
2015 4th International Conference on Software Engineering and Computer Systems (ICSECS), Kuantan, Pahang, Malaysia. August 19-21, 2015

Refinement in Integrated Specifications of CSP-OZ

Azman Bujang Masli, Edwin Mit , Nurfauza Jali and Yanti Rosmunie Bujang
Faculty of Computer Science and Information Technology

Universiti Malaysia Sarawak
Kota Samarahan, Sarawak, Malaysia

{bmazman, edwin, jnurfauza, byanti}@fit.unimas.my

Abstract-Formal specification provides the means to verify

a system's correctness and this can be done by the development
technique of refinement of formal specification. Considering the
multiple views of a system, in integrated formal specifications,
will introduce more than one refinement that can be applied to
the specification. This paper investigates the interaction of the
different parts of an integrated specification under refinement.
The integrated notation of CSP-OZ integrates the behaviour
based language CSP with the state based notation, Object-Z.
In such integrated notation, not only different views of a system
are available, but the refinement relations in both parts are also
of different basis.

I. INTRODUCTION

First introduced by Dijkstra [1] and Wirth [2] in the early
seventies, refinement is a step-by-step process of development
where a specification is transformed into more detail or con
crete specification. The idea behind refinement is the notion
of substitutivity where a specification can be replaced with an
other specification without noticeable behaviour being detected
by users [3]. The process involves resolving uncertainties in the
abstract specification, as well as making it more implementable
in the target programming language. The uncertainties of the
abstract specification could be in terms of choices that are left
open or underspecified operations.

A number of work have been done on combining the
different views of formal specification (see, e.g., [4], [5], [6]).
The idea behind all approaches to such a combination is to
define a comparable semantics [7] for the different specifica
tion languages, mostly by interpreting one language into the
semantics of the other. Consequently this means that, if we
have an integration of two different specification languages, we
can apply at least two different refinements to the specification
as well. This paper discusses the application of refinement
of different languages in such setting. Specifically we will
look into the problems that might occur in one part of an
integrated specification when we apply refinement to the other
part of it. The discussion will be based around the integrated
specification language of Communicating Sequential Processes
(CSP) [8] and Object-Z [9], called CSP-OZ, as defined in [10].
[11] and [12] also integrate CSP with Object-Z using simpler
approaches.

II. RELATED WORK

State-based view of communicating processes has been
explored in [13] and [14] where simulation techniques for
processes, similar to those found in Z, are developed and
proved. The approach in [13] employs labelled state-transition
systems in deriving corresponding CSP semantics for processes

978-1-4673-6722-6/15/$31.00 ©2015 IEEE 136

and their refinements in a state-based setting. Another similar
work has also been done in [15] by adopting weakest pre
conditions over action systems, and furthermore [16] (also in
[17]) investigated the same problem by deriving concurrent
refinement in relational setting.

In integrated specifications, refinement in one view is
applicable by assuming the other view of the specification
remains unchanged. This is the approach taken in [18] to
define data refinement for CSP-CASL specification. The same
approach is also used in [10], which defines data refinement
for CSP-OZ specification.

This paper presents and investigates the refinements of
CSP-OZ specification, where more than one refinement rela
tions exist and can be applied by restricting the changes in the
other part of the specification.

III. THE CSP-OZ

The combination of CSP and Object-Z discussed in this
paper, is based on the one described in [19], which is called
CSP-OZ, where Object-Z classes are also given a CSP seman
tics. That is, the syntax of an Object-Z class has been extended
to include the definition of the CSP process of the class and
channels, which is called the CSP part of it.

The following is an example of a CSP-OZ specification of a
buffer. Due to some conventions used in CSP-OZ specification,
we add keyword "com" to the operation names to reflect the
fact that we use the blocking mode of operations. The CSP part
of the class defines the behaviour or the sequence of operations
taking place.

- ABuffer ____________________________ _

method Aln[x?
:

N]'AOut[y!
:

N]
mainA = Aln --+ (mainA D AOut --+ mainA)

Init
aitems : IP' N [aitems = 0

#aitems < 10

com...AIn com..AOut
6,(aitems

)
6,

(
aitems

)

in?
:

N out!
:

N
in? tf. aitems out! E aitems
aitems

'
= aitems U

{
in?

}
aitems

'
= aitems

\ {
out! }

In the class ABuffer above, the CSP part of the class offers
a choice to the environment after event Aln has taken place.

Authorized licensed use limited to: UNIVERSITY MALAYSIA SARAWAK. Downloaded on September 15,2022 at 01:35:14 UTC from IEEE Xplore. Restrictions apply.

2015 4th International Conference on Software Engineering and Computer Systems (ICSECS), Kuantan, Pahang, Malaysia. August 19-21, 2015

The subsequent event could be either Ain or AOut and this is
determined by the user or environment of the ABuffer process.

IV. REFINEMENT IN CSP-OZ

The specification of a CSP-OZ class comprises of two
parts, where the CSP part defines the behaviour of the class as
a CSP process and the OZ part defines the class' data structure
and operations.

Although the OZ part is given CSP semantics and thus can
be treated as a CSP process by itself, however, Z refinement
simulations are still needed in order to refine the class'
operations and data types. This is because there is no state
information available in the semantic representation, either
from the operational or the denotational semantics, of a CSP
process [10, pp 106]. Therefore, Z refinement is used in order
to deal with the state information in the OZ part of CSP-OZ
specification.

The failures semantics of CSP only records the availability
of events that correspond to operations of the OZ part, and not
the resulting state of the class after an operation is executed.
For example the following class A may end in either one of
two different states, in the OZ part of it, and this is due to the
non-determinism in operation 0pI. This information, however,
is not captured in the process of the CSP part. Thus, in order
to deal with the non-determinism in the OZ part of CSP-OZ
specifications, Z refinement can be applied in the OZ part,
while CSP refinements are applicable to the process in the
CSP part.

__ A
method 0PI, OP2
maina = OPI --+ STOP D OPI --+ OP2 --+ maina

I Xa
:

N

,COITLOpI ______ __
�(

Xa
)

X� E
{
I, 2

}

[Init
Xa = 0

C OITLOP2 ______ __
�(

xa
)

Xa = 1 =} x� = 3
Xa = 2 =} x� = 4

Therefore, given a CSP-OZ class CSPAII OZA, and assum
ing that the CSP part remains unchanged, one can apply Z
refinement to it to become a more concrete class [10], lets
say CSPBII OZB, with a retrieve relation R. We can say that
CSPAII OZA [;;;z CSPBII OZB under retrieve relation R with
CSPA = CSPB. Such refinement is provable to hold by either
forward or backward simulation of Z refinement or both. For
example we can reduce the non-determinism in class A by
refining the OZ part as follows

C ________________________________ _

method 0PI, OP2
mainc = OPI --+ STOP D OPI --+ OP2 --+ mainc

I Xc:
N

[Init
Xc = 0

137

C OITLOP2 ______ _
�(

xc
)

Xc = 1 =} x� = 3
Xc = 2 =} x� = 4

which is a forward simulation of Z refinement with the
following retrieve relation R

R ________________________________ __

A.STATE
C.STATE

Xa E
{
I, 2

}
{o} Xc = 1

The same technique is also applicable when we consider CSP
refinement for the CSP part of a CSP-OZ class. Assuming the
OZ part remains the same, either traces or failures refinement
can be applied to the CSP part of the class and the resulting
concrete class is a refinement of the abstract one under the
chosen refinement. For example, we apply traces refinement
to the CSP part of class C above as follows

D ________________________________ ___

method 0PI, OP2
maind = OPI --+ OP2 --+ maind

Xd = 1 =} x
�

= 3
Xd = 2 =} x

�
= 4

This, however, is not true if there are changes made to the other
part of the class while refining the other, where the changes
result in incompatibility (that is not a refinement). For example,
the following class E is not a refinement of class C due to
the changes made in the OZ part of the class with an extra
operation (Op3) has been added.

E _____________________________ _

method 0PI, OP2

X� = 1
y
'

= Y U
{
Xe

} Xe = 1 =} X� = 3
Xe = 2 =} x�

= 4
y = y

'
U

{
Xe

}

Authorized licensed use limited to: UNIVERSITY MALAYSIA SARAWAK. Downloaded on September 15,2022 at 01:35:14 UTC from IEEE Xplore. Restrictions apply.

2015 4th International Conference on Software Engineering and Computer Systems (ICSECS), Kuantan, Pahang, Malaysia. August 19-21, 2015

COITLOp3 __________________________ _
�(

Xe
)

x�= x+l
y

l

= Y U
{
Xe

}

This suggests that both refinements, of the CSP part and the
OZ part, may be done at the same time and the resulting class
will still be a valid refinement of the abstract one. For example,
class D is also a refinement of class A, where both parts have
been refined.

As we can observe from the example, we have both traces
and Z refinements between classes A and D. That is given
A = CSPA II OZA and D = CSPoII OZo, we have CSPA [;;;7
CSPo and OZA [;;;z OZo. Therefore, we do not need to have
equal OZ parts in order to refine the CSP part, or the other
way round, as mentioned in [10]. All we need is that there
exists a refinementl in one part while refining the other.

Another interesting observation that we can get from the
example is that, we cannot apply the transitive property of
refinement between classes A, C and D to imply that A [;;; D.
Although we have a refinement between A and C as well as
between C and D, these refinements, however, are of different
ordering. The refinement that we have between A and C is a
traces refinement where A [;;;7 C with CSPA [;;; CSPc, while Z
refinement exists between C and D with OZc [;;; OZo. Thus the
transitive property of refinement

(
A [;;; C

)
1\

(
C [;;; D) =} A [;;;

D does not work in this case. The transitivity of refinement in
this case can be worked out at the semantic level by showing
that the semantic of D is within the semantic of A. We will
not pursue this here at the moment, but will consider it as part
of future works.

A. The CSP Part and Z Refinement

Whenever there is non-determinism in an operation of the
OZ part, then we would expect that the operation may end up
in more than one after state. Depending on how the specifica
tion is specified, each of the after state may lead to a different
operation being enabled. Hence what operation follows next is
determined by which state will become available.

As an example, consider the following CSP-OZ class P

P-----------------------------------

method 0pa; 0Pb; Ope
main = Opa -7 OPb -7 STOP D Opa -7 Ope -7 STOP

I X
:

1':1

COITLOpa ___ __
�(

X
)

x= O
X

l

E
{
1,2

}

[Init
x= O

lThis may also mean that the other part is equal as proposed in [10].

138

COITLOpe __________________________ _

��� => x, � 4

where the non-determinism in Opa results in either OPb or
Ope will be enabled. Here we have two different sequences of
operations in the OZ part of class P and the non-determinism
is reflected in the CSP part as well, where event Opa leads to
two different events.

On the other hand, for the second scenario, the non
determinism in the operation of the OZ part may be handled
by only one operation as shown in the following CSP-OZ class

Q.

--Q------------------------------------

method 0pa; OPb
main = Opa -7 OPb -7 STOP

I X
:

1':1

COITLOpa ____ _
�(

x
)

x= O
X

l

E
{
I, 2

}

[Init
x= O

COITLOPb ____ _
�(

x
)

x= 1=}x

l

= 3
x=2=}x

l

= 4

In this case, there is only one possible sequence of operations.
Thus no non-determinism, due to the non-determinism in
operation Opa of the OZ part, can be introduced in the process
definition of the CSP part. Also, the trace in the CSP part will
represent the sequence of operations of the OZ part that will
give two possible paths.

Although the CSP part and the OZ part of a CSP-OZ
specification represent two different CSP processes that in
teract via CSP parallel operator, since the process of the CSP
part is usually defined within the behaviour of the OZ part,
it is assumed that the following holds for every CSP-OZ
specification within this paper.

traces
(
CSP

)
� traces

(
OZ

)

This is also due to the fact that the CSP part restricts the order
of operations of the OZ part. With this assumption in place,
it is only in the first scenario where Z refinement in the OZ
part of a CSP-OZ class could affect the process definition of
the CSP part.

Thus resolving non-determinism of an operation by refining
the OZ part will remove the corresponding non-determinism
in the CSP part as well. This is because the containment of
the traces should still hold in the concrete specification. This
is shown in figure 1 below.

On the other hand, if there exists non-determinism in
operations of the OZ part of a CSP-OZ specification that is not
reflected in the process definition of the CSP part2 as discussed

2There is no unique process specification for a CSP-OZ class, since we can
define the order of the operations in any order. See [20], [21] for translating
Z specification to CSP.

Authorized licensed use limited to: UNIVERSITY MALAYSIA SARAWAK. Downloaded on September 15,2022 at 01:35:14 UTC from IEEE Xplore. Restrictions apply.

2015 4th International Conference on Software Engineering and Computer Systems (ICSECS), Kuantan, Pahang, Malaysia. August 19-21, 2015

csp part :.< b :� .
..

..
.. .

OZ part
Opa

a:;:--J.!.Pc :
.

- ----...·Sc

b

�

.

.

Fig. 1. Z refinement and the traces of the CSP part

in the second scenario, refining the OZ part to reduce the
non-determinism will not affect the CSP part of a CSP-OZ
specification. This is illustrated in figure 2 below, where we
remove the non-determinism in 0pb. The restriction on traces

csp part :.< ..
.
:

b
:�

OZpart So· �z So·
OPa .

ai:-!2Pc : . ----"sc

Fig. 2. Effects of refinement in the OZ part to the CSP part

containment, traces
(
CSP

)
� traces

(
OZ), remains valid after

the refinement.

B. The OZ Part and CSP Refinement

Since the process of the CSP part imposes restnctlOns
on the execution of operations of the OZ part, applying
CSP refinement to the CSP part could further escalate the
restrictions. This is because the refinement in the CSP part
will further reduce the possible traces of the specification. For
example in traces refinement, traces of the concrete process
should be contained in the traces of the abstract process.
Failures refinement also requires traces containment between
the traces of the concrete and abstract specifications. Thus,
refining the process in the CSP part will further reduce the
possible traces of the specification and these are the traces
within which the operations of the OZ part will be executed.

Although the refinement does not directly change the spec
ification of the OZ part, however, it does affect the operations
that will become available and their order of execution. This
affects the OZ part in such a way that some states may
become unavailable. This subsection discusses on how traces
and failures refinements of the CSP part affect the OZ part of
a CSP-OZ specification.

1) CSP Traces Refinement: When traces refinement is
applied to the CSP part, some (or part) of the traces might
be removed. As an example consider the following CSP-OZ
specification

A ________________________________ _ I method 0PI, 0P2, OP3

139

main = OPI -+ OP2 -+ OP3 -+ STOP

i
1nit I x: {

O, ... ,9
}

L

L
x_ =_O ____ _

C OrrL OPI ______ __
�(

x
)

x= O
x
'

E
{
I, 2

}

C OrrL OP2 ______ _
�(

x
)

X = I =} x
'

E
{

3, 4
}

x=2=}x
'
=5

_COrrL 0p3 ________________________ ___
�(

x
)

x= 3=}x
'
=6

x = 4 =} x
'

E
{
7, 8

}

x=5=}x
'
=9

where traces refinement is applied to the CSP part to get the
following process

As we can observe, the set of traces for the abstract CSP
process is as follows

and for the concrete process is

Thus we have traces refinement in the CSP part. The re-

Fig. 3.

I I S;;;·2J'1 --'�3a
�3b I I I : �3C

Sll� IS I S2J I 3d I I I

A

I OPt I OP2 I I
B

Traces refinement and OZ part operations

finement and the corresponding operations and states of the
OZ part is shown in figure 3(A and B)3. The corresponding
states of the OZ part are So =

{(
x � O

n
, Sla =

{(
x � I

n
,

SIb =
{(

x � 2
n

, S2a =
{(

x � 3
n

, and so on. Due to the
non-determinism in 0PI, the state of the specification after the
operation is either in Sla or SIb as shown in figure 3. There
are also non-determinism in the other operations as well.

After traces refinement is applied to the CSP part, operation
OP3 of the OZ part is no longer available in the concrete
specification and the states S3a, S3b, S3c and S3d have also
been removed (see figure 3B).

3Figure A for the abstract specification and B for the concrete specification.

Authorized licensed use limited to: UNIVERSITY MALAYSIA SARAWAK. Downloaded on September 15,2022 at 01:35:14 UTC from IEEE Xplore. Restrictions apply.

2015 4th International Conference on Software Engineering and Computer Systems (ICSECS), Kuantan, Pahang, Malaysia. August 19-21, 2015

2) CSP Failures Refinement: Considering the failures re
finement in the CSP part, the only impact that we may have
to the OZ part is in terms of the way the non-determinism
is resolved under the refinement. This is because the non
determinism that we have in the CSP part of a CSP-OZ
specification are the consequence of the non-determinism that
exist in the operations of the OZ part4, removing one of
them under failures refinement will disallow the corresponding
non-determinism in the OZ part. This is illustrated in figure
4 below, where we refine the CSP part by removing the
non-determinism in the initial event of the CSP part. The

csp part :< ... : h :�
b

�

...
S;l

°PI, . Sb]"

Opa
OZpart So· OPb ·Sb2

Fig. 4. Failures refinement affects the OZ part transitions

corresponding OZ part, as well as the concrete CSP part after
the refinement, is shown in the right-hand side of the figure.
We also remove the alternate path of the OZ part to avoid a
deadlock.

As an example consider the following CSP-OZ specifica
tion of class A

A ________________________________ _

method 0pa; 0Pb; Ope
main = Opa -+ OPb -+ STOP n Opa -+ Ope -+ STOP

i
1nit Ix:N LLx __

=
_O __________ __

C OITLOpa ______ __ �(x)
x' E

{
l,2

}

COITLOpe __________________________ _

[��� o?X � 5

where we have non-determinism in 0pa, which non
deterministically assigns the value 1 or 2 to variable x. The
non-determinism is reflected in the CSP part where both of
the following set of traces are possible.

trl =

{()

,

(
Opa

)

,

(
Opa, 0pb

)}

tr2 =

{O

,

(
OPa

)

,

(
OPa, Ope

)}

Based on the state of the OZ part after Opa is executed,
operation OPb will be executed next if x = 1 and Ope if X = 2.

4This is because traces(CSPIIOZ) <;; traces(OZ) holds. Thus for any non
determinism in traces(CSPIIOZ), there must exist the corresponding non
determinism in the OZ part, which is in the operation itself.

140

We apply failures refinement to the CSP part in order to
remove the non-determinism in it, where the set of traces tr2
is no longer possible, and keep the OZ part as it is in the
following concrete class C.

C ________________________________ _

method 0pa; 0Pb; Ope
main = Opa -+ OPb -+ main

i
1nit I x : N LLx __

=
__ O __________ _

C OITLOpa ______ __ �(x)
x' E

{
1,2

}

COITLOpe __________________________ _

���o?x, �5

Failures of A is the following

failures
(
A

)
=

{(0

,
{
Opb, Ope

})

,
((

OPa
)

,
{
Opa, 0pb

})

, ((

OPa
)

,
{
OPa, OPe

})

,
((

OPa,

°

Pb
)

, {
Opa, OPb, Ope

})

,
((

OPa, OPe

)

, {
Opa, OPb, Ope

})}

while failures of C is as follows

failures
(
C

)
=

{(O

,
{
Opb, Ope

})

,
((

Opa
)

,
{
Opa, Ope

})

, ((
OPa, 0Pb

)

,
{
OPa, OPb, OPe

})}

where traces
(
C

)
<;;; traces

(
A

)
and failures

(
C

)
<;;; failu res

(
A

)
,

and therefore we have failures refinement with A [;;;F C.

As we can observe, although the non-determinism in
the CSP part has been resolved, the corresponding non
determinism in the OZ part remains. Since the CSP part defines
the order of the operations to be executed, after the execution
of operation 0pa, the OZ part is restricted to only continue
if the state of the class is in the state where operation OPb is
possible. However, it is still possible for the OZ part to end up
with the state where only operation Ope can be executed and
not 0pb. This is due to the fact that the CSP part only defines
the order of the operations of the OZ part and has nothing to
do with what is going on in them.

Therefore, removing non-determinism in the CSP part does
not affect the way an operation in the OZ part is carried out.
It does, however, affect in terms of what operation will be
applicable next and this should confirm with the way the non
determinism in the CSP part has been resolved. In the case
of the above example, only OPb is allowed to execute after
Opa. Otherwise deadlock will occur where both parts cannot
synchronise on the same event. This happens when x = 2
due to the non-determinism in Opa. Note that, the assumption
traces

(
CSP

)
<;;; traces

(
02

)
still holds after the refinement.

In order to avoid the deadlocking problem, we must further
refine the OZ part to remove the non-determinism in it. Thus,
although class C is a valid refinement of class A according to
[10], by keeping the OZ part equal, it is however not acceptable
to get a concrete class that may deadlock. Further refinement

Authorized licensed use limited to: UNIVERSITY MALAYSIA SARAWAK. Downloaded on September 15,2022 at 01:35:14 UTC from IEEE Xplore. Restrictions apply.

2015 4th International Conference on Software Engineering and Computer Systems (ICSECS), Kuantan, Pahang, Malaysia. August 19-21, 2015

is needed in the OZ part to remove the problem before another
refinement is applied to either part of the specification. In the
case of the above example, we have to refine the OZ part as
follows to avoid the deadlocking problem.

D ________________________________ _

method 0pa; 0Pb; Ope
main = Opa -7 OPb -7 main

I
Init I x:N �Lx

__
=_O __________ __

[CO�OP"
�(x)
x' = 1

COITLOpe __________________________ ___

���=>X�5

In class D above, we remove the non-determinism in 0pa, and
as a result Ope is no longer possible. We still have A [;;; D hold
with CSPA [;;;.F CSPD in the CSP part as well as OZA [;;;z OZD
in the OZ part.

However, in the case where the non-determinism results in
the same operation of the OZ part being executed, as discussed
in the second scenario in subsection IV-A, no deadlock will
occur and no further refinement is needed in the OZ part as
well.

V. CONCLUSIONS

Refinement as a development technique in formal spec
ification is very much related to the semantics adopted for
the specification language. The integration of more than one
specification languages, by intepreting the semantics of one
into the other, does not mean that the refinement of the first
is also applicable to the other. This is due to the fact that
each refinement is defined based on the semantics adopted and
different semantics interprets a specification at different level
of detail. Hence, understanding the restrictions and influences
of one refinement to the other part of an integrated specifica
tion can give insight into the potentials and limitations of a
specification towards an implementation.

The integration of behavioural and state views of CSP-OZ
has restricts the refinements that are applicable to either side
of a CSP-OZ specification. This may as well affects the initial
requirements of a specification (properties), where only certain
requirements are preserved in the concrete specification. The
results discussed in this paper can be used as the first step
in verifying the fulfillment of requirements in refining an
integrated specification.

ACKNOWLEDGEMENTS

The authors would like to acknowledge Universiti Malaysia
Sarawak (UNIMAS) and Kementerian Pendidikan Malaysia
for the supports and funding provided under the fudamental
research grant no:FRGS/ICT07(OI)1l07112013 (17).

141

REFERENCES

[1] E. W. Dijkstra, "Notes on structured programming," pp. 1-82, 1972.

[2] N. Wirth, "Program development by stepwise refinement," Commun.
ACM, vol. 14, no. 4, pp. 221-227, 1971.

[3] J.-R. Abrial, The B-book: assigning programs to meanings. New York,
NY, USA: Cambridge University Press, 1996.

[4] J. C. P. Woodcock and A. L. C. Cavalcanti, "A concurrent language for
refinement," in IWFM'OI: 5th Irish Workshop in Formal Methods, ser.
BCS Electronic Workshops in Computing, A. Butterfield and C. Pahl,
Eds., Dublin, Ireland, July 2001.

[5] C. Bolton and J. Davies, "Refinement in Object-Z and CSP," in IFM,
ser. Lecture Notes in Computer Science, M. J. Butler, L. Petre, and
K. Sere, Eds., vol. 2335. Springer, 2002, pp. 225-244.

[6] J. Derrick, "Timed CSP and Object-Z," in ZB 2003: Formal
Specification and Development in Z and B, ser. Lecture Notes in
Computer Science, D. Bert, 1. Bowen, S. King, and M. Walden, Eds.,
vol. 2651. Springer, June 2003, pp. 300-318. [Online]. Available:
http://www.cs.kent.ac.uklpubsI2003/1626

[7] C. Bolton and 1. Davies, "A comparison of refinement orderings and
their associated simulation rules," Electr. Notes Theor. Comput. Sci.,
vol. 70, no. 3, 2002.

[8] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe, "A theory of
Communicating Sequential Processes," 1. ACM, vol. 31, no. 3, pp. 560-
599, 1984.

[9] G. Smith, The Object-Z specification language. NorweU, MA, USA:
Kluwer Academic Publishers, 2000.

[10] C. Fischer, "Combination and implementation of processes and data:
from CSP-OZ to Java," Ph.D. dissertation, University of Oldenburg,
January 2000. [Online]. Available: http://csd.Informatik.Uni-Oldenburg.
DE/pub/Paperslfischer/cspoz2java.ps.gz

[11] G. Smith, "A semantic integration of Object-Z and CSP for the
specification of concurrent systems," in FME, ser. Lecture Notes in
Computer Science, J. S. Fitzgerald, C. B. Jones, and P. Lucas, Eds.,
vol. 1313. Springer, 1997, pp. 62-81.

[12] G. Smith and J. Derrick, "Abstract specification in Object-Z and CSP,"
in ICFEM, ser. Lecture Notes in Computer Science, C. George and
H. Miao, Eds., vol. 2495. Springer, 2002, pp. 108-119.

[13] M. B. Josephs, "A state-based approach to communicating processes,"
Distributed Computing, vol. V3, no. 1, pp. 9-18, March 1988.
[Online]. Available: hUp:lldx.doi.org/lO.1007IBFOI788563

[14] J. He, "Process simulation and refinement," Formal Asp. Comput.,
vol. I, no. 3, pp. 229-241, 1989.

[15] J. Woodcock and C. Morgan, "Refinement of state-based concurrent
systems," in VDM Europe, ser. Lecture Notes in Computer Science,
D. Bj0rner, C. A. R. Hoare, and H. Langmaack, Eds., vol. 428.
Springer, 1990, pp. 340-351.

[16] J. Derrick and E. A. Boiten, "Relational Concurrent Refinement,"
Formal Asp. Comput., vol. 15, no. 2-3, pp. 182-214, 2003.
[Online]. Available: http://dblp.uni-trier.de/db/journals/fac/facI5.html#
DerrickB03

[17] J. Derrick and E. Boiten, "Relational concurrent refinement part Ill:
Traces, partial relations and automata," Formal Aspects of Computing,
p. 26, September 2012, accepted for publication. [Online]. Available:
http://www.cs.kent.ac.uklpubsI20 12/3251

[18] T. Kahsai and M. Roggenbach, "Property preserving refinement for
CSP-CASL," in WADT, ser. Lecture Notes in Computer Science,
A. Corradini and U. Montanari, Eds., vol. 5486. Springer, 2008, pp.
206-220.

[19] C. Fischer, "CSP-OZ: A combination of Object-Z and CSP," in
FMOODS '97: Proceeding of the IFfP TC6 WG6.1 international
workshop on Formal methods for open object-based distributed systems.
London, UK, UK: Chapman & Hall, Ltd., 1997, pp. 423-438.

[20] C. Bolton and J. Davies, "A singleton failures semantics for
Communicating Sequential Processes," Formal Aspects of Computing,
vol. V18, no. 2, pp. 181-210, June 2006. [Online]. Available:
hup:lldx.doi.org/l 0.1 007 IsOOI65-005-0081-x

[21] S. Schneider, "Non-blocking data refinement and traces-divergences
semantics," University of Surrey, Technical Report, 2005.

Authorized licensed use limited to: UNIVERSITY MALAYSIA SARAWAK. Downloaded on September 15,2022 at 01:35:14 UTC from IEEE Xplore. Restrictions apply.

