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Abstract— selecting relevant features for machine learning 

modeling improves the performance of the learning methods. 

Mutual information (MI) is known to be used as relevant 

criterion for selecting feature subsets from input dataset with a 

nonlinear relationship to the predicting attribute. However, 

mutual information estimator suffers the following limitation; it 

depends on smoothing parameters, the feature selection greedy 

methods lack theoretically justified stopping criteria and in 

theory it can be used for both classification and regression 

problems, however  in practice more often it formulation is 

limited to classification problems.  This paper investigates a 

proposed improvement on the three limitations of the Mutual 

Information estimator (as mentioned above), through the use of 

resampling techniques and formulation of mutual information 

based on differential entropic for regression problems.   
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I.  INTRODUCTION  

      More often, many applications generate datasets with large 
number of attributes/variables. These datasets are not 
necessarily meant to be used for machine learning predictions. 
As a result of that, some of the variables may be irrelevant to 
the predicting attribute(s). And their presence in the set may 
affect the predicting capability of a machine learning model.  
Feature selection aims at reducing the dimension of a dataset 
by selecting variables that are relevant to the predicting 
attribute(s). And this helps to improve the predicting 
capabilities of the machine models in the following ways; (1) 
Selected feature subset helps in building concise model which 
often avoid over-fitting and generalized better. (2) Feature 
subset selection can improve accuracy of prediction because 
of reduction in estimation error.  (3) Building good predictor 
model often requires reduction in feature subset. (4) Feature 
subset selection reduces the burden on data collection and as 
well reduces computational complexity.      
This paper investigates on how the feature selection based on 
mutual information is extended to regression problems. The 
rest of the paper is organized as follows: Section II is a review 
of information theory concepts as it relates to mutual 
information and how mutual information can be used as a 
relevant criterion for feature selection. Section III provides 
details on how mutual information criterion is estimated for 

regression problem and improvement in feature selection 
algorithm. Section IV contains experimental studies, including 
experimental results and discussion. Section V presents 
conclusion and future work.     
   

II. REVIEW 

A. Entropy and Mutual Information (MI) 

Entropy of a random variable X is an information theory 
concept that measures the uncertainty associated with X. 
Whereas Mutual information (MI) which is another 
information theory that quantitatively measures the amount of 
dependent information two random variables have about each 
other. Unlike correlation coefficient that measures linear 
dependence only, mutual information measures both linear 
and nonlinear dependence between variables, a property that 
made it a popular choice for feature selection [1, 2, 3, 4 and 5].  
Let us consider a pair of continuous random variables X and 
Y, the joint probability density function of X and Y is 
expressed as:   
 

PX,Y(x, y) = PY(y|x)Px(x)                (1) 
 
In a similar way the joint differential entropy of X and Y is 
expressed as: 
   
                h(X, Y) = h(X) + h(Y|X)                            (2)  
               
 Where h(Y|X) is known as the conditional differential entropy 
of Y given X. In word the equation 2 is expressed as the 
uncertainty about X and Y is equal to the uncertainty about X 
plus the uncertainty about Y given X. This can equally be said 
in the other way round as the uncertainty about X and Y is 
equal to the uncertainty about Y plus the uncertainty about X 
given Y as in equation 3: 
  
                h(X, Y) = h(Y) + h(X|Y)                            (3) 
 
Meanwhile, entropy of a random variable X is expressed as 
 
                                                        (4) 
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