

ITS REMOVAL

Arkib TC 175.2 B713 2016

BONG HIN JOO

(1) If the second se

Realized to the there is a provide the the second second second

SEDIMENT IN

OPEN STORM

SEWER AND ITS REMOVAL

and and a second a second and a s

SEWER AND ITS REMOVAL

Charles Bong Hin Joo

Universiti Malaysia Sarawak

612243103

© Charles Bong Hin Joo, 2016

All rights reserved. No part of this publication may be reproduced, stored in retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publisher.

Published in Malaysia by

UNIMAS Publisher, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia.

Printed in Malaysia by Malien Press Sdn. Bhd. (522811-T) G/FL Lot 184, Section 49, Jalan Abell, 93100 Kuching, Sarawak, Malaysia.

Perpustakaan Negara Malaysia

Cataloguing-in-Publication Data

Bong, Charles Hin Joo, 1978-
Sediment in Open Storm Sewer and Its Removal / CHARLES BONG HIN JOO.
Icludes indexBibliography: page 175
ISBN 978-967-5527-98-2Image: Charles Bong Hin Joo.
Image: Charles Bong

13713 2016

PREFACE

Sedimentation in storm sewer had been known to have adverse effect to the sewer system itself such as reduced flow

capacity (one of the cause of flash flood) and environmental pollution. However, it was only within the recent two decades that major research programs have been carried out especially for closed conduit sewer in European countries to understand the origin, nature and behavior as well as the impact of sedimentation entering the sewer systems. As for open storm sewer system which is widely used in developing countries, only limited studies have been reported so far. This book intended to fill this gap in the literature based on the findings from previous works done by the author in sediment sampling from urban concrete open storm sewers in Malaysia; development of selfcleansing design criteria to reduce sedimentation and testing of flushing in open storm sewer to improve sediment removal. It is hope that this book can be used as a vehicle to promote the dissemination of results of recent research in open storm sewer to design engineers, municipal bodies, sewer undertakers,

academicians and well as postgraduate students who wish to increase their knowledge in this subject.

Charles Bong Hin Joo Universiti Malaysia Sarawak

ACKNOWLEDGEMENT

My deepest appreciation to my former doctoral research work supervisors; Professor Dr Aminuddin Ab. Ghani and Dr

Lau Tze Liang for their invaluable guidance in completing my thesis and making this book possible. Their comments, advices and encouragement have matured me in research work and I really cherish the opportunity to work under their supervision.

vii

Pusar Kindman Manarah Akademik UNIVERSEELMALARSIA SAKAWAK

TABLE OF CONTENTS

Acknowledgement	vii
Table of contents	ix
List of figures	xiii

List of tables	xvii
List of symbols	XX
List of abbreviations	xxii
CHAPTER 1	
INTRODUCTION	1
1.1 Background	1
1.2 Objective of this Book	4
1.3 Scope of this Book	5
1.3.1 Sediment Sampling	5
1.3.2 Incipient Motion Experiment	8
1.3.3 Sediment Flushing in Open Storm Sewer	9

CHAPTER 2	
SEDIMENTATION IN SEWER	
2.1 Source of Sediment and Deposition	
2.2 Sediment Classification	
2.3 Sediment Size Distribution	
2.4 Sediment Characteristics in Sewers	

2.5 Sediment Erosion and Deposition Processes
2.6 Self-Cleansing Design of Sewer
2.6.1 Design Concept Based on Non-Deposition of Sediment24
2.6.2 Design Concept Based on Moving of Existing Sediment on Sewer Bed
2.6.3 Design Concept Based on Energy Slope
2.7 Flushing of Sediment in Sewer Systems
2.7.1 Historical Background of Flushing
2.7.2 Principle of Flush Cleaning
2.7.3 Previous Studies on Flush Cleaning
2.8 Summary
CHAPTER 3
SEDIMENT CHARACTERISTICS
IN OPEN STORM SEWER
3.1 Physical Characteristics of Sediment
3.2 Percentage of Blockage due to Sediment72
3.3 Summary
CHAPTER 4
SELF-CLEANSING DESIGN OF OPEN STORM SEWER

4.1 Development of Design Criteria	81
4.1.1 Characteristic Parameters for Incipient Motion	82
4.1.2 Incipient Motion Equations Development	85
4.2 Self-Cleansing Design Chart for Rectangular Open Sewer	106
4.3 Summary	115

CHAPTER 5	
POTENTIAL OF OPEN STORM	
SEWER FLUSHING	117
5.1 Design of Tipping Sediment Flush Gate	117
5.2 Tipping Flush Gate Sizing	124
5.3 Tipping Flush Gate Monitoring On-Site	128
5.3.1 Tipping Flush Gate Operations	128
5.3.2 Flushing of Natural Sediment	
5.3.3 Flushing of Sediment Bed	137
5.3.4 Feasibility to use Tipping Sediment Flush Gate	e141

5.4	Guidelines for Usage of Tipping Sediment	
	Flush Gate On-Site1	42
5.5	Summary1	50

CH	APTER 6
CO	NCLUSIONS
6.1	Physical Characteristics of Sediment in Open Storm Sewer151
6.2 (Development of Self-Cleansing Design Criteria151
6.3	Capability of Tipping Flush Gate for Sediment Removal152

APPENDIX A Incipient motion experimental

data from the author.....153

APPENDIX B Incipient motion experimental data from Salem (1998)......157

APPENDIX C Incipient motion experimental data from the other authors......163

APPENDIX D Design tables adapted from "Urban Stormwater Management Manual for Malaysia – 2nd Edition" for Example 4.1......169

REFERENCES	'5
------------	----

INDEX	
INDEX	

xii

LIST OF FIGURES

Figure		Page
1.1	Sediment deposit in open storm sewer (Bong, 2013)	2
1.2	Map of Kuching city showing the location of sampling (Bong <i>et al.</i> , 2014a)	6
1.3	Map of surrounding towns outside Kuching city showing the location of sampling (Bong <i>et al.</i> , 2014a)	6
1.4	Map of Penang showing the location of - sampling (Bong <i>et al.</i> , 2014a)	7
1.5	Scooping sediment sample from open storm	

sewer (Bong, 2013).....7

- 1.6 Schematic diagram of the flume for incipient motion experiment (not to scale) (Bong et al., 2013a).....9
- 1.8 Site installations: (a) CCTVs; (b) stick gauge; and (c) tipping flush gate (Bong, 2013)......11
- 1.9 Sediment profile monitoring: (a) measuring sediment profile; and (b) sand bed (Bong, 2013)......12
- 2.1 Sand and aggregates from road surface material accumulating by the roadside which will be wash into open storm sewer when it rains (Bong, 2013)......13
- 2.2 Sediment grain size distribution in semi-log scale (Garcia, 2008).....16
- 2.3 Sediment size distribution for major cities in Malaysia (Kassim, 2005)......20
- 2.5 Minimum design velocities by simplified construction industry research and information association procedure. Sewer types: Sa = sanitary

- 2.8 Experiment on flushing waves propagation(Ogden, 1899)......41

2.10	Operation of the Hydrass gate (Chebbo <i>et al.</i> , 1996)	43
2.11	Changes of sediment profile after installation of the Hydrass gate in Marseille (Chebbo <i>et al.</i> , 1996)	
2.12	Effect of flushes on sediment profile in Lyon (Bertrand-Krajewski <i>et al.</i> , 2006)	
2.13	Experiments with upstream water head of 0.2 m: (a) sediment heights after 45 flushes; and (b) sediment heights after 150 flushes (Campisano <i>et al.</i> , 2008)	45
2.14	Measured and simulated sediment profiles after 20 flushes: $K = Kalinske$; MPM8 = Meyer-Peter and Muller with $C_{MPM} = 8$; MPM12 = Meyer-Peter and Muller with $C_{MPM} = 12$; and $VP = van Piin$	

- 3.2 Unimodal and bimodal sediment distribution: (a) unimodal distribution for sample from JSR-1; and
 (b) bimodal distribution for BDCR-1
 (Bong et al., 2014a)......61
- 4.1 Comparison between observed and predicted critical shear stress for Equation (4.3) using the data from Yalin and Karahan (1979), Kuhnle (1993) and Shvidchenko (2000)......104
- 4.3 Self-cleansing design relationship between

	drain minimum slope and design minimum flow rate with the respective drain size (sediment size $d_{50} = 1.0$ mm and full flow) (Bong <i>et al.</i> , 2014b)
5.1	Forces acting on the tipping flush gate before opening
5.2	Forces acting on the tipping flush gate when open121
5.3	Views of the tipping flush gate: (a) front view; and (b) isometric view (not to scale) (Bong, 2013)
5.4	IDF curve for Sg. Simpang Ampat Tangki (station no.: 5204048) (adapted from DID (2012))131
5.5	Tipping flush gate in operation: (a) the flush wave created moment after the gate open; and

- 5.8 Sediment bed profile for the monitored drain section in three dimensional for: (a) 14th
 November 2012 before flushing; and (b) 26th
 December 2012 after 11 flushes (Bong, 2013)......136

- 5.14 Distance between bottom invert of inlet to sewer bottom (Bong, 2013)......145

LIST OF TABLES

Table		Page
2.1	Categories of sediment deposit (Crabtree, 1989)	15
2.2	Classification system based on BS 5930:1999	15
2.3	Sediment characteristics in sewers (Ab. Ghani, 1997)	19
2.4	Sediment characteristics in Malaysian sewer system (Ab. Ghani <i>et al.</i> , 2000)	19
2.5	Minimum critical velocity criteria (Vongvisessomjai <i>et al.</i> , 2010; Bong, 2013)	26

Minimum critical shear stress criteria 2.6 Characteristic parameters for incipient motion 2.7Sampling location with the corresponding 3.1 sample no., catchment area and estimated percentage of impervious area Sediment distribution characteristics for 3.2 Sediment distribution characteristics for 3.3 samples from surrounding towns outside Sediment distribution characteristics for 3.4 .66 samples from Penang (Bong et al., 2014a).....

- 3.5 Summary of the average value of specific gravity, grain size distribution and representative size according to land use and location (Bong *et al.*, 2014a)......70

3.7	Open sewer and sediment deposition characteristics as observed on-site for the sampling in Kuching city (Bong <i>et al.</i> , 2014a)
3.8	Open sewer and sediment deposition characteristics as observed on-site for the sampling in surrounding towns outside Kuching city (Bong <i>et al.</i> , 2014a)76
3.9	Open sewer and sediment deposition characteristics as observed on-site for the sampling in Penang (Bong <i>et al.</i> , 2014a)77
4.1	Range of experimental parameters for incipient

- 4.11 Performance test for critical shear stress equations......98

- 4.13 Summary of mean and standard deviation for the discrepancy ratio for critical shear stress equations using data from Yalin and Karahan (1979), Kuhnle (1993) and Shvidchenko (2000)......101
- 4.14 Summary of mean and standard deviation for the discrepancy ratio for critical velocity equations using data from Yalin and Karahan (1979), Kuhnle
- Best equations for critical shear stress 4.15 and critical velocity approach.....102
- Range of parameters for development of 4.16

Equation (4.3) and Equation (4.8)......103

- Assumptions for development of self-cleansing 4.17
- Equations relating the sewer minimum slope 4.18 to the design minimum flow rate for the respective sewer size......110
- Trial and error to determine the hinge level of gate.....125 5.1
- Trial and error to determine the water level 5.2 when the gate closes.....126
- Gate operation time with the corresponding 5.3 rainfall duration, intensity and equivalent ARI prior to the gate opening (Bong, 2013)......129

XIX

LIST OF SYMBOLS

- A flow area [m²]
- A_{os} total cross sectional area of the open sewer [m²]
- A_s cross sectional area occupied by sediment deposit [m²]
- B channel bed width [m]
- **B**' bimodality parameter
- C_p Mallows' goodness-of-prediction
- C_{v} volumetric sediment concentration [ppm]
- D_{gr} dimensionless grain diameter
- D.R. discrepancy ratio
- d particle size [m]
- d_{50} particle median diameter size [m]
- d_m particle mean diameter size [m]
- d_{md} particle mode diameter size [m]
- F_d particle Froude number
- g acceleration due to gravity [m²/s]
- M_o overturning moment [Nm]
- M_R resisting moment [Nm]
- n number of observation
- Q discharge [m³/s]
- **R** hydraulic radius

- Re Reynolds number
- Re. grain Reynolds number
- R_p^2 coefficient of determination for regression model
- R_{adj}^2 adjusted coefficient of determination for regression model
- r correlation coefficient
- S_0 channel slope
- S_s sediment specific gravity
- t_s sediment deposition thickness [m]
- V average velocity [m]
- V_c critical velocity [m/s]
- W width [m]
- Y flow depth [m]
- \mathcal{Y}_0 normal flow depth [m]
- γ_g specific weight of gate [N/m2]
- γ_w specific weight of water [N/m2]
- λ_0 Darcy-Weisbach friction factor
- μ mean value
- θ angle of gate opening from the horizontal axis [°]
- θ_c dimensionless critical shear stress
- ρ density of fluid [kg/m³]
- ρ_s density of particle [kg/m³]
- σ standard deviation
- σ_{g} geometric standard deviation

- τ_c critical shear stress [N/m²]
- v kinematic viscosity of fluid [m²/s]

LIST OF ABBREVIATIONS

ANOVA Analysis of Variance

- ARI Annual Recurrence Interval
- ASTM American Society for Testing and Materials
- BC Bau Commercial
- BDCC BDC Commercial
- BDCR BDC Residential
- BLC Bayan Lepas Commercial
- BLI Bayan Lepas Industrial
- BLR Bayan Lepas Residential
- BoC Bormill Commercial
- BR Bau Residential

BS	British Standard
CCTV	Closed-Circuit Television
CIRIA	Construction Industry Research and Information Association, UK
CPC	Central Park Commercial
DID	Department of Drainage and Irrigation, Malaysia
CIRIA CPC DID	Construction Industry Research and Informatio Association, UK Central Park Commercial Department of Drainage and Irrigation, Malays

- GHR Green Height Residential
- HSGR Hui Sing Garden Residential
- IDF Intensity Duration Frequency
- JSR Jalan Song Residential
- KSC Kota Samarahan Commercial
- KSR Kota Samarahan Residential

•

- LHS Left Hand Side
- MMC Mak Mandin Commercial

MMI	Mak Mandin Industrial
MMR	Mak Mandin Residential
MPM	Meyer-Peter and Muller
MPSP	Majlis Perbandaran Seberang Perai
MSE	Mean Square Error
NTC	Nibong Tebal Commercial
NTR	Nibong Tebal Residential
PerI	Perai Industrial
PI	Pending Industrial

RHC	RH Plaza Commercial
RHS	Right Hand Side
SC	Serian Commercial
SR	Serian Residential
SSE	Sum of Square Error
SST	Sum of Square Total

- TJC Tabuan Jaya Commercial
- TVD Total Variation Diminishing
- UK United Kingdom

xxiv

INTRODUCTION

1.1 Background

Open sewer system are frequently used in developing (Geiger, 1990) and less developed countries to convey storm water runoff. Though closed conduit sewer is more hygienic and aesthetics; the construction and maintenance of closed conduit sewer are more costly than open sewer and need special equipment or trained staff. Due to this, open sewer system is still preferred in spite of the benefits of closed conduit sewer system. Open storm sewer system could be quite efficient in rapid removal of surface runoff; however, sediment deposition tends to build up in the drain after a period of time (see Figure 1.1). Sediment deposition in urban open storm sewer had caused many adverse effect to the sewer system itself such as reduction in hydraulic capacity (which had been identified as one of the cause of flash

flood) and environmental pollution due to the high pollutant concentrations that might be released during the erosion of these depositions (Ashley, Wotherspoon, Coghlan *et al.*, 1992; Schellart *et al.*, 2010; Rodríguez *et al.*, 2012).

Generally, only limited data and works were available in the literature for sediment in storm sewer for developing and less developed countries as compared to European countries (Ashley et al., 2004). Though some data on sediment for developing countries exist in unpublished literature such as consulting reports; these data are difficult to obtain, the measurement procedures are not always known and the variability from one study to another is great (Ashley et al., 2004). Hence, there is still a lack of understanding of the sediment properties commonly found in urban open storm sewer especially in developing and less developed countries.

Figure 1.1 Sediment deposit in open storm sewer (Bong, 2013)

To reduce sediment deposition, open storm sewer has been designed to have self-cleansing properties. Many designers prefer to adopt a single minimum constant value of velocity or shear stress since these criteria are easier to use, especially for a simple or small sewer network. In Malaysia, to prevent