

Table 3.8: Actor Actions and System Responses for Draw Middle Level Use Case.

Selecting Specific Element use case extends the Draw Middle Level use case. In this

case, the Modeler can select either Process (P) structure or Activity (A) structure to draw

the middle level of the model. Selecting either one of them will make the other unavailable

for the Modeler to use. Figure 3.12 shows that the Package of Select Specific Element

consists of two child use cases. They are Select Process Element use case and Select

Activity Element.

The purpose of Select Process Element use case is to let the Modeler to select the

Process (P) structure in order to implement tasks relevant to it. Selection of it disables the

Activity (A) structure to prevent coexistence of Process (P) structure and Activity (A)

structure at the same level under one Domain Process (DP) structure. Table 3.9 shows the

sequence of interaction between a Modeler and the system of Select Process Element use

case.

Actor Actions System Responses

1. Select Process element. 2. Disable the Activity element.
Actor Actions
1. Select Process element.

Table 3.9: Actor Actions and System Responses for Select Process Element Use Case.

System Responses
2. Disable the Activity element.

60

Select Specific Element

Figure 3.12: Package of Select Specific Element

The purpose of the Select Activity Element use case is to let the Modeler select the

Activity (A) structure in order to implement tasks relevant to it. Selection of it disables the

Process (P) structure for use by the Modeler. Table 3.10 shows the sequence of interaction

between a Modeler and the system of Select Activity Element use case.

Actor Actions System Responses
1. Select Activity element. 2. Disable the Process element.
Actor Actions
1. Select Activity element.

Table 3.10: Actor Actions and System Responses for Select Activity Element Use Case.

Draw Bottom Level use case is used to depict the scenario of drawing the process

flows at the bottom level of the model. In this case, the top level and middle level of the

model must exist. Besides that, the Domain Process (DP) element and Process (P) structure

are not available for the Modeler to use. Table 3.11 shows the sequence of interaction

between a Modeler and the system of Draw Bottom Level use case.

System Responses
2. Disable the Process element.

61

Actor Actions System Responses
1. Select specific modeling elements 2. The selected modeling element

from the application window and displays at the specific location
place it on the workspace. within the workspace.

Table 3.11: Actor Actions and System Responses for Draw Bottom Level Use Case.

Use Modeling Elements is used to let the Modeler use the modeling elements of the

modeling tool to develop the model. At different levels of the model, different combination of

modeling elements would be available for Modeler to use to develop the model. Thus, Draw

Top Level use case, Draw Middle Level use case and Draw Bottom Level use case all use

this use case in the process of developing the model. This relationship is known as Uses

association. The Uses association is adopted if there are common sub-flows in the described

use cases (Bahrami, 1999). These common sub-flows can be extracted to become a use case

of its own. This new use case then can be used by other use cases. The Uses association

avoids redundancy by allowing use case to be shared. Table 3.12 shows the sequence of

interaction between a Modeler and the system of Use Modeling Elements use case.

Actor Actions System Responses
1. Select specific modeling elements 2. Based on the selection and level,

from the application window certain modeling elements become

according to the requirements. unavailable for use.

Table 3.12: Actor Actions and System Responses for Use Modeling Elements Use Case.

The Use Relation Element use case is used to depict the scenario of selecting the

Relation element to establish relationship between processes. Relation elements or

structures can act as input to a process or as output from a process so that interaction of

62

processes can be established. This use case uses Use Attributes Functions. Table 3.13

shows the sequence of interaction between a Modeler and the system of Use Relation

Element use case.

Actor Actions System Responses
1. Select Relation element from the 2. The Relation element displays at the

modeling elements pool and place it specific location within the
on workspace. workspace.

Table 3.13: Actor Actions and System Responses for Use Relation Element Use Case.

The Use Attribute Functions use case is used to depict the scenario of how the

Modeler customizes the properties of the Relation element according to its needs.

Customized properties of the Relation element would act as attributes to a process. Figure

3.13 shows the Package of Use Attribute Functions. It consists of two child use cases. They

are Add Attributes use case and Remove Attributes use case.

Use Attribute Functions

Modeler

Figure 3.13: Package of Use Attribute Functions

The purpose of the Add Attributes use case is to let the Modeler add properties of

the Relation element to a process as attributes. Thus, the Relation element and process

63

must exist so that the task can be completed. Table 3.14 shows the sequence of interaction

between a Modeler and the system of Add Attributes use case.

Actor Actions System Responses
1. Select the constructed Relation 2. Display options menu for the

element on the workspace. selection.
3. Select "Add Attributes ... " command. 4. Remove options menu and display a

dialogue for adding attribute.
5. Specify the type and name of the

attributes
6. Confirm entries. 7. Add entries to the Attributes List.
8. Repeat step 5 for continuing adding

attribute process.
9. Confirm Selection. 10. Remove dialogue from display.

Table 3.14: Actor Actions and System Responses for Add Attributes Use Case.

The purpose of Remove Attributes use case is to let the Modeler remove irrelevant

properties of the Relation element. This would cause the attributes of a related process to

be removed. Table 3.15 shows the sequence of interaction between a Modeler and the

system of Remove Attributes use case.

Actor Actions System Responses
1. Select the constructed Relation 2. Display options menu for selection.

element on the workspace.
3. Select "Remove Attributes ...

" 4. Remove options menu and display a
command. dialogue for removing attribute.

5. Select the attributes to remove.
6. Confirm remove selection. 7. Remove attribute from the Attribute

List.

8. Repeat step 5 for continuing
removing attributes process.

9. Confirm selection. 10. Remove dialogue from display.

Table 3.15: Actor Actions and System Responses for Remove Attributes Use Case.

64

The purpose of Use Navigation Operator use case is to move from one level to

another level based on the rules and constraints mentioned on the Modeling Tool Structure

(see Section 3.3). This use case is used by Draw Top Level use case, Draw Middle Level use

case and Draw Bottom Level use case. Figure 3.14 shows the Package of Use Navigator

Operator. It consists of four child use cases. They are; Decompose Domain Process use case,

Decompose Process use case, Return to Domain Process use case and Return to Process use

case.

Use Navigation Operator

Modeler

Figure 3.14: Package of Use Navigation Operator

The purpose of Decompose Domain Process use case is to move from Top Level to

Middle Level by decomposing Domain Process element. Thus, when the Modeler performs

this action, the Modeler must be in the Top Level of the model. Table 3.16 shows the

sequence of interaction between a Modeler and the system of Decompose Domain Process

use case.

65

Actor Actions System Responses
1. Select Domain Process element. 2. Selected Domain Process element get

the focus.
3. Select 'Decompose... ' command. 4. Move to Middle Level.

Table 3.16: Actor Actions and System Responses for Decompose Domain Process Use Case.

The purpose of Decompose Process use case is to move from Middle Level to Bottom

Level by decomposing Process element. Thus, the Modeler must be in the Middle Level of

the model when performing this action. Table 3.17 shows the sequence of interaction

between a Modeler and the system of Decompose Process use case.

Actor Actions System Responses
1. Select Process element. 2. Selected Process element get the

focus.
3. Select 'Decompose... ' command. 4. Move to Bottom Level.

Table 3.17: Actor Actions and System Responses for Decompose Process Use Case.

The purpose of Return to Domain Process use case is to move from Middle Level

back to Top Level. Thus, the Modeler must be in the Middle Level of the model when

performing this action. Table 3.18 shows the sequence of interaction between a Modeler and

the system of Return to Domain Process use case.

Actor Actions System Responses
1. Select `Up Level... ' command. 2. Move to Top Level.
Actor Actions
1. Select `Up Level... ' command.

Table 3.18: Actor Actions and System Responses for Return to Domain Process Use Case.

The purpose of Return to Process use case is to move from Bottom Level back to

Middle Level. Thus, the Modeler must be in the Bottom Level of the model when

performing this action. Table 3.19 shows the sequence of interaction between a Modeler and

the system of Return to Process use case.

System Responses
2. Move to Top Level.

66

Actor Actions System Responses
1. Select `Up Level... ' command. 2. Move to Middle Level.
Actor Actions
1. Select `Up Level... ' command.

Table 3.19: Actor Actions and System Responses for Return to Process Use Case.

3.6.3 Interaction Diagrams

Interaction diagrams capture the behavior of a single use case by showing the

pattern of interaction among objects (Whitman et al., 2001). Thereby, interaction diagrams

are associated with a use case. The diagrams provide views of how the system runs by

showing a set of actors and objects communicating with each other to perform the steps of

the use case defined in Section 3.6.2. The communication is established through message

passing between the actors and the objects.

A Sequence diagram is one kind of the interaction diagrams. It describes the

behavior of a system by showing the interaction of participated objects through their

lifelines and the messages exchange in a time sequence. Messages received by an object

triggers one of its methods to execute. Sequence diagrams are therefore useful for

identifying the operations that have to be included in each class (Busby & Williams, 1993).

This would help in identifying classes needed to develop the modeling tool application.

Figure 3.15 shows the sequence diagram for the Create Model use case defined

above. The diagram is self explanatory for communication between objects participating in

the interaction. Other sequence diagrams for Use Case models discussed in Section 3.6.2

can be found in Appendix A.

System Responses
2. Move to Middle Level.

67

Modeler I I Application I I NVork%pace

1. Select 'Nc%%... ' command

2, Display Goal Definition Dullogtic

3. I: ntcr Goal of Modcling

ý

ý ý ý
4. Display dcfincd goal at talc har

S. l'crfonn I)ra%% 1'rcxcs% I lom

I

ý G. I)ispluN prixcss Ilo%%s of the muJcl

ý
ý ý ý ý

ºý
ý

H

Figure 3.15: Sequence Diagram of Create Model Ilse Case

3.6.4 Class Diagram

After knowing how the system runs, it is essential to move forward to understand

the interior of a system. Therefore, a class diagram is used to describe the structure of the

modeling tool system. A class diagram is composed of classes and the relationships union;

them. The classes in the class diagram represent things that are necessary to make the

modeling tool a functional application. They define the attributes, methods and therefore

the applicability of their instances. Figure 3.16 outlines the attributes and methods of the

major classes identified.

Identifying classes is one of the major activities of object-oriented anal)"sis. This is

because each class that is identified in the Class Diagram of the Modeling Tool has a purpose

that would assist the achievement of the system's goals and requirements. 'fable 3.2(1 describes

the details regarding the purposes of each class.

69

Application

-4 retrieve

Workspace

DelProcessBox
DelArrow
DelText
DelAttribute
Move
DelLevel
UpLevel
Decompose
CodeGenerate

Tools

ý ? ? ? - 11

EnclosingRect

Zý ZS L'S 2y4i

Activity

I
DomainProcess

DrawProcessBox
SetName
Move
Serialize

Process

DrawProcessBox
SetName
Move
Serialize

Text

TextName
StartPoint

GetText
EditText
Serialize

Code Generator

Relation

StartPoint
EndPoint

DrawArrow
MoveArrow
ResizeArrow
Serialize

Attributes

Name
Type

Add_Attrib
Del Attrib

DrawProcessBox
SetName
Move
Serialize

store

Figure 3.16: Class Diagram of Modeling Tool

LocalFileSystem

uses job,

69

Class I Purpose
Application This is the class that provides the window, title bar, frame and

etc that are necessary to display the application's window and for
rest of the classes woil d be its components.

Workspace Provides the space and view for the process flows to reside and
display.

Tools This is an abstract class for modeling components. It defines the
common behaviors that can be inherited by more specific classes
such as DomainProcess class, Process class, Activity class, Line
class, Relation class and Text class.

Code Generator This is the class that retrieves the necessary information from the
model builds on the Workspace. Then, from the information

gathered generates the coding templates.

DomainProcess It models the processes at the Top Level of the subject area of it
manufacturing industr .

Process It models the processes at the Middle level of the subject area of
a manufacturing industry.

Activity It models the processes at the Bottom Level of the subject area of
a manufacturing industry.

Relation It provides the relationship between processes at different levels

of the-subject area of a manufacturing industry.
Text It provides labels, notes at the workspace to assist understanding

on the model developed.
Attributes It is the class that manages the operation of attributes that are

needed by processes.
Local FileSystem It stores_the_data of the system into the local file system.

Table 3.20: Description of purposes of the classes identified at Object-Oriented Analysis

3.7 Conclusion

This chapter provides a discussion of how use-rase driven object-oriented analysis uses

different models to achieve the objectives and capture the requirements of this research. Through

analysis, it is able to find out the "what" aspects of the studied context by developing use case

models and the behavior of the 'what aspects' by developing sequence diagrams. Then, classes

are identified based on the models previously developed. ('lasses identified during analysis

70

provide a framework for the design phase. The next chapter will describe the process of the

object oriented design used to develop the modeling tool.

71

4 OBJECT-ORIENTED DESIGN OF MODELING TOOL

4.1 Introduction

In this chapter, object oriented design process is applied to the discovered modeling

tools' objects during analysis. In the object oriented design phase, the emphasis is on the

implementation and computer domain rather than on the application domain. In the

application domain, real world entities are playing the major roles like who are the players

and how they interact to perform tasks in the application as in object oriented analysis.

Object oriented design process is developed based on the object-oriented analysis by

refining classes identified during analysis, defining message protocols for all objects, as well

as data structures and procedures. In object-oriented approach, analysis and design are

close to each other. Moving from analysis phase to design phase is like decomposition

technique where the analysis phase presents a model of a real life situation for which an

application is created and design provides the implementation of this model.

Object oriented design focuses on the implementation aspects of the modeling tool.

Therefore, the object oriented design phase will refine and complete the class diagram

identified during object oriented analysis. Then designing access and view layers classes

are described in order to incorporate the modeling process structures and activities

described in Chapter 3 so that the concepts of the modeling process can be converted into

actual objects that can perform the required tasks.

72

4.2 Refine and complete the class diagram

In this section, a class's attributes, methods and associations identified during object

oriented analysis are refined. The refinement can be done by changing or adding details to

the classes with visibility and implementation type to elevate the class to enable

implementation. Visibility in this case refers to accessibility to class. It can be public

visibility, protected visibility and private visibility. Implementation type determines the

type of operations that are allowed and the range of values that can be stored by attributes.

4.2.1 Refine Attributes

This process goes through Modeling Tool classes by refining existing attributes of

the class by adding extra information to the attributes like visibility and implementation

type. Furthermore, new attributes can be added to facilitate implementation of the class.

Figure 4.2 shows the refined class diagram by adding details to the attributes of the classes

identified in the object oriented analysis. The details of the class CMoToolDoc and

CMoToolView are shown at Figure 4.3 and Figure 4.4 respectively

4.2.2 Design Methods

This process is to specify the algorithm by using an UML activity diagram for

methods identified during object oriented analysis. Design methods' algorithms with UML

activity diagram are to prepare the system for implementation, since UML activity diagram

can be translated into any programming languages easily. Figure 4.1 shows the sample of

the Activity Diagram for the CMTElement class GetBoundRect method. Other activity

diagrams for other methods defined can be found in Appendix B.

%J

CMI'}ilements: +GetBoundRectQ: BoundingRect

ßoundingRect - ni [iclosingRect

RoundingRecI. IntlateRect(

in Pen+I, In Pell fI)

return I3oundingRccl

OO
Figure 4.1: Activity Diagram for CMTElement class GetBoundRect method

74

CObject

A retrieve

I
CMoToolView CMTElements

#m_ElementType : WORD
#m FlemID : C'String
#m FnclosingRect : CRect
#m Level : int
#m ParentlD : C String
gin Pen : int
#m ProcName : CString

#CMTElementsO
+-CMTEIementsO
+DrawO
+Gctt3oundRectO
+GetEletnlDO
+GetElemTypeO
+GetPiDO
+GetsysLevelO
+MoveO
+SerialircO

L-7ýý

C DProccss

tICDProcessO
+C'DProcessO
+GetProcNameO
+SetProcNameO

C Proccss

#CProccss()
+CProcess()
+GctProcNamc()
+SetProcName()

C'"I'cxt

-mStartPoint : CPoint

-nl String : CString

#CI'cxt(
+Ci cxtO

store

pp aI
CAttribute

-m_AttribNamc CString

-m_AttribType CString

-m_ProcName : CString

-m ProclD : CString

HCAttributcO
+CAttributeO
+GetAttribNameO
+GetAttrib"I'ypeO
+GetProclDO
+GetProcNamcO

CActivity

4CActivityO
+CActivityO
+GctProcNamcO
+SetProcNameO

ý
It LISCS

CRelation

-m_ArrayPoint : CPoint*

-m StartPoint CPoint

-III EndPoint : CPoint

-m StartCon CString

-m EndCon CString

#CRelation()
+CRelationO
+DrawArrow()
+GetStartConO
+GetFndConO
+LineStart()
+LineFndO
+ResetConlnlöO
+Resize()
+SetStartConO
+SeltindCon()

CMTCodeGen

-m_DPFiIcH : CString

-m_DPFiIcC : CString

-m_FileDir : CString

-m MTPath : CString

-m DocNanu : CString

-m CodeElemLisC CTypcdPtrl. isl
-m_DPReI_List : CTypedPtrList

-m_PRel_List CI'ypedPtrList

-m_ARelList CTypedPtrList

-m_Attrib_List : CTypedPtrList

-mTmpAttribList : C: TypcdPtrList

+AddAttriblistO
+AddCodel. istO
+CM"I'CodeGenO
+-CMTCodeGcnO
+SetDocNameO
+SetM"I, PathO
+StartGcnCodcO
#A7, erolilemO
#Check PROCFxistO
#Collcct I'op131cmO
#CreateAl3odyO
#CrcatcAßodyP 1 p
#CreateA13odyP2O
4CreateAE3odyP3O
#CreateFilePFrameO
#CreatcFoldcrO
#CreateFolderNameO
#CreateNameDl'FilesO
#DPNextLevelO
#FndCmdLineO
#Get I stAFlementO
Akt lstDPl? IcmentO
#Get I stPFlementO
#GetAttrib2ProcCO
#GctAttrib2Procl 1O
#GctFlemNamcO
#GetParentNantcO
#InitWriteFileO
#NextActStructO
#NextActStructC'trlO
#NextDProcStructO
#NextDProcStructCtrlO
#NexiprocStructO
#NextProcStructCtrlO
#I'NextLevelO
#P7erol: IcmO
#SameFolderNamcO
WriteFilcCO
#WriteFile 110

CMoToolDoc

Figure 4.2: Refined class diagram by adding details to the attributes

75

4.3 Design Access Layer

The main idea of having an access layer is to create a set of classes that know how to

communicate with the place(s) where the data actually reside (Whitman et al., 2001),

whether it be database, file or through internet. Regardless of where the data actually

resides, the access layer has to be responsible for the request and result translation. Objects

in the access layer need to ensure that data request from the modeling process layer are

translated into appropriate protocol for data access. An access layer must also be able to

translate the retrieved data back into the appropriate modeling objects. Thereby, the access

layer provides a link between the modeling object and data storage.

In this case, the objects of access layer created would communicate with the file

system. However, writing a class object to a file is different from writing a basic data item

like an integer or a character string. This is because class objects contain both function

members as well as data members, and will have access specifiers. Furthermore, sometimes

a class object might contain a variety of objects, and each may contain other objects and

that structure, like inheritance, may continue for a number of levels. The file system must

be able to store complete specifications of all the class structure involved. Therefore, the

access layer that is designed will adopt a mechanism called serialization, which is

supported by Microsoft Foundation Classes (MFC). The basic idea behind serialization is

that any class that needs to be stored and then retrieved at a later date must be able to be

stored to disk and retrieved later (Schildt, 1998), which is similar to the role of an access

layer. In order to use serialization, document/view architecture of MFC needs to be adopted.

76

The reason for this is because document/view classes provided by MFC can automate the

storage of documents (in this case refer to the states of objects created) to the disk files.

Figure 4.3 shows that a class diagram which is named as CMoToolDoc with its

attributes and methods and is used as an access layer. This access layer provides an

interface or a place for data to be transformed into an appropriate form to move between

data storage or modeling objects.

CMoToolDoc

#m ActNurn : nt
#m AFlag : boot
#m AttribList CTypcdPtrList
#m_DocName CString
#m DPFIag : boot
#m DProcNum : int
#m MTElement : WORD
#m ('Flag: boo]
#m ProcNum int
#mRelNum : int
#m "I'mpF. leinList : C: TypedPtrList
#m MT1. IemcntList : CI'ypcdPtrList
#m TxtNum : int

+Addnurib()
+AddElcmentO
+Add"11npElementO
+CleanElemO
+CountEleml. istO

+CountfElemListO
+DeleteAttribO
+DeleteMTElementO
+GetActNumO
+GctAttribL. istl IeadPosO
+GetAttribNcxtO
+GctDocNamcO
+GetDProcNumO
+Getl: Icment TypeO
+GetFileNameO
+GetListElementl'ypeO
+GetListHcadPositionO
+GetNextO
+GctProcNumO
+GctRclNumO
+Getl'mpHcadO
+Get FmpListl leadPosO
+Getl'mpl, istTailPosO
+GetTmpNextO
+GetfmpPrevO
+GctTxtNumO
+IsEmptyO
+-CMö TooIDocO
#CMoToolDocO
#GetFileNameO

77

Figure 4.3: CMoToolDoc Class Diagram used as Access Layer for object storage and
Interoperability.

4.4 Design View Layer

The purpose of designing a view layer which is also known as user interface layer, is

to provide an environment of interaction between a user and the computer system that is as

simple and natural as possible. A View layer provides an abstraction layer to the users.

This is because through a view layer, users are presented with a set of operations that

allow users to manipulate the modeling process without touching on the aspects of how the

modeling process is implemented. A user takes an action on the view layer that is

translated into a request to perform some kind of modeling processing. The view layer is

updated when the processing is completed. The updated view layer can display new

information, change a window's appearance; open a new window and other actions. The

user knows nothing about the background activities of how to update the view layer. View

layer objects are the only visible objects that user of the modeling tool application can

interact with. Therefore, designing the view layer is important so as to determine how it is

presented to the users.

As aforementioned, the role of the view layer objects is to handle all the interaction

with the users by responding to them through sending appropriate message to the modeling

object. Besides this, the view layer objects also control the interface by outputting the

appropriate results to the user. Therefore, the interface object will operate as buffer

between the user and the rest of the business objects (Jacobson et al., 1995), which in this

case are the modeling process objects.

78

In order to identify and design view layer objects, it is important to understand the

view layer requirements. A Use case model developed at object oriented analysis phase can

assist in this matter. This is because a use case model is developed from the perspective of

users. So it can help to understand the users' objectives and tasks and subsequently

capture the interface requirements of the system. Besides use case models, sequence

diagrams can also assist in capturing the requirements and responsibilities for the view

layer objects. This is because sequence diagrams can also provide information regarding the

user-system interaction. After identifying the interface objects, assign each responsibility to

the class to which it logically belongs. Then, define the relationship among the view objects.

The view layer of this research would provide an interface for a set of Modeling

Tools, functions for controlling the structure of the process to be created, functions for

creating coding templates for the processes captured and a workspace for all the operations

of the modeling to be implemented. Figure 4.4 shows the class diagram of the view layer

which provides a set of attributes and methods. These attributes and methods are used to

interact with the real modeling operations in the background without the necessity of

knowing how the modeling operations are performed. Therefore, any changes applied to the

modeling operations will not affect the view layer.

79

CMoTooiview

rn_Arrowi leadDir : BOOL
#m BeginResize : BOOL
#ni CursorPos : CPoint
#m Decllag : boot
#m FirstPoint : CPoint
#m FirstPos : CPoint
#m MoveMode 11001,
#m_Orgn I Point: CPoint
#m Orgn2Point : CPoint
#m_pMTSelected : CMTElements*
#m_pReProc : CMTElements*
#nI ProcSelect: boot
#m-P'I'mpM l'Flem: CMTElement*
#mRclateFlag : nt
#m ResizeMode : 8001,
#m RemFlag : boot
#m SecondPoint CPoint
#msquareBack : CPoint
#111

_
square Front: CPoint

#m
_sysLevel

: int
#m I 'mpPID : ('String
#m UnFlae : boo]

+addAttribListO
+DcletcAttrib0
4 Chcck2ndl: IemFlagO
#CheckliaveAttribO
#Checklnput2ProcO
#CM0, I'oolView0
#CreateElenentO
#DcllaemAttribO
#GctUpPlnl, oO
#MovelilencntO
#OnAttribO
#OnCodeGcnO
#OnDecompActO
#()nDcwnpose0
#OnDclete0
#OnDrawO
#OnLßuttonDownO
#OnLßuttonUpO
#OnMouseMoveO
#OnMoveO
#0nProcsclect0
#OnRßuttonDownO
#OnRL3uttonUpO
#(AiRcnwvcLcvelO
#OnRcnameO
#OnResizeO
#OnUpdatcDecomposeO
#OnUpdatcRemovcLcvclO
#OnUpdatcUpl. cvclO
#OnUpLevelO
#RcdunRclationO
9 RdGditl3oxO
#RclSourcclJcnO
#RetContcnt0
#RctSubElcrosO
#SelectM: I'ElementO
#SctConStatusO
#SctlJtStatusO

810

Figure 4.4: CMoToolView class diagram that
is used as view layer for interaction between
user and modeling process layer

4.5 Architecture of Modeling Tool

The Modeling Process Layer is the core or center of this modeling tool. The View

Layer provides an interface of the modeling tool. The creation of modeling objects and

issuing actions of the modeling tool are sent through the View Layer to the Modeling

Process Layer. Then the Modeling Process Layer carries out the tasks required and returns

the results of the actions back to the View Layer. The Access Layer performs the actions

that are required by the Modeling Process Layer by storing or retrieving the modeling

objects data to where directed by Modeling Process Layer. Figure 4.4 shows the relationship

of View Layer, Modeling Process Layer and Access Layer.

View Layer

T
Modeling Process

Layer

i
Access Layer

Figure 4.5 Relationships of View Layer, Modeling Process Layer and Access Layer

81

Based on the relationships of View Layer, Modeling Process Layer and Access Layer,

the architecture of the Modeling Tool is designed, which is shown in Figure 4.5. In this case,

the Workspace represents the View Layer, which provides the interface like Modeling Tools

icons, file menus and others for interaction between a user and the Modeling Tool

application. The Modeling Tools, Structure Controller, Code Generator and Code Engine

represent Modeling Process Layer and File System represents the Access Layer.

Modeling Tools is a set of classes which consists of Domain Process class, Process

class, Activity class, Relation class and Text class. These classes are used to create

components that are needed in order to create a model in the Workspace. These components

are related to the Domain Process (DP) structure, Process (P) structure, Activity (A)

structure and Relation structure which are discussed at Chapter 3. They are used to build

the structure of a process model which can provide a logical view of the process flow in the

shop floor. Structure Controller is a set of functions that are used to create and organize the

structure of the processes created in the Workspace. Creating a child process from a parent

process is one of the tasks of the Structure Controller. The Structure Controller ensures the

processes created in the Workspace are according to the protocols of the Domain Process

(DP) structure, Process (P) structure, Activity (A) structure and the Modeling Tool

Components and Activities mentioned in Chapter 3. For example, creating a Domain

Process (DP) structure at Level 1, Structure Controller would only allow operation of

decomposition to the next level. Moving from child level to its parent level only occurs when

there is parent and child relationship established in the process. Modeling Tools and

Structure Controller have a close relationship. This is because Modeling Tools and

Structure Controller are devised from the Modeling Tool structure and Relation Structure

82

which are discussed in Section 3.3 and Section 3.4. They are separated into two different

components even though they are from the same concepts. This is to facilitate the design

and implementation of the application purpose.

The Code Generator is the function that is used to create the coding templates from

the Modeling Tool structure and Relation structure that are used to create the model in the

Workspace. Even though Text is one of the components of the Modeling Tool, it is not taken

into consideration during the process of generating coding templates from the model

developed. The Text component only serves the purpose of explanation and clarification of

the model developed. For example, as Section 3.5 mentioned, definition of goal for modeling

is the initial step of the model development. Thereby, Text component can be used to state

the goal of the modeling in the Workspace. This can serve as navigator for the modeler to

develop the model and as well as a communication media for the other fields of

functionalities to understand the model developed.

A model that is developed in the Workspace is made up from Domain Process (DP)

structure, Process (P) structure, Activity (A) structure and Relation structure. This model is

developed under constraints and rules that are governed by the Structure Controller.

These structures that are created in the Workspace are basically stored in a Buffer with

special identification on them. Then the Code Generator would retrieve the modeling

objects that are stored in the Buffer and then pass all the modeling objects data to the Code

Engine for creating coding templates.

At the Code Engine, the Gatherer would receive the modeling objects data and

dispatch the data to appropriate holders based on the identification assigned to each of the

Modeling Tool structures and Relation structures. The purpose of the holders is to maintain

83

a set of related data so that the data can be retrieved in an organized way. The Detector

retrieves the data from the holders of the Gatherer and then analyzes the data. The

analysis process is applied using a top down approach to examine the data retrieved. The

Detector would first look for primary Domain Process (DP) structure that can trigger the

operations from the Buffer. Then, it would issue a command to create a coding template.

The necessary code for that Domain Process (DP) structure would be created at the coding

template. After that, it would search for its child level by determining whether the child

level is Process (P) structure or Activity (A) structure. If it is Middle level, Process (P)

structure will come into existence, then the Detector would issue command to create new

coding template with necessary codes to be created for the primary Process (P) structure.

Then the Detector needs to dig deeper to look for the Process (P) structure's associated child

level, which is at the Bottom level where the Activity (A) structure will play its roles. All

the necessary information of the primary Activity (A) structure like its properties is

collected. Then programming codes are added to the coding template created for the

primary Process (P) structure. It would move horizontally to search for its next Activity (A)

structure that is /are connected to it. Programming codes are added to the coding template

if the Detector discover a new Activity (A) structure. This process would continue until all

the connected Activity (A) structures of that level are examined. Then, the Detector would

return to parent process of the Activity (A) structures that are under examination. It would

determine the level at which the parent process resides. This determination process is

based on simple formulas:

" Level 2 + Bottom Level = Domain Process (DP)

" Level 3 + Bottom Level = Process (P)

84

If the child process is at Level 2 and Activity (A) structure appears then its parent process

must be Domain Process (DP) structure. However, if the child process is at Level 3 with

Activity (A) structure presents then the parent process must be Process (P) structure.

After returning from child level to the parent process, the Detector would examine

the next process structure (which either can be Domain Process (DP) or Process (P)

structure). Programming codes are added for the new process structure detected (either

Domain Process (DP) or Process (P) structure). The new process structure is examined for

its child level and collects all the necessary data from its child level and programming codes

are created if there exists a child level. This process would continue to loop until the last

Domain Process (DP) structure and its associated child level/s are examined. This indicates

all the data inside the holders are examined and retrieved.

The created coding templates are stored at the Local File System set by the

Modeling Tool Application. These coding templates are kept in a specific folder created by

the Modeling Tool Application to be utilized by the modeler. The Modeler can customize the

coding templates to design an application that can perform the tasks required by the

modeler. The Local File System and File System (refer to Figure 4.5) are different

components. The Local File System is used to keep the coding templates that are needed by

the user of the Modeling Tool Application. However, the File System keeps the data that is

needed by the system in order to operate the system in an organized and systematic way.

This can be seen from how the user retrieves the model that is developed by using the

Modeling Tool Application where the model needs to be presented in the way it was last

stored into the File System. Any modification to the model needs to be reflected by the File

85

System. This enables the modeler to know the latest status of the model that is under

development.

Modeling Tools

CD
CýD

rex"r

Gatherer

Workspace
v

---f Buffer

4:

L
Structure

Controller

2
Detector

Code Engine

Code
Generator

3
Create Coding

Template

Figure 4.6 Architecture of Modeling Tool

T
File System

(Serialization)

Local File System

4.6 Conclusion

The process of designing the user interface involves clarifying the specific needs of

the application, identifying the use cases and interface objects, and then devising a design

that best meets the users' needs. This chapter has presented the design and architecture of

the Modeling Tool Application. Chapter 5 will discuss on the implementation of the

Modeling Tool Application where the outlooks of the application would be showed to relate

to the information discussed at Chapter 3 and Chapter 4.

86

5 IMPLEMENTATION OF MODELING TOOL APPLICATION

5.1 Introduction

In Chapter 3 and Chapter 4, the requirements of the modeling tool and the designs

that are needed to implement the modeling tool were discussed. This chapter however

presents the implementation of the modeling tool based on the object-oriented analysis and

design discussed in Chapter 3 and Chapter 4, respectively.

5.2 Description of Modeling Tool Application

In this section, some of the major snapshots from the developed Modeling Tool

Application are presented. These snapshots are used to relate the concepts of the Modeling

Tool Structure and the work of the designs that are needed to develop the application. A

brief description is associated with each of the snapshots

5.2.1 Modeling Tool Overview

Figure 5.1 shows the appearance of the Modeling Tool Application. This is known as

the view layer (mentioned in Section 4.5), which provides the user interface for the

application. Through this view layer, different interface objects like icons, menu and other

interface objects are used to facilitate users sending commands to the core for processing

and responses from the core are diverted to the view layer. Users are not aware of how the

processes and operations are implemented in the core. In this view layer, interface objects

like Structure Controller, Modeling Tools and Code Generator, and File System provide a

set of operations for the users to perform in order to complete their modeling tasks. The

87

Workspace, Level Indicator and Parent Process Indicator provide environment and

information for users to use the application. For examples, the Level Indicator specifies the

level of a process currently engaged in, the Parent Process Indicator provides information

regarding the parent of a process by notifying the user that a process is belonging to a

bigger process.

FileFile Utilities Elem nts He
-ý. ------- ------------ - I rý, ýý 1 . ý: ý I P, n rý I

l___

Qr f=a --º Q11 ER . _IDn

Modeling
File System Structure Controller Tools Code Generator

r
l

i r---I r
I

r-Ii

Utilities

a;

Elem

ýý ý
nts He

u ýý11: 6 I R-aB -ý A'ý ý 2

WorkSpace

(Level Info: 1 ^ Parent Name: (Parent ID:

Level Indicator Parent Process Indicator

Figure 5.1: Overview of Modeling Tool Application

p

88

The development tool used to build the Modeling Tool Application is Visual C++ 6.0.

Figure 5.2 shows the part of the source code used to create the application frame window

for the Modeling Tool program.

int CMainFrame:: OnCreate(LPCREATESTRUCT 1pCreateStruct)

if (CFrameWnd:: OnCreate(1pCreateStruct)
return -1;

if (! m_wndToolBar. CreateEx(this, TBSTYLE_FLAT, WS_CHILD I WS_VISIBLE (CBRS_TOP
I CBRS_GRIPPER I CBRS_TOOLTIPS I CBRS_FLYBY I CBRS_SIZE_DYNAMIC)
! m wndToolBar. LoadToolBar(IDR_MAINFRAME))

I

f

TRACEO("Failed to create toolbar\n");
return -1; // fail to create

if (! m_wndStatusBar. Create(this) I I
! m wndStatusBar. SetIndicators(indicators,
sizeofYindicators)/sizeof(UINT)))

{
TRACEO("Failed to create status bar\n");
return -1; // fail to create

m_MTStatusBar. Create(this);

Hint width = textRect. WidthO;
int width[3] = 1 150,400,600);
m MTStatusBar. GetStatusBarCtrlO. SetParts(3, width);

m_MTStatusBar. GetStatusBarCtrlO. SetText("Level Info: 1", 0, 0);
m MTStatusBar. GetStatusBarCtrlO. SetText("Parent Name: ", 1, 0);
m MTStatusBar. GetStatusBarCtr1O. SetText("Parent ID: ", 2, 0);

return 0;

Figure 5.2: Part of the source code used to create the application frame window

5.2.2 Tools used for modeling

Section 5.2.2.1 to Section 5.2.2.5 briefly describes information regarding Modeling

Tools. There are five different icons used to represent the Modeling Tools and these icons

apply to the concepts of the Modeling Tool Structure and Relation Structure, mentioned in

Section 3.3 and Section 3.4.

89

5.2.2.1 Domain Process Structure Representation

Figure 5.3, the icon, DP, is used to create Domain Process Structure. The rectangle

box with process name, DProcess_1 and process ID, DP1 is created in the Workspace to

represent the Domain Process (DP) structure. Since Domain Process (DP) structure only

come into existence at Level 1, therefore, the DP icon would be disabled if moved to the next

level. Users cannot create any Domain Process Structure other than at the Top Level

mýý
File Utilities Elements Help

29 ® AIRI I
. 0

DProcess_1

DP1

Q x L! i 121

Level Info: 1 Parent Name: Farent ID;

Ready INUM ý /

Figure 5.3: Icon used to represent the Domain Process Structure

90

Figure 5.4 shows the class definition for the class `CDProcess'. This is the data type that is

used to create the Domain Process (DP) structure objects in the Workspace. It shows the

members of the class that can be manipulated by Modeler.

class CDProcess: public CMTElements

DECLARE SERIAL(CDProcess)
public:

object

virtual void Draw (CDC *pDC); //Function to display a DProcess

virtual void Draw(CDC* pDC, int aMode);
CDProcess(CPoint Start, CString aNum, int aLevel); //Constructor for a DProcess

virtual void Move(CSize& aSize);
virtual void Serialize(CArchive& ar); //Serialize function for CDProcess

virtual CString GetElemIDO (return m_EIemID;
virtual int GetsysLevel() (return m_Level;)

virtual CString GetProcNameO (return m_ProcName;)

virtual void SetProcName(CString aName) (m_ProcName = aName;)

protected:
CDProcessO 0 //Default constructor

private:
CString SetNum(CString nStrNum);

Figure 5.4: Class definition for the Domain Process object

5.2.2.2 Process Structure Representation

In Figure 5.5, the icon, P, is used to create the Process (P) structure. The rectangle

box with process name, Process-1 and process ID, P1 is created in the Workspace to

represent Process (P) structure at Level 2. Process Structure is only allowed to exist in

Level 2; moving to Level 1 or Level 3 would automatically disable the icon's functionality.

91

4& MoTool - Untitled
File Utilities Elements Help

ý U QoEff ý
DG

Process-1

B ---º A ý ý

P1

_ Q x

Level Info: 2 rParent Name: DProcess_1 - [Parent ID; DP1

Figure 5.5: Icon used to represent Process Structure

5.2.2.3 Activity Structure Representation

In Figure 5.6, the icon, A, is used to create the Activity (A) structure. The rectangle

box with process name, Activity-1 and process ID, Al will be created in the Workspace to

represent the Activity (A) structure. Since the Activity (A) structure is the only process

structure that is allowed to exist in Level 2 or Level 3 and it is the final and lowest level of

the Modeling Process Structure, moving away from the current level of the Activity

Structure would disable the icon.

92

File Utilities Elements Help

u; &I a In rl QoCff I H. --" A I 5jL 4P

Activity_1

Al

Figure 5.6: Icon used to represent Activity Structure

5.2.2.4 Relation Structure Representation

In Figure 5.7, the icon with an arrow symbol is used to a create relationship between

process structures. The relationship between the processes structures will be established

only when two ends of the Relation Structure connect to the side of the process structures.

There is only one exception whereby the Relation Structure needs to connect only to left

side of the process structure. This type of relation structure is known as the Predefined

kind Relation Structure.

93

J

File Utilities Elements Help

LJ ý 61 a I rf Qp Iff !
oc

-P

Al

ý Activity_2

A2

Figure 5.7: Icon used to represent Relation Structure

5.2.2.5 Text Representation

In Figure 5.8, the icon with label A is used to create the text. The Text function is

used to allow users to provide a more comprehensive and understandable environment in

the process of modeling. This can be carried out by placing text or labels at suitable position

in the Workspace.

Eil B --"AIRt I?

Activity_1

94

fi,. NMoTaol Untitled.
File Utilities Elements Help

C] B -14 Ilk T
1 1 1 1 1 1

THIS IS AN EXAMPLE OF USING TEXT

OK Cancel

Figure 5.8: Icon used to represent Text

_ Q x

5.2.3 Functionalities of Structure Controller

Section 5.2.3.1 to Section 5.2.3.2 describes the Structure Controller. The functions of

the Structure Controller are as described in Modeling Tool Structure (Section 3.3). The

Structure Controller allows users to move to different levels to view and work around

different information under the constraints that are posed by the system. Therefore, the

functions of the Structure Controller have a close relationship with the concepts applied in

the Modeling Tool Structure.

5.2.3.1 Decomposition Interface Object

Figure 5.9 shows the icon used for decomposition. This icon is used to decompose a

process structure. Initially, the icon would be disabled. It would be enabled only when the

95

Domain Process (DP) structure or Process (P) structure is selected. This is to create an

environment where all the related processes are gathered under the same roof. The

decomposition function is disabled when it comes to Activity (A) structure. This is because

Activity (A) structure indicates the final and lowest level of the Modeling Tool Structure.

Figure 5.10 shows the major part of the source codes that are used to perform the

operation of decomposition. The `OnDecompAct (Y method is used to gather the information

regarding the child level where it contains the details related to its parent process. The rest

of the source codes are used to set the information for the new level after performing the

decomposition operation.

D

Decompose
1

DProcess l

ý
ý I?

Dpi

Level Info: 1 Parent Name: IParent ID:

Decompose a process element NUM A

Figure 5.9: Structure Controller with the functionality of decomposition a process

96

OnDecompActO;

if(m_sysLevel > 3)

m_sysLevel = 3;

m_ProcSelect = false;
m_pMTSelected = 0;

InvalidateRect(O);
m_DecFlag = false;
m_UpFlag = true;

ifCm_sysLevel == 2)

elemType = Check2ndElemFlagü;
switch (elemType)

case PROCESS:
pDoc->SetProcFlag(UPLEVEL, 3);
return;

case ACTIVITY:
pDoc->SetProcFlag(DECOMP, 2);
return;

default:

1
}

pDoc->SetProcFlag(DECOMP, 1);
return;

Figure 5.10: Example of source code for decomposing method.

5.2.3.2 Up Level Interface Object

Figure 5.11 shows the icon used to represent the Up Level function. The purpose of

this icon is to move from a lower level to a higher level. Initially, the icon would be disabled.

It would be enabled only when it comes to the level where Process Structure or Activity

Structure comes into existence. Since Domain Process Structure is the top level of the

Modeling Tool Structure. Therefore, this icon is disabled in that level.

97

Up Level

I

D Gi: 19 & irf Qo[a

Process-1

GF

P1

B -" A I RL 'T

Level Info: 2 rParent Name: DProcess_1

Move up to a higher level
Parent ID: DPi

Figure 5.11: Structure Controller with the functionality of moving to upper level

Figure 5.12 shows the main part of the source codes to perform the operation of Up

Level functionality. This function would gather its parent information before it returns

from current level to new level and set the parameters for the new level.

98

m_sysLevel = m_sysLevel - 1;

aPos = pDoc->GetListHeadPosition();
while(aPos)

1

pElement = pDoc->GetNext(aPos);
ifi(pElement->GetsysLevelO == m_sysLevel))

pDoc->AddTmpElement(pElement);

StrLevel. Format("%d", m_sysLevel);
ifim_sysLevel == 1)

pFrame->SetLevelPalnfo(StrLevel, enT, enT);
else

}

aPName = GetUpPlnfoO;
pFrame->SetLevelPalnfo(StrLevel, aPName, m_TmpPID);

pDoc->SetProcFlag(UPLEVEL, m_sysLevel + 1);

m_ProcSelect = false;
m_pMTSelected = 0;
InvalidateRect(0);

ifim_sysLevel == 1)
m_UpFlag = false;

else
m UnFlae = true:

Figure 5.12: Example of source codes for Up Level functionality

5.2.4 Code Generator and File System Interface Objects

Section 5.2.4.1 and Section 5.2.4.2 describe information regarding the File System

and Code Generator respectively. The File System is related to Access Layer which is

mentioned in Section 4.3. Request and result translation are handled by the Open and Save

interface objects.

5.2.4.1 File System Interface Object

In Figure 5.13, there are two icons used to represent the interface object for the File

System. These two icons, Open and Save are common icons in Microsoft system. Open

99

object is used to retrieve complete or in progress modeling data, and the Save functions are

the same as the functions of the Access Layer mentioned in Section 4.3.

Save
Open

B

Process-1

H

P1

--+ A ý 4e

Figure 5.13: Interface Objects used for File System

Figure 5.14 shows the source codes used to retrieve modeling data from a local file

system. It first locates the place where the data is stored and then retrieves the data from

the local file system.

BOOL CMoToolDoc:: OnOpenDocument(LPCTSTR lpszPathName)

if (! CDocument:: OnOpenDocument(lpszPathName))
return FALSE;

CMTElements* pElement = 0;
POSITION aPos = m_MTElementList. GetHeadPosition0;

while(aPos)
I

pElement = m_MTElementList. GetNext(aPos);
if(pElement->GetsysLevelO == 1)

m_TmpElemList. AddTail(pElement);
1

return TRUE;

Figure 5.14: Example of the source code for opening a file

100

5.2.4.2 Code Generator Interface Object

Figure 5.15 shows the icon used to represent the Code Generator. This is the icon

used to generate coding templates after completing the modeling process. The engine will

gather the information and detect all the necessary elements in order to generate the

templates.

Code Generator

IN Be-ºA

Process
-11

P1

Level InFo: 2 _ , Parent Name: DProcess_1 Parent ID: DP1

Generate coding templates NUM r

Figure 5.15: Interface object used to represent Code Generator

Figure 5.16 shows part of the source codes used to implement Code Generator

functionality. Initially, it will gather all the necessary information that is needed to perform

code generation before calling the `StartCenCodeO'. This method performs the core of the

coding generation.

101

POSITION aPos = pDoc->GetListHeadPosition();
CMTElements* pElement = 0;
while(aPos)
1

pElement = pDoc->GetNext(aPos);
//this is to transfer all the elements from m_MTElementList to m_CodeElemList
//to do the process of generating Coding Templates
ifipElement->GetElemTypeO ! = TEXT) //Text element is no needed

pMTCodeGen->AddCodeList(pElement);

ý
pElement = 0;
aPos = pDoc->GetAttribListHeadPosO;
while(aPos)

pElement = pDoc->GetAttribNext(aPos);
pMTCo de Gen->AddAttribList(pElement);

nMTPath. SetMTPath();
pMTCodeGen-> SetMTPath(nMTPath. GetMTPathp);
result = pMTCodeGen->StartGenCodep;

Figure 5.16: Example of the source codes for Code Generator

5.3 Conclusion

In this chapter, some of the major interface objects are introduced and described.

Through these interface objects, Modeling Tool application provides an interface where

users are only dealing with the view layer and are separated from the modeling process

layer. The next chapter will look at the application of the modeling tool and techniques in a

real life example.

102

6 APPLICATION OF MODELING TOOL AND TECHNIQUES

6.1 Introduction

This chapter presents an application, which is implemented using the modeling tool

presented in Chapter 5.

This application is developed based on a case study. This case study is implemented

on one of the manufacturing industries in Kuching, Sarawak. This manufacturing industry

is known as FFM Flour Mills (SARAWAK) SDN BHD. It is a plant that produces flour to

supply the demand of flour in Sarawak. FFM Flour Mills (SARAWAK) SDN BHD was

established in the Year 2003. FFM (Ling, 2004) basically produces the flour by milling the

raw wheat which is imported from Australia, Canada and United States.

The purpose of this case study is to use the Modeling Tool Structures and

Techniques to capture the relevant processes involved in the certain fields of the

manufacturing industries. From there, coding templates based on the processes captured or

identified are then generated. Then, these coding templates are customized in order to

develop an application that is suited to the needs of the party involved. By doing this case

study, the applicability of the modeling tool developed can be tested. In section 6.2, the

manufacturing process of the FFM is briefly described to gain an understanding of how the

process flow of the production of flour from the raw material, wheat is implemented.

6.2 Description of Manufacturing Process of FFM

In this section, the operations of the FFM production of flour will be discussed. The

information provided in this section was the result of discussion and interview with Mr.

103

Ling Jai Seng, Plant Engineer of FFM Flour Mills (S) Sdn Bhd (Ling, 2004) and reading up

on the FFM production process flow (Flour Milling Production Flowchart, 2003) and the

plant control operating manual (Holensein & Chische, 2003).

At the beginning, the raw material, wheat is acquired from three different countries.

They are: USA, Canada and Australia. Upon arrival of the wheat is kept in 6 silos each

with a capacity of 2200 ton. The imported wheat from these different countries can be

categorized into hard wheat and soft wheat.

When there is an order for a certain brand of flour, like Blue Key, Achor, Muhibbah

and others, the production line will calculate the amount of different groups of raw wheat

that is required. From there, the required raw wheat is stored into the Raw Wheat Bin.

There are 4 of them, having a capacity of 440 ton. The raw wheat that is in the Raw Wheat

Bin contains impurities. The information of the percentage of the impurities in the raw

wheat can be obtained from the supplier of the wheat. Then, it moves to the Pre-Cleaning

process of the raw wheat. From there, estimation is made of how much of the pre-cleaned

wheat still remains after the pre-cleaning process.

The pre-cleaned wheat moves to the next process; cleaning and tempering of the raw

wheat. In this process, the raw wheat is cleaned again and tempered by adding water to the

raw wheat. The tempering process will increase the weight of the raw wheat normally the

weight gain of the raw wheat is about 7% or 8% of its original weight. The purpose of

tempering it is to increase the moisture of the raw wheat. Normally, the raw wheat would

contain 9% or 10% of moisture, which is controlled by the supplier of the raw wheat. The

process of tempering needs to be controlled so that the water added into the raw wheat for

tempering will produce flour with maximum 14% moisture after milling the raw wheat. The

104

14% moisture of flour is the standard regulated by the Government of Malaysia. Therefore,

in order to produce flour that contains 14% of moisture, the raw wheat needs to be

tempered until it contains 15.8% of moisture. This is because the milling process results in

moisture loss. There is a laboratory available in the factory for determining the percentage

of moisture. The tempering process for soft and hard wheat takes a different period of time

to complete. Normally, for tempering soft wheat, 9 hours is required to complete the process

and for hard wheat, 12 hours is required to complete the process.

After the cleaning and tempering processes, the milling of the clean and tempered

raw wheat is the next process. At FFM, the milling speed can be adjusted to three different

levels. Normally, the milling process takes one hour to mill 9 ton of the raw wheat. As for

the highest milling process, it can take one hour to mill 9.5 ton of raw wheat and the lowest

milling process takes one hour to mill 7.5 ton of raw wheat. Once all the raw wheat is

milled, it can produce the flour at 76% of the total weight of the raw wheat. After the

milling process, there is quality control, a sample of the flour is sent to the laboratory for

the purpose of quality control. Quality of the products like Blue Key, Achor, Muhibbah are

determined by the laboratory based on certain formula for the mixing process of the flour.

Mixing of the flour, which is milled from soft wheat and hard wheat as well as from

different countries, can determine the class of the flour.

6.3 Define Scope and Bound Domain

As mentioned in Chapter 3, the first step of modeling is to identify the goal of the

model to be developed. The purpose is to define the scope and the boundary of the model in

the case study. This is to ensure only relevant and necessary things are included in the

105

model. The goal of this case study is "To Get Amount of Flour Produced and Duration

Needed Based on the Total of Raw Wheat Input". This goal is derived from the studies of

the daily operations of the factory and discussions with Mr. Ling Jai Seng, the Plant

Engineer (Ling, 2004).

After the goal is determined, a series of meetings were conducted with the Plant

Engineer to gain understanding of the processes involved in producing the flour from the

raw wheat. This allows for identification of processes and concepts which are necessary to

be contained in the model in order to achieve the goal stated.

At this level, the model that is going to be developed will present Domain Process

(DP) structure that is bounded by identifying what is to be included in the Domain Process

(DP) structure thereby achieving what is to be done by this Domain Process (DP) structure.

This then enables the set up of the boundary and scope for this Domain Process (DP)

structure where irrelevant processes, activities and data can be excluded. For example,

Cleaning Domain Process (DP) structure would include the essential processes, activities

and creating data that are related to the Cleaning domain rather than milling or mixing

process.

Basically, there are three major processes involved to produce flour from raw wheat

to the type of flour that is demanded by the market. These processes are: cleaning and

tempering of raw wheat, mill the processed wheat and to mix different grades of flours to

produce the required end products likes flour with the Blue Key brand. However, this case

study will only involve two of the processes lines, cleaning and tempering of the raw wheat

and milling of the processed wheat. This is because mixing process involves confidential

106

information and benefits of different parties. From the analysis, two Domain Process

Structures are created. There are Cleaning Domain Process and Milling Domain Process.

Domain Process Structure Descriptions of Functionality
Cleaning This domain basically involving all the processes

relevant to the cleaning and tempering of the raw
wheat those need to be milled.

Milling This involves all the activities or functions and data
needed to produce the flour from the produced
wheat.

Table 6.1 Descriptions of the functionalities of the Domain Process (DP) structure involved

6.4 Identify and Specify Processes Structure

The identified Domain Process (DP) structures therefore lead to the identification of

existing or additional sets of processes, data and activities which make up the

responsibilities or characteristics of the relevant domain. These identified processes and

activities of particular domain processes were then analyzed. This is because only relevant

Process (P) structures or Activity (A) structures need to be created under the Domain

Process (DP) structure and different Process (P) structures need different sets of data and

activities. Grouping them together under specific domains will engender a more

manageable, meaningful and organized set of processes. For example, it is decided to group

Wheat_Weight Process (P) structure, Pre_Cleaning Process (P) structure and

Clean_Temper Process (P) structure into the Cleaning Domain Process (DP) structure. The

get-Impurity Activity (A) structure and cal-Weight Activity (A) structure are grouped into

the Pre_Cleaninig Process (P) structure. Besides that, they also reflect in greater detail

107

regarding the responsibility and characteristic of the Domain Process (DP) structure with

the scheme of adding some properties, relationship and constraints to it.

In this level, Process (P) structure is used to represent "what needs to be done" or

"what can it do" in order to execute its responsibility and display the characteristic of its

parent process. For example, three Process (P) structures are used to inform what processes

need to be executed in order to perform the responsibility of Cleaning Domain Process (DP)

structure. This also reflects that the Process (P) structure level is defined in a time ordered

sequence in which one Process (P) structure needs to complete its task before the next

Process Structure can be implemented. For example, Pre_Cleaning Process (P) structure

can do its job only after getting information and waiting on the Wheat_Weight Process (P)

structure to complete its mission.

Then, the plant engineer verified the drafted model. Comments from the plant

engineer were then incorporated into the draft. Some of the Process (P) structures would

need to be created along the process flow of the manufacturing to accommodate the need of

the activities that appear along the line. For example, Wheat_Weight Process (P) structure

was created to accommodate the activity of getting the weight of the wheat input. Activity

(A) structure is not created at that level because it is at the middle level where only Process

(P) structure should appear. The process of drafting the process flow and modification were

cycled until a satisfaction point was reached by the plant engineer. Table 6.2 presents the

final set of Process (P) structures identified.

108

Process (P) Structure Descriptions of Functionality
WheatWeight Process that contains the activity to obtain the weight

of the wheat to be input
Pre_Cleaning Process that contains the activities of obtaining

information required before entering the Process
Structure Clean-Temper

Clean_Temper Process that contains the activities of cleaning and
tempering the raw wheat.

Table 6.2: Descriptions of the functionalities of the Process (P) structure involved in
Cleaning Domain Process (DP) structure.

6.5 Identify and Specify Activity Structure

The Activity (A) structure is defined for its related Process (P) structure or Domain

Process (DP) structure to represent "how" its parent process to perform its task. For

example, Pre_Cleaning Process (P) structure is decomposed into a set of interested Activity

(A) structures, get-Weight and get-Impurity, to represent the next level of details which

explain the functionality of that Process (P) structure. Moreover, in order to better explain

the functionality of the Parent Structure of an Activity (A) structure, properties of the

Activity (A) structure can be added and constraints can be imposed. For example,

get-Impurity Activity (A) structure of Pre_Cleaning Process (P) structure can obtain its

required data or information only after get-Weight Activity Structure completes its activity

like obtaining the weight of raw wheat, which is similar to what is elaborated at Process (P)

structure. From this scenario, two or more process structures are created at each different

level act in a sequential manner. Relation between two process structures determines the

workflow. Therefore, relation plays an important role in setting up the constraints and time

frames in the sequential operation at different process levels.

109

Activity (A) structure can also be directly decomposed from Domain Process (DP)

structure instead of Process (P) structure. This indicates that the process involved has a

simple structure and direct operations. For example, Milling Domain Process (DP)

structure is directly decomposed into a set of Activity (A) structures where this set of

Activity (A) structures are the functionality of the process involved.

Activity (A) Structure Descriptions of Functionality
get_Weight Get the weight of the raw wheat to be processed.
get-Impurity Get the impurity of the raw wheat that is supplied by

the suppliers of the raw wheat.
cal-Weight Calculate the weight of the raw wheat after removing

the percentage of impurity from the raw wheat.
get-Initial Get the initial moisture of the wheat supplied.

Different supplied wheat has different percentage of
moisture.

get-Target Get the percentage of moisture of wheat based on the
moisture required for the flour produced. Normally, the
moisture of the wheat is 15.8%.

cal_Water_N Calculate the water added for normal day operation
which is water added for 100 ton of raw wheat.

cal_Water_T Calculate the water added for total weight of the raw
wheat input for process.

cal-Gain Calculate the gain of the weight of the raw wheat after
completion of tempering process. Normally the gain is
7% or 8% of the total weight of the raw wheat.

cal_ProdWheat Calculate the total weight for the raw wheat plus the

gain from tempering process for both 100 ton and the
input of raw wheat.

Table 6.3: Descriptions of the functionalities of the Activity (A) structures involved in
WheatWeight, Pre_Cleaning and Clean_Temper Process (P) structures.

110

Activity (A) Structure Descriptions of Functionality
get_Millspeed Get the speed of the milling process in order to

determine the weight of the raw wheat can be milled
per hour. There are three group of milling speed which
are 9.5 ton per hour, 9 ton per hour and 7.5 ton per
hour.

cal_FullTimeT Calculate the number of milling times needed to mill
all the raw wheat.

cal_RemWheat Calculate the weight of the raw wheat that is not
sufficient for the normal milling operation.

cal_TotalTime Calculate the total time needed to complete milling all
the raw wheat.

cal_FlourProd Calculate the flour that can be produced from the raw
wheat that is input.

Table 6.4: Descriptions of the functionalities of the Activity (A) structures involved in
Milling Domain Process (DP) structure.

6.6 Identify and Classify Relation

In each different level, at least one Relation structure is associated with the process

structure. Therefore, it is important to identify the Relation for each individual process

structure at each level. This is because, associating a correct and meaningful Relation to a

process structure is essential in developing a composite diagram which describes the

network of relations for all process structures in the domain of study.

The information from the defined scope and bound domain form the major step in

defining the Relation structure. This is because the defined scope and boundary form the

clear direction and objective for the existence of the process structure and Relation

structure. Moreover, only relevant process structures would present for Relation structure

to be created to associate them. Therefore, information gathered from the meeting with the

plant engineer is an important factor in deciding the existence of Relation structures at

different levels. The existence of the Relation structures at different levels should have

111

been identified either explicitly or implicitly. For example, Relation structure that points at

the left side of the Wheat_Weight Process (P) structure is identified explicitly because the

Relation structure is predefined kind for indication of the starting Process (P) structure at

that level. The Relation structure that exists between Wheat_Weight Process (P) structure

and Pre_Cleaning Process (P) structure is implicitly defined because the interaction

between these two Process (P) structures is extracted based on the study of the information

gathered. For example, Wheat_Weight Process (P) structure is a virtual process which is

created from the information gathered and judgment from the researcher and the plant

engineer so that connecting Wheat-Weight Process (P) structure and Pre_Cleaning Process

(P) structure can provide the description of the process flow model which can better reflect

how things work within the study domain of the factory.

Besides that, Relation structures also provide a way to enhance the structure of

processes by providing required data from outer source to them or delivering necessary data

to relevant process structure. Therefore, integration information about processes and

relations form a unified model. Figure 6.1 shows the whole picture of the relationship

among the processes.

112

1Cleaning

I TOP I
----r------------------------------------, -------------------

ý

Wheat Weight ý--10 ýPre_Cleaning

i I
-10 Clean_Temper

i

Milling

I

I
I
I
i
I

I I I Minrn. F. '

----r---------- r---------r-----==--------ý------------------- i

get_FuIlTimeT cal_RemWhea

cal_FlourProd

ý
cal TotalTime

BOTTOM----------------------

Figure 6.1: Relationship of the processes at different levels

6.7 Snapshots of the FFM Process Model

In this section, snapshots of the FFM process model are displayed. This is to show

the model that is developed by using the Modeling Tool application.

Figure 6.2 shows the two Domain Process structures are created at the Level 1 with

the objectives of the model to be built.

113

File Utilities Elements Help

ý ý ® ýjý 4®Iff I® B --º A I Pt 4
TO GET AMOUNT OF FLOUR PRODUCED AND DURATION NEEDED BASED ON THE TOTAL OF RAW WHEAT INPUT

0 Cleaning

DPl

Parent Name;

p

Parent ID;

D P2

Figure 6.2: Domain Process (DP) structure with the objective of the modeling at Top Level.

Figure 6.3 shows the result of decomposition Cleaning Domain Process (DP)

structure into next level of details. Three Process (P) structures are created at Level 2.

ý M.
File Utilities Elements Help

------------- 1F) ciý. _ýIIriQoIff 16, '] E I 3-º Aýýý

10 WheatWeight

P1

Level Info: 2 (Parent Name. Cleaning

H Pre-Cleaning

P2

Parent ID: -1 5P-1

0 Clean_Temper

P3

Figure 6.3: Process (P) structures created at Level 2 where their parent is Cleaning Domain
Process (DP) structure

Milling

114

Figure 6.4 shows the result of decomposition from Level 2 to Level 3, where the

parent process for this Activity (A) structure is WheatWeight Process (P) structure which

can be seen from Figure 6.3. The Activity (A) structure is created with the information that

is related to its parent structure.

ý iý '1 11

File Utilities Elements Help

a Gi; &. IýU QoI ff I ý. ý U

B
-ºAý9jL T

get-Weight

Al

Level Info: 3 Parent Name: WheatWeight Parent ID: P1

Figure 6.4: Activity (A) structure with its parent WheatWeight Process (P) structure

Figure 6.5 shows that two Activity (A) structures are created from the result of

decomposition of the Process (P) structure, Pre_Cleaning. Different Process (P) structure

can have its own group of Activity (A) structure to perform its task.

115

5:
T,. MoTooI - FFM_PROCESS_MODEL

File Utilities Elements Help
n Q; ® M I "L_I

Q13 Iff I
nv

get-impurity

e

A2

B

Level Info: 3 Parent Name: Pre_Cleaning

A3

Figure 6.5: Activity (A) structure with its parent Pre_Cleaning Process (P) structure

Figure 6.6 shows that Clean_Temper Process (P) structure is decomposed into next

level of details by creating six new Activity (A) structures to perform its task.

ýý ýý
Utilities Elements Heb

r3® I! 1 ýLlff IG--UB-iAIý4

H 0
A4

+ellnfo; 3 ý Pu°^tNarne: Uean_Temper

A5

ý--T cal_Water_N

A6

Par -ID: P3

-10
A7

cal-Gain

AB

Parent ID: P2

I-od

r-Pcal_ProdWhcatl

A9

Figure 6.6: Activity (A) structure with its parent Clean_Temper Process (P) structure

get_Initial get_Target

-º ý (Pt I?

caI_Weig ht

caI_Water_T

116

Figure 6.7 shows the Activity (A) structures that are created at Level 2. This is a

direct decomposition of Domain Process (DP) structure to Activity (A) structure. This

informs that the Domain Process (DP) structure has no other components that are required

to achieve that task assigned to it. Therefore, direct decomposition is required.

ý M
File UtlGt es Elements Help

a®4, -PI! fQomIF yd! -A': R

0,

lLevel Info: 2

get_Millspeed al_RemWheaý

A12

--Parent ID; DP2

--

A10

Vari, r nms: rihn

All

V.cal_TotalTime

A13

Figure 6.7: Activity (A) structure with its parent Milling Domain Process (DP) created at
Level 2.

Figure 6.8 shows the message box displayed after completion of generating the

coding templates by the system after modeler issues the command to the Code Generator.

a T

TO GET AMOUNT OF FLOUR PRODUCED AND DURATION NEEDED BASED ON THE TOTAL OF RAW WHEAT INPUT

! 1r1I
The process of generating coding templates is completed,

Cleani

DPl

OK

DP2

p

Ei

Figure 6.8: Indication of the completion of generation coding templates.

cal_FullTimeT

-
IcI x

cal_FlourProd

A14

117

Figure 6.9 shows the application developed by customizing the coding templates that

is generated by the Code Generator. The purpose of the application developed is to calculate

the amount of flour that can be produced from the total raw material, wheat input and the

time taken to complete milling all the input wheat.

r I LJEnter the WEIGHT of HAW U11EAT uaiits to .

Enter the 1"PURITY percentage(O o ..

The o

or calculating Water added 9

E"ter the TARGET pejt, ceiitaqe(x) for calculating Water added 15.8

Water added for 100 on"e of raw whedt is 7-906

Water added oi- 247S tonne of

Enter the percentage(z) 1 Gain of]Rav) Wheat

The result 1 1 100 tonne 1 raw wheat is -- 107-553
The result 1 for 2475 of raw uheat is = 2661-95

Fnter the Milling Speed per 1

Remain Wbeat o Tempering is = 00.665
Total time needed for milling 2661.95 tonnes of

Total FLOUR produced from 2661.95tonnes of raw wheat is 2023.08

4

S

Figure 6.9: Application developed from customization on coding templates generated.

Figure 6.10 shows the sample of source codes for class definition for the Cleaning

Domain Process (DP) structure. These source codes are the result of customization on the

coding templates generated from the model developed for the FFM.

118

class Meaning
{

public:
//variables declaration
CWheatWeight* m_pWheatWeight;
CPre_Cleaning* m_pPreClean;
CClean_Temper* m_pCleanTemper;

int m_OrigWheatWeight;
float m_PureWheatWeight;
float m_GainN;
float m_GainT;

//functions declaration
CCleaning0;
CCleaning(const CCleaning& xClean);
virtual -CCleaningO;
//CCleaning& operator=(const CCleaning& yClean);
void DP1_Process 0;

);

Figure 6.10: Class definition for Cleaning Domain Process (DP) structure.

Table 6.5 shows the results of comparison between calculation made by FFM and the

results generated by the Application developed. This calculation is made with some

predefined conditions. They are:

" Initial Impurity of raw wheat is 0.01%

" Initial water added for tampering is 9% of the total weight of raw material

" Target of water added for tampering is 15.8%

" Gain from the tampering process is 7%

No Input Raw
Material (ton)

Ton of Flour
(FFM)

Ton of Flour
(Application)

Production Times
(FFM) - Hours

Production Times
(Application) - Hours

1 2500 2023.12 2023.08 296 295.772
2 3000 2426.22 2427.7 355 354.927

3 3500 2832.52 2832.31 414 414.08

4 4000 3236.84 3236.93 473 473.235

Ta ble 6.5: Results comparison between calculations made by FFM and Application.

119

6.8 Conclusion

Designing a model by using this modeling tool, would need users to define the goal

or purpose of developing the model. This enables the coding templates to be generated with

certain constraints and the application can be developed with the idea of the user's

requirements. Thereby, defining the goal of developing the model also facilitates the process

of developing the application. Besides that, this modeling tool is using the top down

approach in developing the model. This can be seen from the process of model development,

where in top level, Domain Process (DP) structure is used, in middle level Process (P)

structure is used and in bottom level, Activity (A) structure is used. Greater details of its

parent process are represented as the levels descend. This can be visualized where Domain

Process (DP) structure is an object of an entity whereby this object is composed of its own

group of components (Process (P) structures) that work together to perform the job function

of the object. Each of these components has its own functionalities (Activity (A) structures)

to implement in order to perform the purpose of the component.

The next chapter will conclude the work done on this research and outlines some

recommendations for future expansion.

120

7 CONCLUSION

7.1 Introduction

Chapter 1 presents the background and justification for the research to be

implemented. The concept of a generic model from MIICI was the initial inspiration to put

the research on the track. From here, the research objectives were laid out and the research

scope was defined.

Some of the related literature to this research is presented in Chapter 2. A review of

process modeling is presented with a focus on the areas of process modeling perspectives

and usefulness of process modeling. Then there is a brief discussion about architecture,

framework and methodology. This is necessary since developing a model normally need to

relate to them. Next, different modeling languages were presented and reviewed. Finally,

comparisons were made among the reviewed modeling languages to find out their

similarities and differences.

In Chapter 3, the scheme to achieve the objectives of the research was presented. In

order to capture process flow in the studied domain (plant), the process flow structures of

the plant need to be acquired. Therefore, Modeling Tool Structure and Relation Structure

were figured out. Modeling Tool Structure was composed by Domain Process (DP) structure,

Process (P) structure and Activity (A) structure, each of them has their own role to play in

the different parts of the process flow of a plant. Then modeling activities were presented.

It is like a methodology of using the modeling tool. Finally, the discussed scheme was

initiated by applying use case driven object oriented analysis. This lay the foundation for

121

the Modeling Tool application. Some of the works of object oriented analysis are presented

in Appendix A.

Chapter 4 presents the application of object oriented design process on the modeling

tools' objects identified during object oriented analysis in Chapter 3. Then, the architecture

of the Modeling Tool was presented. This architecture formed the foundation for the

development of the Modeling Tool application. Some of the works of object oriented design

are presented in Appendix B. In Chapter 5, the implementation of the Modeling Tool

application was presented to tally the works presented in Chapter 3 and Chapter 4.

Chapter 6 presents a case study on a manufacturing industry. The studied

manufacturing industry was FFM Flour Mills (SARAWAK) SDN BHD. This chapter

presented how the modeling activities were applied to develop the model. During the

process of developing the model, it also presents how the Modeling Tool Structure and

Relation Structure were applied in capturing process flows.

7.2 Contributions

This research presents a modeling tool which can be useful in different Small to

Medium Sized Manufacturing Industry in Sarawak. SME normally would not involve a lot

of complex processes. The major activity happening in SME's is normally on the shop floor,

which is inside the plant. Therefore, the Modeling Tool application presents a modeling

scheme which can serve as a tool for enterprise engineering. This modeling scheme is using

four different structures to capture different levels and areas of information from the

processes of the manufacturing industry. They are: Domain Process (DP) structure, Process

(P) structure, Activity (A) and Relation structure. With these modeling structures, process

122

structure and behavior can be simulated through customization of the coding templates

that are generated from the information captured from processes. Besides that, developing

a model with the specific intention and deliberate capture the process flow from the plant

and designing it, will provide a clear picture of the study domain. Customization of the

captured processes enhances the capability of the modeling tool to perform analysis task

and decision making through the results of simulation. Furthermore, generating the coding

templates for different models creates an environment where particular models can be filled

to meet its own needs.

The model developed from this tool can also serve as a media of communication. This

is because this tool is designed to capture process flow of a plant. Then discussion can be

held for individuals from same functions, fields and disciplines.

Besides that, this tool presents a graphical user interface for users to use. This

provides an instrument that users can more easily learn and use instead of using a formal

method (adopted by MIICI) which is more difficult to understand and needs professionals in

that area to teach.

7.3 Recommendation for future research

There are two areas recommended for future study. The first area is related to

constructing a tool to capture market interflow. This is important since actions of a plant

are in response to the demand of the market. Therefore, prediction and simulation of the

market interflow can prepare the plant to meet the different waves of uncertainty.

The second area is related to developing a library with a standard protocol to keep

the coded templates. This would facilitate the process of developing application whereby

123

users can retrieve the coded templates from the library and use them in the current

situation.

124

BIBLIOGRAPHY

Bahrami, A. (1999). Object-Oriented Systems Development: Using Unified Modeling

Language, Boston: McGraw-Hill International Editions.

Barnett, W. D., Presley, A. R. & Liles, D. H.. (1995). Object-Oriented

Business Process Modeling For The Virtual Enterprise. In The Fourth National

Agility Conference.

Bellorin, J. & Fishbourne, C. (1993). Object-oriented Analysis of a Flexible Batch

Production System. Computing & Control Engineering Journal, 4(5): 233-238.

Busby, J. S. & Williams, G. M. (1993). The Value and Limitations of Using Process

Models to Describe the Manufacturing Organisation. International Journal of

Production Research, 31(9): 2179-2194

Bussler, C. J. & Jablonski, S. (1994). An approach to integrate workflow modeling

and organization modeling in an enterprise. In Proceedings of the 3rd IEEE

Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises.

CIMOSA Association (1996). CIMOSA - A Primer on Key Concepts, Purpose and

Business Value.

125

BIBLIOGRAPHY

Bahrami, A. (1999). Object-Oriented Systems Development: Using Unified Modeling

Language, Boston: McGraw-Hill International Editions.

Barnett, W. D., Presley, A. R. & Liles, D. H.. (1995). Object-Oriented

Business Process Modeling For The Virtual Enterprise. In The Fourth National

Agility Conference.

Bellorin, J. & Fishbourne, C. (1993). Object-oriented Analysis of a Flexible Batch

Production System. Computing & Control Engineering Journal, 4(5): 233-238.

Busby, J. S. & Williams, G. M. (1993). The Value and Limitations of Using Process

Models to Describe the Manufacturing Organisation. International Journal of

Production Research, 31(9): 2179-2194

Bussler, C. J. & Jablonski, S. (1994). An approach to integrate workflow modeling

and organization modeling in an enterprise. In Proceedings of the 3rd IEEE

Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises.

CIMOSA Association (1996). CIMOSA - A Primer on Key Concepts, Purpose and

Business Value.

125

Curtis, B., Kellner, M. & Over, J. (1992). Process Modeling. Communication of the ACM,

35(9): 75-90.

Davenport, T. (1993). Process Innovation: Reengineering Work through Information

Technology, Boston: Harvard Business School Press.

Dictionary. com (2005). Lexico Publishing Group, LLC.

http: //dictionary. reference. com. (Date of Reference: March 2005).

Douglas, A. B. & Leon, F. M. (2002). A Structured Approach to

Simulation Modeling of Manufacturing Systems. In Proceedings of the 2002

Industrial Engineering Research Conference.

Flour Milling Production Flowchart (2003). FFM Flour Mills (Sarawak) Sdn Bhd.

Frasier, J. (1994). Managing Change Through Enterprise Models in Applications

and Innovations in Expert Systems II. In SGES Publications.

GERAM: Generalised Enterprise Reference Architecture and Methodology (version

1.6.3). IFIP-IFAC Task Force on Architectures for Enterprise Integration.

Goossenaerts, J. & Bjorner, D. (1994). Generic Models for Manufacturing

Industry. Research Report, UNU/IIST Rept. No. 32, UNU/IIST, Macau.

126

Holensein, L. & Chische, J. (2003). Plant Control System Operating Manual.

Huckvale, T. & Ould, M. (1995). Process Modelling - Who, What, How: Role Activity

Diagramming. In Business Process Change: Reengineering Concepts, Methods,

and Technologies, (Grover, V. & W. J. Kettinger, W. J.; eds).

INTEGRATION DEFINITION FOR FUNCTION MODELING (IDEFO) (1993). Draft

Federal Information Processing Standards Publication 183.

Jacobson, I., Ericsson, M. & Jacobson, A. (1995). The Object Advantage

Business Process, Reengineering with Object Technology. Reading, MA: Addison-

Wesley.

Kawalek, P. & Kueng, P. (1997). The Usefulness of Process Models: A Lifecycle

Description of how Process Models are used in Modern Organizations. In

Proceedings of the Second CaiSE/IFIP8.1 International Workshop on Evaluation

of Modeling Methods in Systems Analysis and Design.

Kosanke, K. (1995). CIMOSA - Overview and Status. In Computers in Industry 27,

pp. 101-109.

Kosanke, K. & Zelm, M. (1999). CIMOSA modelling processes. In Computers in

Industry 40, pp. 141-153.

127

Kueng, P., Bichler, P. & Kawalek, P. (1996). How to compose an Object-

Oriented Business Process Model? In Proceedings of the IFIP TC8, WG8.1 / WG8.2

Working Conference, pp. 26-28.

Kueng, P. & Kawalek, P. (1997). Process Models: a help or a burden? In

Proceedings of the Americas Conference for Information Systems, pp. 676-678.

Lars, C. C., Brage, W. J., Midjo, N., Onarheim, J., Syvertsen, T. G. & Totland, T.

(1995). Enterprise Modelling - Practices And Perspectives. In Proceedings of

ASME Ninth Engineering Database Symposium.

Lethbrigde, T. C. & Laganiere, R. (2001). Object-Oriented Software

Engineering, Practical Software Development Using UML and Java,

McGrawHill.

Liles, D. H. & Presley, A. R. (1996). Enterprise Modeling Within An

Enterprise Engineering Framework. In Preceedings Of the 96 Winter Simulation

Conference.

Lin, F. R., Yang, M. C. & Pai, Y. H. (2002). A generic Structure for Business

Process Modeling. Business Process Management Journal, 8(1): 19-41.

128

Ling, J. S. (2004). Discussion on the Flour Production of FFM. In Lot 505,

Block 8, MTLD, Sejingkat Industrial Park, Jalan Bako, 93250 Kuching, Sarawak.

Malone, T. W., Crowston, K., Lee, J. T., Pentland, B., Dellarocas, C., Wyner, G.,

Quimby, J., Osborn, C., Bernstein, A., Herman, G., Klein, M. & O'Donnell, M.

(1999). Tools for inventing organizations: Toward a handbook of organizational

processes. Management Science 45 (3): 425-443.

Maull, R., Childe, S., Bennett, J., Weaver, A. & Smart (1995). A. Report on Process

Analysis Techniques. Manufacturing and Business Systems

Group, University of Plymouth.

Mayer, R. J., Cullinane, T. P., Knappenberger, W. B. & Wells, M. S. (1995). Information

Integration For Concurrent Engineering (IICE) - IDEF3 Process Description

Capture Method Report. College Station, TX, Knowledge Based Systems, Inc.

McUmber, R. (2002). Introduction to Object-oriented Modeling with UML (Version

1.0).

Ngwenyama, O. K. & Grant, D. A. (1994). Enterprise Modeling for CIM Information

Systems Architecture: An Object Oriented Approach. Computers and Industrial

Engineering, 26(2): 279-293.

129

Ould, M. (1995). Business Processes: Modeling and Analysis for Re-engineering and

Improvement, Chichester: John Wiley & Sons.

Ovidiu, S. N. (2000). Advanced Object Oriented Concepts- Business Modelling:

UML vs. IDEF. Griffith University, School of Computing and Information

Technology.

Plaia, A. & Carrie, A. (1995). Application and Assessment of IDEF3 -Process

Flow Description Capture Method. International Journal of Operations &

Production Management, 15 (1): 63-73.

Presley, A. R. (1997). A Representation Method to Support Enterprise Engineering.

Doctoral dissertation, Department of Industrial Engineering, The University of

Texas at Arlington, Arlington, TX.

Presley, A. R., Huff, B. L. & Liles, D. H. (1993). A Comprehensive Enterprise Model

for Small Manufacturers. In Preceedings of the 2nd Industrial Engineering

Research Conference, pp. 430-434.

Schildt, H. (1998). MFC Programming From the Ground Up, 2nd Ed.

Osborne/McGraw-Hill.

130

Senge, P. M. (1993). The fifth Discipline: The Art & Practice of The Learning Organization.

Century Business, London.

SMiDEC (1996). Small and Medium Industries Development Corporation.

httQ//www. smidec. gov. my. (Date of Reference: June 2005)

Waltman, W. D. & Presley, A. R. (1993). Reading & Critiquing An IDEFO

Model. Enterprise Integration Frameworks Group. Automation & Robotics

Research Institute, Texas.

Whitman, L., Huff, B. & Presley, A. R. (1998). Issues Encountered Between

Model Views. In Proceedings Flexible Automation and Intelligent Manufacturing

Conference.

Whitman L., Liles, D. H., Huff, B. L. & Rogers, K. J. (2001). A Manufacturing

Reference Model For The Enterprise Engineer. The Journal Of Engineering

Valuation and Cost Analysis: Special Issue On Enterprise Engineering, 4(1): 15-36.

Whitman, L., Ramachandran, K. & Ketkar, V. (2001). A Taxonomy Of

Living Model Of The Enterprise. In Proceedings of the 2001 Winter Simulation

Conference.

131

Zelm, M., Vernadat, F. B. & Kosanke, K. (1995). The CIMOSA business

modeling process. In Computers in Industry 27, pp. 123-142.

132

APPENDIX A: SEQUENCE DIAGRAMS USED FOR USE CASES DEFINED

Diagram Al to Diagram A10 show the sequence diagrams for different use cases defined at

Chapter 3, Section 3.6.2. The diagrams are self explanatory for communication between

objects participating in the interaction

Diagram Al: Sequence Diagram of Edit Model Use Case

Modeler Application Workspace

1. Select `Open... ' command

i
i
i

ý

2. Display File Open Dialogue

3. Specify the model name

4. Confirm selection

º;
ý ý º!

4 5. Remove Oven Dialogue

6. Retrieve Model

7. Display Model

8. Perform Draw Process Flows

4d 9. Display modified process flows

º

ºý

Diagram A2: Sequence Diagram of Generate Coding Templates Use Case

Modeler Application Code
Generator

2. Initial code generation process

3. Start code eeneration

1. Select Code Generation

4. Display Indication of Progression 14
Message 5. Complete generation

6. Display Completion of Generation
Message

7. Confirm Completion

133

Diagram A3: Sequence Diagram of Finish Modeling Activities

Modeler

I
1. Select Exit

Application Exit

2. Initial finalization process

3. Finalize application
4. Remove application's window

Diagram A4: Sequence Diagram of Save Operation Use Case

Modeler

4. Display Save Dialogue

T

1. Select `Save... ' command

5. Specify Model Name

6. Confirm Selection

Application

2. Initial Store process

3. Start Store process

I 7. Store modeling data

Diagram A5: Sequence Diagram of Save As Operation Use Case

Modeler Application

1. Select `Save As... ' command

4. Display Save As Dialogue

5. Specify Model Name

6. *Select [directories]

7. Confirm Selection

Ah! 2. Initial Store process
i
i
if

ý
i
i

0
i
ý 0 ý
ý

ý

i
ý

3. Start Store process

8. Store modeling data

Serialize

T

. i i
i

ý

i
ý

1

i

Serialize

. ý ý
º'

ý ý --ý

ý ý ý ý
ºý

134

Diagram A6: Sequence Diagram of Draw Top Level Use Case

Modeler DP Element

1. Select DP Element '

2. Capture DP Element

3. Place DP Element

4
6. Action : = Select DP instance on workspace

Up Level

_
q rf _.. --' - n________.. no : _..... _....

ý I

DP Instance

I
hJ n

4. «Create»!

5. Display created DP instance
r

I
ºý

i. tncuunI - vcwmpusc Ur iii wicc

t t t t
8. Response : = Move to Middle Level

9. [Response] = Middle Level

----------------Enable
Up Level Function--ti

t t t t

Diagram A7: Sequence Diagram of Draw Middle Level Use Case

Modeler Process
Element

T

1. Select Process Element

2. Capture Process Element

3. Place Process Element

Decompose

I

5. Display created Process instance

Process
Instance

T

'4 4, «Create>>

'4
6. Action: = Select Process instance on workspace

7. 1. [Action] = Decompose Process instance
i i 7. 1. 1. Response- Move to Bottom Level

ý 4
7. 2. [Action] = Up Level Process instance

1
4

Decompose

i

I

Workspace

ºi

ý

º!7. 1. 2. [Response) = Bottom Level
Disable Decompose Function

H 7. 2. 1. Response : = Move to Top Level
r 7. 2. 2. [Response] = Top Level

1)isahle I In Level Function

Workspace

135

Diagram A8: Sequence Diagram of Add Attributes Use Case

Modeler

- 1

3. Place Relation Element

Relation
Element

1. Select Relation Elemen;

iiCapture Relation Element:

ý ; 4

6. Select Relation instance on workspace

7. Action : = Select associated options

ý

. 4

10. Select Add Attributes

Relation
Instance

I

Add Attribute Workspace

p- 1 4. «Create» !

5. Display created Relation instance

º

i i i
I i
i i

8. Action1 Call associated menu options

14. Display Dialogue

ý

15. Specify type and name attribute
16. Confirm entries

18. Confirm Selection

i --. »... ... ».., b».. ...,... ,..., r... ý ý
i

º!

13. «Create>>

19. Call Remove Attribute function and save entries h

71 Remnvr Attrihntr dialnauP frnm rlicnlnv:

k

Attribute
Dialogue

Application

1
1
1

N
9. Display Menu options

11. Call Attribute Dialogue

12. Remove Menu options

k
17. Add entries to Attribute List

i
h

20. Kill Attribute dialogue

136

Diagram A9: Sequence Diagram of Remove Attributes Use Case

Modeler

1. Select Relation instance

Relation
Instance

_W.2. Action: = Select associated options:

. 4
5. Select Remove Attributes

4

4
9. Display Dialogue

10. Select attribute to remove

11, Confirm removal

13. Confirm Selection

Remove
Attribute

Application

i

-º
4. Display Menu odtions

6. Call Attribute Dialogue
I

7. Remove Menu options

Attribute . 8. «Crlate»
Dialogue

12. Remove entries from
Attribute List

14. Call Remove Attribute function
and save entries

16. Remove Attribute dialogue from display

ý ý ý ý
- º

15. Kill Attribute diIlogue

137

Diagram A10: Sequence Diagram of Draw Bottom Level Use Case

Modeler Activity
Element

1. Select Activity Element

2. Capture Activity Element

3. Place Activity Element

6. Action: = Select Activity instance on workspace

Up Level Activity
Instance Workspace

4. «Create>>

5. Display created Activity instance

I
7. [Action] = Up Level Activity instance

8. Response : = Move to Middle Level_

ii Enable Decompose Function

, " - - --ý- -- - - - -- - -- - , I
I I ý O fD- -l = AA: A. IIo 1 o.. el

7. L,.,,,,,,,,,,, -,.,,,,,,,, ,,,,, ,

138

APPENDIX B: ACTIVITY DIAGRAMS FOR METHODS IDENTIFIED

Diagram B1 to B24 show the activity diagrams created for different methods identified

during the process of object oriented analysis and refinement on the class diagram during

the process of object oriented design.

Diagram B1: Activity Diagram for CMTElement class Draw method with one parameter

iCreate SOLID Pen for
drawing

Ii J
Select the created pen by storing
original pen into pOldPen

r A

\ J

Select a stock brush by storing
original brush into pOldBrush

CMTElements:: +DfaW(CDC' pDC)

A

T

I

N ---N
Draw required object by using
the selected pen and brush 'r-N

. 1

Restore the original pen and
brush from respective variables

ýý
Diagram B2: Activity Diagram for CMTElements class GetElemID method

CMTElements:: +GetElementlD(): CString

Return Element ID

139

Diagram B3: Activity Diagram for CMTElements class GetElemType method

return element type

Diagram B4: Activity Diagram for CMTElements class Draw method with two parameters

CMTElements: ±DraW(CDC' pDC, int aMode)

i

Select the created pen by storing
original pen into pOldPen

Select the created pen by storing
original pen into pOldPen

Draw required object by
using the selected pen and

ISelect
a stock brush by storing Restore the original pen and original brush into pOldBrush brush from respective variables

Draw required object by using
the selected pen and brush

ý

Restore the original pen and
brush from respective variables

4

140

Diagram B5: Activity Diagram for CMTElements class GetPiD method

CMTElements:: + GetParentlDQ: CString

return parent ID

Diagram B6: Activity Diagram for CMTElements class GetsysLevel method

return System level object
reside

Diagram B7: Activity Diagram for CMTElements class Move method

I
CMTElements:: +Move(CSize& aSize)

Add object's size with the moving distance
(aSize)

4

Diagram B8: Activity Diagarm for CDProcess class CProcess class and CActivity class
GetProcName method

CDProcess:: + GetProcNameG: CString
CProcess:: + GetProcNameQ: CString
CActivity:: + GetProcNameQ: CString

return process name

141

Diagram B9: Activity Diagram for CDProcess class SetProcName method

CDProcess:: + SetProcName(CString aName)
CProcess:: + SetProcName(CString aName)
CActivity:: + SetProcName(CString aName)

set process name to an attribute

Diagram B10: Activity Diagram for CRelation class DrawArrow method

I
CRelation:: +DrawArrow(CDC*pDC)

Create a black brush

Select the created brush and store
the original brush to pOldBrush

ý
4

Do the calculation for the three
points of a triangle.

Use the points of the triangle to draw
the arrow head by using the brush.

ý

Restore the original brush from
pOldBrush

4
i

Diagram B11: Activity Diagram for CRelation class GetStartCon method

CRelation:: +GetStartConQ: CString

Return start connection point

142

Diagram B12: Activity Diagram for CRelation class GetEndCon method

CRelation:: +GetEndConQ: CString

Return end connection point

Diagram B13: Activity Diagram for CRelation class LineStart method

I
CRelation:: +LineStartQ: CPoint

Return start point of Relation
element

4
Diagram B14: Activity Diagram for CRelation class LineEnd method

I
CRelation:: +LineEndQ: CPoint

Return end point of Relation
element

4
/

Diagram B15: Activity Diagram for CRelation class ResetConlnfo method

143

Diagram B16: Activity Diagram for CRelation class Resize method

CRelation:: +Resize(CPoint aPoint, CPoint bPoint)

ý

m_EnclosingRect =
CRect(aPoint, Point)

m_Enclos ingRect. Normal izeRectQ
f

11

N

4
-. 1

Diagram B17: Activity Diagram for CRelation class SetStartCon method

CRelation:: +SetStartCon(CString elemlD)

m StartCon = elemID

Diagram B18: Activity Diagram for CRelation class SetEndCon method

CRelation:: +SetEndCon(CString elemlD)

m EndCon = elemID

144

Diagram B19: Activity Diagram for CAttribute class GetAttribType method

CAttribute:: +GetAttribTypeQ: CString

return attribute type

Diagram B20: Activity Diagram for CAttribute class GetAttribName method

CAttribute:: +GetAttribNameQ: CString

Return attribute name

Diagram B21: Activity Diagram for CAttribute class GetProclD method

CAttribute:: +GetProcIDQ: CString

Return process ID

145

Diagram B22: Activity Diagram for CAttribute class GetProcName method

Return process name

Diagram B23: Activity Diagram for CMTPath class SetMTPath method

Get the current drive

Get the path name with the drive

Diagram B24: Activity Diagram for CMTPath class GetMTPath method

CMTPath: ±GetMTPathQ

Return m_MoToolPath

146

APPENDIX C: Source Codes for the Application Developed for FFM to calculate total of flour and time taken from the input raw material
Figure Cl to Figure C9 present the source codes of the Application that is developed

for FFM. The application is result of customization of the coding templates that are

generated from the model built.

class CMilling

public:
//functions declaration
CMilling();
-CMilling();
void get_Cleaning(CCleaning *nCleaning);

void get_MillSpeed 0;
void cal_FullTimeT 0;
void cal_RemWheat 0;
void cal_TotalTime 0;
void cal_FlourProd 0;

private:
//variables declaration
double m_MillSpeed;
double m_TimeN;
double m_TimeF;
double m_TimeR;
double m_RemWheat;

I;
CCleaning* m_pCleaning;

Figure Cl: Class Definition for Milling Domain Process (DP) structure.

147

class CWheatWeight
1

public:
//variables declaration

//function declaration
CWheatWeight(CCleaning* pCleaning);
virtual -CWheatWeightO;

void get_Weight ();

private:
//variables declaration
CCleaning* m_pCleaning;

//constructor declaration
CWheatWeightO;

I.

Figure C2: Class definition for WheatWeight Process(P) structure.

class CPre_Cleaning

public:
//variables declaration
float m_Impurity;

//function declaration
CPre_Cleaning(CCleaning* pCleaning);
virtual -CPre_Cleaning();

void get_Impurity 0;
void cal-Weight ();

private:
//variables declaration
CCleaning* m_pCleaning;

//constructor declaration
CPre_CleaningO;

};

Figure C3: Class definition for Pre_Cleaning Process (P) structure.

148

class CClean_Temper

public:
//functions declaration
CClean_Temper(CCleaning* pCleaning);
-CClean_TemperO;

void get_Initial 0;
void get -

Target
void cal_Water_N 0;
void cal_Water_T 0;
void cal Gain ();
void cal_ProdWheat 0;

private:
//variable declaration
CCleaning* m_pCleaning;

float m_Initial;
float m_Target;
float m_Gain;
float m_WeightWaterN;
float m_WeightWaterT;
float m_WaterN;
float m_WaterT;
//constructor declaration
CClean_TemperO;

1;

Figure C4: Class definition for Clean_Temper Process (P) structure.

149

CCleaning:: CCleaningO
{

}

m_pWheatWeight = new CWheatWeight(this);
m_pPreClean = new CPre_Cleaning(this);
m_pCleanTemper = new CClean_Temper(this);

CCleaning:: -C Cleaning()

}

delete m_pWheatWeight;
delete m_pPreClean;
delete m_pCleanTemper;

CCleaning:: CCleaning(conat CCleaning& xClean)

CCleaningO;
m_OrigWheatWeight = xClean. m_OrigWheatWeight;
m_PureWheatWeight = xClean. m_PureWheatWeight;
m_GainN = xClean. m_GainN;
m_GainT = xClean. m_GainT;

void CCleaning:: DPl_Process 0

m_pWheatW eight->get_WeightO;

Figure C5: Class methods declaration for Cleaning Domain Process (DP) structure.

CWheatWeight:: CWheatWeight(CCleaning* pCleaning)
{

m_pCleaning = pCleaning;

void CWheatWeight:: get_Weight 0

}

cout « "Enter the WEIGHT of RAW WHEAT wants to calculate
cin » m_pCleaning->m_OrigWheatWeight;
cout « endl;
m_pCleaning->m_pPreClean->get_ImpurityO;

Figure C6: Class methods declaration for WheatWeight Process (P) structure with its
Activity (A) structure, get-Weight.

150

CPre_Cleaning:: CPre_Cleaning(CCleaning* pCleaning)
1

}
m_pCleaning = pCleaning;

CPre_Cleaning:: CPre_Cleaning 0

CPre_Cleaning:: -CPre_Cleaning p

I
void CPre_Cleaning:: get_Impurity ()

cout « "Enter the IMPURITY percentage(%) of RAW WHEAT
cin » m_Impurity;
cout « endl;

cal-Weight 0;

void CPre_Cleaning:: cal_Weight 0

float nImpureWeight;

nImpureWeight = m pCleaning->m_OrigWheatWeight * m_Impurity;
m_pCleaning->m_PureWheatWeight = m_pCleaning->m_OrigWheatWeight - nImpureWeight;
cout« "The weight(Tonne) of the Pure Weight (after purify the impurities) is " « m_pCleaning-

>m_PureWheatWeight « " Tonne";
cout« endl « endl;
m_pCleaning->m_pCleanTemper->get_InitialO;

Figure C7: Class methods declaration for Pre_Cleaning Process (P) structure with its
Activity (A) structures.

151

CClean_Temper:: CClean_Temper(CCleaning* pCleaning)

m_pCleaning = pCleaning;

void CClean_Temper:: get_Initial ()

cout«"Enter the INITIAL percentage(%) for calculating Water added
cin » m_Initial;
cout « endl;
get-Target ();

}
void CClean_Temper:: get_Target 0

cout « "Enter the TARGET percentage(%) for calculating Water added
cin » m_Target;
cout « endl;
cal_Water_N O;

void CClean_Temper:: cal_Water_N 0

float iTarget, iCapacity;
iTarget = 14;
iCapacity = 100;
m_WaterN = ((m_Target - m_Initial)/(100 - iTarget)) * iCapacity;
cout « "Water added for 100 tonne of raw wheat is " « m_WaterN « endl « endl;
cal_Water_T O;

void CClean_Temper:: cal_Water_T 0
1

float iTarget, iCapacity;
iTarget = 14;
iCapacity = m_pCleaning->m_PureWheatWeight;
m_WaterT = ((m_Target - m_Initial)/(100 - iTarget)) * iCapacity;
cout « "Water added for " « iCapacity «" tonne of raw wheat is " « m_WaterT « endl « endl;
cal_Gain ();

void CClean_Temper:: cal_Gain 0
1

cout « "Enter the percentage(%) of Gain of Raw Wheat
cin » m_Gain;
cout « endl;
m_WeightWaterN = (m_WaterN + 100) * (na-Gain/100);
m_WeightWaterT = (m_WaterT + m_pCleaning->m_PureWheatWeight) * (m_Gain/100);
cal_ProdWheat ();

void CClean_Temper:: cal_ProdWheat 0
t

m_pCleaning->m_GainN = 100 + m_WeightWaterN;
m_pCleaning->m_GainT = m_pCleaning->m_PureWheatWeight + m_WeightWaterT;

cout « "The result of the GAIN for 100 tonne of raw wheat is = " « m_pCleaning->m_GainN « endl;
cout « "The result of the GAIN for " « m_pCleaning->m_PureWheatWeight « " of raw wheat is = "

« m_pCleaning->m_GainT « endl;
cout « endl;

I

Figure C8: Class methods declaration for Clean_Temper Process (P) structure with its
Activity (A) structure.

152

void CMilling:: get_Cleaning(CCleaning *nCleaning)
{

}

m_pCleaning = nCleaning;
get_MillSpeedO;

void CMilling:: get_MillSpeed 0
1

I

cout « "Enter the Milling Speed per hour (7, 9, 9.5)
cin » m_MillSpeed;
cout « endl;

cal_FullTimeT 0;

void CMilling:: cal_FullTimeT 0
{

i

m_TimeN = m-pCleaning->m_GainN / m_MillSpeed;
m_TimeR = modf(m_pCleaning->m_GainT / m_pCleaning->m_GainN, &m_TimeF);

cal_RemWheat O;

void CMilling:: cal_RemWheat 0

1

m_RemWheat = m_pCleaning->m_GainN * m_TimeR;
cout « "Remain Wheat for Tempering is = " « m_RemWheat « ends;

cal_TotalTime ();

void CMilling:: cal_TotalTime 0
{

nTimeT;

double nTimeF, nTimeRemWheat, nTimeT;

nTimeF = m_TimeF * m_TimeN;
nTimeRemWheat = m_RemWheat / m_MillSpeed;

nTimeT = nTimeF + nTimeRemWheat;
cout «"Total time needed for milling "« m_pCleaning->m_GainT « " tonnes of raw wheat is " «

cout «endl«endl;

cal_F1ourProd ();

void CMilling:: cal_FlourProd 0
{

double nTotFlour;
nTotFlour = na_pCleaning->m_GainT*761100;

cout « "Total FLOUR produced from " « m_pCleaning->m_GainT « "tonnes of raw wheat is " «
nTotFlour;

cout «endl«endl;

Figure C9: Class methods declaration for Milling Domain Process (DP) structure with its
associated Activity (A) structures.

153

