
AUGMENTED REALITY APPLICATION
BUILDER: INTEGRATION OF FINGER

TRACKING FORINTERACTION IN
AUGMENTED REALITY SYSTEM

Allen Choong Chieng Hoon

Master of Science
2010

Pusut Khidmat Maklumat Akademik
UNIVERSITI MALAYSIA SARAWAK

AUGMENTED REALITY (AR) APPLICATION BUILDER:
INTEGRATION OF FINGER TRACKING FOR INTERACTION IN AR

SYSTEM
P, KHIDMAT MAKLUMAT AKADEMIK

MAI

11111 111111111 I II II II I ill 1000246352

ALLEN CHOONG CHIENG HOON

A thesis submitted in fulfilment of the requirements for the Degree of Master of
Science (Cognitive Science)

Faculty of Cognitive Sciences and Human Development
UNIVERSITI MALAYSIA SARAWAK

2009

ACKNOWLEDGEMENTS
I would like to thank my supervisor Dr. Ng Giap Weng for his helpful advice,

guidance and comments.

1

Pusat Khidmat Makiumat Akadeiriik
UNIVEILSITI MALAYSIA SARAWAK

TABLE OF CONTENTS
ACKNOWLEDGEMENTS

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF TABLES

ABSTRACT

ABSTRAK

CHAPTER 1 INTRODUCTION

1.0 Overview

1.1 Background

1.2 Problem Statement

1.3 Research Objective

1.4 Conceptual Framework

1.5 Scope

1.6 Significance of the Study

1.7 Limitations

1.8 Definition of Terms

1.9 Summary

CHAPTER 2 LITERATURE REVIEW

2.0 Overview

2.1 Augmented Reality (AR)

2.2 Vision-Based Registration

i

11

vi

ix

x

xi

1

1

2

4

5

6

7

7

8

8

9

11

11

12

17

11

2.3 Image Processing

2.3.1 Greyscale Transformation

2.3.2 Thresholding

2.3.3 Labelling

2.3.4 Edge Detection

2.4 Template Matching

2.5 Virtual Objects Generation

2.5.1 Shading

2.5.2 Texturing

2.5.3 Animations

2.5.4 Graphic API (Application Programming Interface)

2.6 Interaction

2.6.1 Bare Finger Interaction

2.6.2 Colour Segmentation

2.6.3 Finger Tracking

2.7 Summary

CHAPTER 3 METHDOLOGY

3.0 Overview

3.1 Research Design

3.1.1 System Specifications

3.1.2 Collection of the Objects

3.1.3 Construction and Modification of the Objects

3.1.4 System Construction and Modification

22

22

24

26

28

30

33

34

34

36

38

39

41

42

44

45

47

47

47

50

53

54

56

iii

3.1.5 Testing

3.1.6 Implementation

3.2 Evaluation

3.3 Summary

CHAPTER 4 DESIGN AND DEVELOPMENT

4.0 Overview

4.1 Video Capturing with DirectShow

4.1.1 Sample Grabbing

4.2 Image Processing

4.3 AR Registration

4.4 Virtual Objects Generation with OpenGL

4.4.1 Shading

4.4.2 Texturing

4.4.3 Animations

4.5 Finger Tracking

4.6 Summary

CHAPTER 5 FINDINGS AND DISCUSSIONS

5.0 Overview

5.1 Video Capturing

5.2 Image Processing

5.3 Virtual Object Generation

5.4 AR Registration

5.5 Interaction

58

58
58

60

62

62

62

66

69

70

74

75

78

79

82

84

86

86

87

89

90

93

98

iv

5.5.1 Finger Tracking

5.6 Evaluation

5.7 Summary

CHAPTER 6 CONCLUSION

6.0 Overview

6.1 Contributions of the Study

6.2 Recommendations for Future Study

6.3 Summary of the Research

REFERENCES

APPENDICES

Appendix 1: Consent Form

Appendix 2: Evaluation Form

Appendix 3: List of Participated Conferences and Exhibitions of this

Research Project

Appendix 4: Source Code

99

100

104

105

105

105

108

109

111

123

123

124

125

128

V

LIST OF FIGURES
Figure 1.1 Conceptual Framework of AR Application Builder. 6

Figure 2.1 Examples of 2D square markers used in ARToolKit. 18

Figure 2.2 Example of markers ofARTag. 21

Figure 2.3 Formula of greyscale transformation. 23

Figure 2.4 Example of thresholded image. 25

Figure 2.5 Example of edge detection performed on an image. 28

Figure 2.6 Algorithm of converting RGB to HSV. 43

Figure 3.1 Combination of reuse model and exploratory model for system

development process. 50

Figure 3.2 System architecture of AR Application Builder. 51

Figure 3.3 Flowchart of the implementation of AR Application Builder. 57

Figure 4.1 Filters and pins of DirectShow. 64

Figure 4.2 Snippet of creating filters using DirectShow. 65

Figure 4.3 Snippet of video capture device enumeration in DirectShow. 66

Figure 4.4 Example of Sample Grabber filter in DirectShow. 67

Figure 4.5 Snippet of creating Sample Grabber in DirectShow. 68

Figure 4.6 Snippet of greyscale transformation function. 69

Figure 4.7 Snippet of thresholding function. 70

Figure 4.8 The modification of arDetectMarker() for the compatibility

of the system. 71

Figure 4.9 Snippet of marker detection. 72

V1

Figure 4.10 Snippet of converting AR matrix to OpenGL matrix. 73

Figure 4.11 Statements with glNormal*() in OpenGL for the lighting. 75

Figure 4.12 Flat shading algorithm in OpenGL. 76

Figure 4.13 Vertex shading algorithm for OpenGL. 77

Figure 4.14 OpenGL statements of vertex shading. 77

Figure 4.15 Pseudo code of texture mapping in OpenGL. 78

Figure 4.16 Snippet of transformation animation in OpenGL. 80

Figure 4.17 Snippet of vertex animation in OpenGL. 80

Figure 4.18 Formula of interpolation for animation. 81

Figure 4.19 Snippet of interpolation for animation. 82

Figure 4.20 Snippet of colour segmentation based on Koval, Peer, and

Soling (2003). 83

Figure 4.21 Template of fingertip used in finger tracking 84

Figure 5.1 Screenshot of video capturing using DirectShow. 87

Figure 5.2 Screenshot of playing a video file using DirectShow and display in

OpenGL as texture mapping. 88

Figure 5.3 Greyscale transformation of the coloured image. 89

Figure 5.4 Result image after thresholding is applied. 90

Figure 5.5 Flat shading of a 3D object in OpenGL. 91

Figure 5.6 Vertex shading of a 3D object in OpenGL. 91

Figure 5.7 Texture mapping on a 3D object in OpenGL. 92

Figure 5.8 The static frames of animation in OpenGL. 93

Figure 5.9 Screenshots of playing video in AR system. 94

vii

Figure 5.10 Screenshots of 3D aeroplane as an AR game. 95

Figure 5.11 Screenshot of KLCC Twin Tower for tourism application. 95

Figure 5.12 Screenshot of animal cell in AR system as an education

application for biology. 96

Figure 5.13 Screenshot of plant cell in educational application in biology. 97

Figure 5.14 Screenshots of interaction in AR system using mouse as an

input device. 98

Figure 5.15 Screenshots of fmger tracking as an input device for interaction

in AR system. 99

Figure 5.16 Screenshots of AR video player and using fmger as an input

device to operate the virtual player. 101

viii

LIST OF TABLES
Table 5.1 The result of the evaluation on the system functionality

of the forger tracking for interaction with the virtual object
in AR system. 102

IX

ABSTRACT
AUGMENTED REALITY (AR) APPLICATION BUILDER:

INTEGRATION OF FINGER TRACKING FOR INTERACTION IN AR
SYSTEM

cugmented
Reality (AR) is a technology that generates virtual information to the

real world to the users perception and interaction to perform the tasks. This

research studied and developed a computer library, AR Application Builder, which

was integrated with the finger tracking feature for the interaction with the virtual

objects in the AR system. The AR Application Builder allows users to build AR

applications. Hence, the users are able to use their bare finger to interact with the

virtual objects. The development of the AR Application Builder involved video

capturing, image processing, vision-based AR registration, virtual objects

generation, and finger tracking.) Video capturing was implemented by using

DirectShow. An image library was built to perform image processing functions:

greyscale transformation and thresholding. ARToolKit libraries were integrated to

implement vision-based registration. OpenGL and GLUT were used to draw the

3D computer graphics as the augmented objects. Finger tracking involved skin

colour segmentation and the template matching. The template matching function

was implemented by using OpenCV. Furthermore, an evaluation was conducted to

test the system functionality of finger tracking for interaction with the virtual

object in AR system. Thus, an AR video player was built for the evaluation. The

result of the evaluation showed that the participants were able to use bare finger to

interact with the virtual objects of the AR application. This allows the participants

to interact with the virtual objects naturally without any other device.

X

ABSTRAK
PEMBINAAPLIKASI AUGMENTED REALITY (AR):

INTEGRASI PENJEJAKAN JARI UNTUK INTERAKSI DALAM SISTEM AR

Augmented Reality (AR) adalah satu teknologi yang menghasilkan maklumat

maya dalam dunia sebenar untuk menambah tanggapan dan interaksi penguna

semasa melaksanakan tugas. Penyelidikan ini belajar dan membina sebuah

perpustakaan komputer, Pembina Aplikasi AR (AR Application Builder), yang

disepadukan dengan penjejakan jari untuk interaksi dengan benda-benda maya

dalam sistem AR Pembina Aplikasi AR membenarkan pengguna membina

pelbagai aplikasi AR. Jadi, pengguna berupaya menggunakan jari mereka untuk

interaksi dengan benda-benda maya. Pembangunan Pembina Aplikasi AR terlibat

penangkapan video, pemprosesan imej, pendaftaran AR berdasarkan visi,

generasi benda-benda maya, dan penjejakan jari. Penangkapan video telah

dilaksana dengan menggunakan DirectShow. Satu perpustakaan imej telah dibina

untuk menjalankan f ingsi fungsi pemprosesan imej: transformasi skala kelabu

dan "thresholding". Perpustakaan ARToolKit disepadukan untuk melaksanakan

pendaftaran berdasarkan visi. OpenGL dan GLUT digunakan untuk melukis

graft komputer 3D sebagai benda tambahan. Penjejakan jari terlibat segmentasi

warna kulit dan "template matching". Fungsi "template matching" telah

dilaksanakan dengan menggunakan OpenCV. Selain itu, satu penilaian telah

dijalankan untuk menguji f ingsi penjejakan jari dan interaksi dengan objek maya

dalam sistem AR. Oleh itu, satu pemain video AR telah dibina untuk penilaian.

Hasil penilaian itu menunjukkan bahawa peserta peserta berupaya menggunakan

jari untuk berinteraksi dengan objek maya implikasi AR tersebut. Peserta-

perserta boleh berinteraksi dengan object maya secara semula jadi tanpa peranti

lain.

X1

CHAPTER 1
INTRODUCTION

1.0 Overview

Augmented Reality (AR) Application Builder is a computer library integrated

with the forger tracking for interaction with virtual objects in the AR system. The

users are able to develop AR applications by using the library. The library allows

users to render the AR environment with 2D and 3D virtual objects in the AR

environment. The library requires a video capture device so that the users can

capture real-time environment and render the AR environment. When they are

rendering their AR environment, they can use a mouse device or a finger to

interact with the virtual objects.

Besides developing the computer library, this research also studied on computer

1

vision techniques for AR registration. AR registration is a method to enable the

virtual objects align properly in the real environment so that users can perceive

the virtual objects in the correct position and orientation. Then the system will

generate 3D computer graphics in the real environment.

AR also emphasises the interaction between the users and virtual objects to

perform real-world tasks. The bare finger as an input device will produce a natural

interaction for the users. This research implemented the fmger tracking for the

interaction with virtual objects in the AR system. This provides an AR system that

allows the user to interact with the virtual objects with bare fmger.

1.1 Background

AR is a deviation of Virtual Reality (VR) (Azuma, 1997). AR is a technoloogy

that allows users to see, hear, feel, and smell the virtual objects, which are

integrated in the real world (Bonsor, 2001). AR technology generates 2D and 3D

computer graphics which are accurately integrated into the real environment

(Malik, 2002). AR technology is implemented on wearable computers (Starner,

Mann, Rhodes, Levine, Healey, Kirsch, Picard, & Pentland, 1997). Wearable and

mobile computers, such as wristwatch, laptop, palmtop, tablet PC, head-mounted

display (HMD), and head-up display (HUD) can be worn by the users. Currently,

AR is used in medicine, repair and maintenance, labelling, robotics, military,

entertainment, education, games, and other fields (Azuma, 1997; Billinghurst,

2

2002; Thomas, 2003). Besides that, AR will be one of the technologies which

emerges with the phone technology in future (Crago, 2008).

The biggest problem for AR is the registration problem (Azuma, 1997; Zhou,

Wang, Yan, & Xu, 2000). Computer vision and image processing techniques are

used in AR to solve the registration problem (Azuma, 1997; Klinker, 1999).

Computer vision is one of the Artificial Intelligence (Al) fields. The goal of

computer vision is to analyse and interpret images (Schiewagen, 2001). Besides

that, computer vision also simulates human being's visual perception (Meer,

Stewart, & Tyler, 2000). Perception is the conscious experience when our senses

receive stimuli from the environment (Goldstein, 2005). Moreover, perception is

the gateway to other cognitions such as memory, attention, reasoning, problem

solving, and decision making (Goldstein, 2005). Therefore, a camera is needed to

simulate our eyes to receive the information from the real environment.

Moreover, using techniques of computer vision and image processing, the forger

can be used as an input device for the interaction in the AR environment

(Hardenberg, 2001). For the interaction in the AR environment, wired gloves are

one of the devices mostly used (Azuma, 1997). Furthermore, using the finger as

an input device can create natural interaction. Natural interaction is the interaction

that does not use any devices (Hardenberg, 2001).

ARToolKit is an open-source software library. It is frequently used in developing

3

Augmented Reality and Mixed Reality applications (Haller, Hartmann,

Luckeneder, & Zauner, 2002). ARToolKit uses computer vision techniques to

detect a fiduciary marker. Camera orientation and position are computed based on

the detected fiduciary marker. ARToolKit provide interaction with the virtual

object by using another fiduciary marker on a handheld paddle (Gordon,

Billinghurst, Bell, Woodfill, Kowalik et al., 2002). However, ARToolKit does not

provide natural interaction such as the bare finger.

1.2 Problem Statement

AR enhances the users' senses by augmenting a virtual layer on the real world

especially visual senses (Aaltonen & Lehikoinen, 2006). Interaction is also an

important aspect in AR (Azuma, 1997). The virtual objects will not only enhance

the visual perception of the users, but also assist the users to accomplish the real-

world tasks.

Interaction with the pure virtual information in AR is difficult (Azuma, Baillot,

Behringer, Feiner, Jullier, & Maclntyre, 2001). The AR prototypes in various

previous research normally used the keyboard or mouse for the interaction.

Moreover, some of the AR systems used gesture recognition or tracking 6DOF

(degrees of freedom) pointers. The open source ARToolKit library allows the

users to use paddle to interact with the virtual object. A marker is needed on the

paddle so that the paddle can be tracked (Irawati, Green, Billinghurst, Duenser, &

4

Pusat Khidmat Makiumat Akademik
UIVIVERSITI MALAYSIA SARAWAI{

Ko, 2006). However, bare finger interaction with the virtual object is difficult to

be implemented due to the intangibility of the virtual objects. Hence, this research

has implemented several computer vision algorithms to make the bare finger

interact with the virtual object.

Integration of forger tracking in AR system requires forger detection and

recognition. However, the conditions of the environment will affect the accuracy

of the finger detection, especially background colour and the lighting of the

environment. These factors will affect the forger detection for the interaction.

Furthermore, AR system performs registration, virtual objects generation, and

interaction in real-time. If any of these methods is computationally complicated

and requires a lot of time for the execution, system latency will be occurred.

Hence, integration of the fmger tracking in AR system not only requires an

optimal algorithm for registration, but also an algorithm for the fmger tracking

which will not affect the system latency.

1.3 Research Objective

The general objective of this research is to design and develop Augmented Reality

(AR) Application Builder, which allows users to build their own AR application

and the integration of bare finger interaction with the virtual objects.

The specific objects are as follows:

5

1. To develop AR Application Builder which allows the users to create the

AR application.

2. To implement the computer vision algorithms: colour segmentation and

template matching, to detect the bare forger.

3. To integrate the forger tracking with the AR applications, so that the forger

can be used as an input device to interact with the virtual objects in the

real environment.

1.4 Conceptual Framework

Figure 1.1: Conceptual Framework of AR Application Builder.

Figure 1.1 shows the conceptual framework of this research. AR combines the real

world with the virtual objects to enhance the users' senses especially visual senses

(Aaltonen & Lehikoinen, 2006). However, human visual peception is very

sensitive to the error of the registration (Simon & Berger, 2000). Computer vision

6

algorithms which simulates human visual perception is used to understand the real

world information. Consequently, the registration of the real world and virtual

objects can be performed to generate correct scene to the users. The virtual objects

becomes stimuli for the visual perception of the users. The users can use bare

fmger to interact with the augmented objects. In order to understand the

interaction with bare fmger, computer vision algorithms are used for finger

tracking to allows the natural interaction happened in AR system.

1.5 Scope

This study focuses on the development of a computer library, AR Application

Builder, which allows users to interact the virtual objects with the bare fmger in

an AR environment. The computer vision algorithms were implemented for the

fmger tracking. Furthermore, the interaction of the virtual objects were also

implemented.

1.6 Significance of the Study

The key contribution of this research is the integration of the fmger tracking in the

AR system for interaction. There were several studies on the interactions of the

AR system. Finger tracking as an input device in AR was done in previous

research (Dorfintiller-Ulhaas & Schmalstieg, 2002). However, this research

implemented the bare finger as an input device for the interaction in AR.

7

1.7 Limitations

There are several limitations in this research. The bare finger tracking did not

provide any depth information. Consequently, the fmger cannot interact with the

virtual objects with depth information.

1.8 Definition of Terms

Several terms are used in this research. The literal definition of terms used in this

research are defined as follows:

" Augmented Reality (AR) - AR is a technology that enhances the users'

senses by augmenting a virtual layer on the real world (Aaltonen &

Lehikoinen, 2006).

" Registration - The real and virtual worlds coexist and the objects are

aligned correctly (Azuma, 1997).

" Virtual object - The computer generated objects which are superimposed

on top of the video of the real world in AR system (Buchmann, Violich,

Billinghurst, & Cockburn, 2004).

" Finger tracking - The finger of the user can be tracked by the system and

interaction can be performed (Crowley, Berard, & Coutaz, 1995).

" Barehanded interaction -An interaction using bare hand without using any

device and wires (Hardenberg & Berard, 2001).

For the research purpose, the operational definition of terms are defined as

8

follows:

" Augmented Reality (AR) - Generation of virtual objects in the real

environment to enhance the meaning of the real world to the users.

" Registration -A process to align the virtual object and the real

environment properly in order to generate a correct scene in AR.

" Virtual object - The computer generated graphics especially 3D computer

graphics which uses three-dimensional representation of geometric

information in AR.

" Finger tracking - Detection of the forger so that the forger can be used as

an input device in the AR system.

" Barehanded interaction - Finger as a part of the hand to interact with the

virtual objects in the AR system without using any other device.

1.9 Summary

Augmented Reality (AR) Application Builder is a computer library integrated

with finger tracking for the interaction with virtual objects in the AR system. The

users are able to develop AR applications by using the library. The users can

interact with the virtual objects by using forger as an input device. AR is a

technology which augments a virtual layer on the real world especially visual

senses for the users. The virtual objects are used to assist users to accomplish real-

world tasks. Thus, interaction is needed between the users and the virtual objects.

Interaction with the pure information in AR is difficult. This causes bare finger

9

interaction with the virtual object difficult to be implemented. Therefore, the

objective of this research is to design and develop AR Application Builder which

is integrated with the bare forger interaction with the virtual objects, and the users

are allowed to use the library to build their own AR applications. The scope of this

research focuses on the development of the computer library. Computer vision

algorithms for forger tracking is implemented. The key contribution of this

research is the integration of the finger tracking in the AR system for interaction.

However, the limitations of this research is the bare finger tracking does not

contain any depth information.

10

CHAPTER 2
LITERATURE REVIEW

2.0 Overview

This chapter discusses Augmented Reality (AR). In this research, vision-based

registration for AR was used. Therefore, image processing techniques were used

for vision-based registration. The image processing techniques were greyscale

transformation, thresholding, labelling, and edge detection. Furthermore, template

matching was used to identify the fiduciary marker. The generation of the virtual

objects is also discussed. Interaction is implemented in this research. The finger is

used as a natural input device in the AR system. The implementation of the finger

tracking is discussed in this chapter.

11

2.1 Augmented Reality (AR)

Augmented Reality (AR) is a deviation of Virtual Reality (VR) (Azuma, 1997).

VR is a technology that allows the user to be immersed in the virtual environment

(Milgram & Kishino, 1994). The virtual environment is a simulation of the real

environment using computer graphics. The simulation of the real environment

enables the users to sense with the five sensory systems: visual, auditory, tactile,

smell, and taste (Burdea & Coiffet, 2003). Besides sensing of the virtual world,

VR system also allows the users to interact with the virtual environment.

However, there is a difference between AR and VR. AR enhances the users'

senses especially visual senses by augmenting a virtual layer on the real world

(Aaltonen & Lehikoinen, 2006). AR technology generates virtual objects in the

real environment. Consequently, the users view is rendered in the real

environment instead of virtual environment. When a person is rendering in a VR

system, he or she cannot perceive any real objects since he or she is immersed

inside a virtual environment generated by the VR system. Contrarily, when a

person is rendering in an AR system, he or she can perceive the real objects in the

real environment. Furthermore, the AR system will generate the virtual objects in

the real environment. As a result, the user can perceive the real objects together

with the virtual objects within the real environment. In conclusion, the AR system

enhances the real world with virtual objects which exists together in the same

space as the real world (Azuma, Baillot, Behringer, Feiner, Jullier, & Maclntyre,

2001).

12

Besides adding virtual objects, AR system also has the potential to remove the real

objects by covering it using virtual background (Azuma, 1997). The ability of

removing the real object from the real world is "diminished reality", which is a

subset of AR (Azuma et al., 2001). The ability of diminished reality can be used to

remove some information of the world. For example, a building can be removed

so that the constructor can plan for the new building.

The objective of AR is to add meaning to the objects of the real environment in

order to enrich the users' experiences towards the objects (EDUCAUSE Learning

Initiative, 2005). AR is able to enhance education, especially the curriculum. This

is because it can improve the users' experiences towards the objects by adding the

meaning towards the real environment (EDUCAUSE Learning Initiative, 2005).

Due to the ability of AR to add extra information, AR can be used in many fields,

such as medical, aviation, training, annotation, entertainment and gaming,

manufacturing and repair, and academy (Azuma, 1997; Bonsor, 2001;

EDUCAUSE Learning Initiative, 2005). According to Bimber, Encarnacäo, annd

Schmalstieg (2003), AR is able to be applied in digital storytelling. Moreover, the

digital storytelling is developed in an interactive system. AR system can also be

used in video conferencing (Kato, Billinghurst, Morinaga, Tachibana, 2001;

Billinghurst & Kato, 2002; Billinghurst, Cheok, Kato, & Prince, 2002). The users

can see each other by using fiduciary markers. The image of the users are

displayed as virtual objects in the real environment. Furthermore, AR is able to be

implemented in entertainment field: for example, ARQuake, a first-person outdoor

13

shooting game (Pierkarski & Thomas, 2002). Besides that, AR is also used to

develop an AR racing game (Oda, Lister, White, & Feiner, 2008) and a AR real-

time strategy game (Phillips & Pierkarski, 2005). Because the users can play the

games in an outdoor environment, the implementation of AR allows users to

experience games in a new and exciting way (Avery, Thomas, Velikovsky, &

Piekarski, 2005). According to Cooper, Keatly, Dahlquist, Mann, Slay et al.

(2004), AR can be applied in an indoor game such as Chinese checkers.

In order to implement the AR, AR system needs to incorporate with a wearable

computer (Barfield & Caudell, 2001). When the user is walking in an

environment, the wearable computer, which has the visual detection can capture

the information of the real environment. Using the wearable computer, the

computer will generate the extra information to the real environment. As a result,

the user can view the computer generated information within the real environment

through the wearable computer.

Generally, AR uses two types of HMD (head-mounted display). They are optical-

see through HMD and video-see through HMD (Azuma, 1997; Bonsor, 2001;

Ansar & Daniilidis, 2001). Optical-see through HMD allows users to see the real

environment through the HMD. The users can see the real environment directly

without any other media. However, video-see through HMD will display the real

environment in the video form for the users in real-time. Video-see through HMD

has a disadvantage that there is a delay in adjusting the image when the users

14

move their heads (Bonsor, 2001). This is because the real environment is captured

through a camera, then the information of the real environment is sent to the

video. Though AR system is running in real-time, there is a delay to send the

information of the real environment to the video for the users. As a result, moving

the head will affect the performance of the real-time video. In this research, video-

see through method is used. This is because the application which is developed

can use any video device. During the development, a web camera is used for the

AR rendering.

Registration problem is the biggest problem in AR (Azuma, 1997; Zhou, Wang,

Yan, & Xu, 2000). An objective of AR is to provide the users an impression that

the virtual objects are part of the real environment (Liu, Storring, Moeslund,

Madsen, & Granum, 2003). Registration is to join the virtual object and the real

environment properly in order to generate a correct scene. As a result, users can

perceive the virtual object which existed naturally in the real environment.

Registration is very important because the human visual system is very sensitive

to the error of the registration (Simon & Berger, 2000). Therefore, several

methods are introduced to solve the registration problem so that the users can

perceive the virtual object as it is in the real environment.

Knowledge-based 3D registration is one of the techniques to solve the registration

problem. Using knowledge-based 3D registration, a head tracker is used to track

the user's head position and orientation (thou, Wang, Yan, & Xu, 2000). By using

is

the trackers, the user's head position and orientation can be used to calculate the

relation between the virtual object. Consequently, the registration can be solved.

However, the tracking devices will cause the system latency and lack of accuracy

(Zhou, Wang, Yan, & Xu, 2000).

Image processing based 3D registration is another technique to solve the

registration problem. Using image processing, the information of the image from

the real environment is extracted. The objects of the real environment are

identified and then the position and orientation of the user's head are registered

using the information of the processed image. The advantage of using image

processing for registration is that the whole system is flexible. Nevertheless,

image processing uses vast computation which will cause latency of the system

(thou, Wang, Yan, & Xu, 2000).

Besides that, vision-based registration is another technique to solve the

registration problem (Koller, Klinker, Rose, Breen, Whitaker et al., 1997). A

fiduciary marker is placed on the real objects in the real environment. The

fiduciary marker is recognised using computer vision algorithm. Computer vision

is a method to understand the environment from visual input (Grimson & Mundy,

1994). Computer vision algorithm is able to solve the registration problem

(Azuma, 1997; Kato, Billinghurst, Poupyrev, Immato, & Tachibana, 2000).

Computer vision is a challenging method in solving the registration problem

because it tracks the position and orientation of the user's head using the fiduciary

16

marker that is captured from the real environment (Lourakis & Argyros, 2004).

Using the computer vision algorithm, the position and orientation of the user's

head is calculated for the registration. Vision-based registration using fiducial

mark can provide excellent performance (Zhou, Wang, Yan, & Xu, 2000).

Vision-based registration is focused on this research. Computer vision algorithms

are based on the visual perception of the human beings. The stimuli of the world

are received by visual sensory system. Then the human perceives and understands

the information received. Similarly, computer vision algorithms allow the

computer to understand the three-dimensional relationship of the virtual objects

and the real environment based on a two-dimensional fiduciary marker.

2.2 Vision-Based Registration

ARToolKit is a prominent software toolkit for developing AR applications

(Azuma et al., 2001). It is a software library which uses computer vision methods

to compute the camera position and orientation (Woods, Mason, & Billinghurst,

2003). ARToolKit is written in C programming language (Slay, Thomas, &

Vernik, 2002; Hamsphire, Seicher, Grasset, & Billinghurst, 2006; Ong, Chong, &

Nee, 2006). ARToolKit uses vision-based registration method to solve the

registration problem. Hence, fiduciary markers are needed in order to implement

vision-based registration in an AR system.

To display virtual object correctly in the real environment, the relationships

17

between the camera and the fiducial mark is required. Therefore, system

calibration is very important for accurate registration (Azuma, 1997; Kato &

Billinghurst, 1999; Azuma et al., 2001). Calibration of the camera can be achieved

using fiduciary marker (Kato & Billinghurst, 1999).

A square marker can be used as a fiducial mark in AR (Kato & Billinghurst, 1999;

Kato, Billinghurst, Poupyrev, Immato, & Tachibana, 2000; Kanbara & Yokoya,

2002). The square marker is used to analyse the relationship between the marker

coordinate and camera coordinate. Hence, the camera position and orientation can

be computed. Camera coordinate indicates the position and orientation of the

user's head if the HMD is equipped. The examples of 2D square markers are as

follows:

Hr ý

Figure 2.1: Examples of 2D square markers used in ARToolKit.

The above example patterns are taken from ARToolKit. ARToolKit provides a

utility to create new patterns. The markers are saved as 16x16 pixels greyscale

image data (Mooser, You, Neumann, 2006). The size of the pattern image data is

small so that template matching during real-time detection will not reduce the AR

performance.

18

The image of the real environment is captured by using a camera. The image of

the real environment is digitised and processed. Firstly, thresholding method is

applied towards the input image. Thresholding is a method to convert the image

into black and white according to a threshold value (Russ, 2007). Secondly,

outline contour of the square marker is extracted. As a result, four line segments

are acquired (Kato & Billinghurst, 1999). The intersections of the four lines can

be used to compute the four vertices of the square marker.

The pattern within the square marker is compared with the patterns which are

already stored in the system using template matching method. When the pattern is

recognised, the four vertices of the detected marker are used to calculate the

transformation matrix (Kato & Billinghurst, 1999). As a result, the transformation

matrix from the marker coordinates to the camera coordinates can be found.

Generally, in an AR system, each marker handles a virtual object. Therefore, when

a marker is partially blocked, the virtual object cannot be displayed on the screen.

This is because the square marker cannot be detected and the four vertices cannot

be calculated. When the AR system is used in a collaborative environment on a

table with multiple markers, the markers were blocked by other collaborative

users. As a result, the virtual objects cannot be displayed properly. However, the

problem can be solved if the position of every fiducial marks is estimated (Kato,

Billinghurst, Poupyrev, Immato, & Tachibana, 2000). Therefore, the multiple

fiduciary markers with the fixed positions are required. However, during

19

collaborative environment, the virtual objects need to be picked or moved, since

the position of the markers are fixed, the markers no longer can be picked up.

Consequently, another fiduciary marker is used as a tool to pick up the virtual

objects on the multiple fiduciary markers (Kato, Billinghurst, Poupyrev, Immato,

& Tachibana, 2000). The fiduciary marker is placed on handheld paddle which

allows the users to use it to interact with the virtual objects (Gordon, Billinghurst,

Bell, Woodfill, Kowalik et al., 2002).

ARToolKit uses confidence factor in order to identify the fiduciary markers

(Coquillart & Gäbel, 2004; Fiala, 2005). When two or more markers match a

pattern, the marker with the highest confidence factor will be identified.

Furthermore, the confidence factor threshold value must be set in ARToolKit

(Fiala, 2005). As a result, false detection for the marker will occur.

On the other hand, ARTag is another vision-based AR system. ARTag also uses

2D markers (Fiala, 2004). The fiduciary marker detection technique of ARTag is

different from ARToolKit. ARToolKit stores the pattern in a file, but ARTag does

not need any pattern file (Fiala, 2005). However, ARTag can identify 2002

markers. Besides that, ARToolKit stores the pattern file in greyscale (Mooser,

You, Neumann, 2006). Contrarily, the markers of ARTag stores the marker data as

black and white. The examples of ARTag markers are as follows:

20

"i-me
C%::

4

Figure 2.2: Example of markers of ARTag.

The images above are the example of ARTag markers. The sub-image within the

marker is a 6x6 grid of black and white cells. Because of the characteristic of the

marker, there are 2002 different types of markers available.

ARTag does not use confidence factor to identify the marker. Moreover, ARTag

uses edge-based unique feature detection (Fiala, 2005). As a result, there is a very

low false detection of the marker (Fiala, 2004). Besides that, if there are similar

patterns in the ARToolKit system, there will be confusion when the marker is

detected. This is because the detected marker might match both patterns in the

system. However, using the edge-based detection method, ARTag does not have

any marker confusion (Fiala, 2004).

Both ARToolKit and ARTag use vision-based registration method in AR system.

Vision-based registration method requires computer vision algorithm. In order to

accomplish computer vision algorithm, some image processing techniques are

required (Ahn, Lehr, & Turner, 2005).

21

2.3 Image Processing

Image processing and computer vision are related (Ahn, Lehr, & Turner, 2005).

This is because image processing techniques can be used in computer vision

algorithm. Image processing is a set of algorithms to process the image in order to

enhance the quality, reconstruct the image, and acquire the information of the

image (Britannica Concise, 2007). There are several techniques in image

processing. These techniques will be used in this research in order to solve the

problem of image recognition.

Greyscale transformation is to change the colour of the images into greyscale.

This is a basic process for thresholding and edge detection. Thresholding is one of

the segmentation techniques that divides the images into several parts. Besides

that, labelling is a technique to find the connected components of an image. Edge

detection is another technique of segmentation that finds the contour of the images

(Acharya & Ray, 2005).

2.3.1 Greyscale Transformation

The real environment is captured by a camera in an AR system. Thus, the colour

image is captured from the real environment. Then, the colour image is being

processed for the vision-based registration in AR system. In order to perform the

computer vision algorithm, greyscale transformation of the image is required

(Cho, Park, & Neumann, 1997).

22

Greyscale transformation is an image processing method that transforms the

colour image into monochromatic image. The pixel components of an image

consist of red, green, and blue (RGB). To transform the pixels into greyscale, red,

green, and blue of every pixel should be extracted according to the proportion as

30: 59: 11 (Sanchez & Canton, 2003; Shrivastava, 2005; Meegoda, Juliano, &

Banerjee, 2006; Parekh, 2006). Eventually, 30% of the red, 59% of the green, and

11 % of the blue are combined into one value. Therefore, the formula to transform

the colour image into greyscale is shown as below:

greyscale= red Xl Uý + greenX
l
UU + blue X 100

Figure 2.3: Formula of greyscale transformation.

Since the colour image contains three colour components in every pixel, the

colour image requires more memory storage of the computer. However, when the

colour image is reduced to greyscale image, each pixel of the image only stores a

value. When the greyscale image is stored in 8-bit unsigned integer, the range of

the greyscale values are between 0 and 255 (Hornberg & NetLibrary Inc, 2007).

As a result, greyscale image requires less memory storage.

Besides that, the colour image is transformed into greyscale image because the

colour information is not needed in other image processing. Colour information of

the image is used when the objective of the computer vision is colour related, such

as colour segmentation, skin segmentation, high-level object recognition.

23

However, since vision-based registration AR system detects the existence of the

fiduciary marker, greyscale image is preferred.

Furthermore, AR requires real-time rendering, the latency of the system will

reduce the rendering performance. When the colour image is used, more memory

is required. As a result, more time is needed to manipulate the image for detection.

Thus, this will affect the rendering performance. Contrarily, when the greyscale

image is used for AR rendering, the rendering performance in real-time will

improve.

2.3.2 Thresholding

After the colour image is greyscale transformed, image segmentation is applied

towards the greyscale image (Cho, Park, & Neumann, 1997). Image segmentation

is one of the image processing techniques. The objective of image segmentation is

to divide the image into meaningful parts (Goshtasby, 2005). So that, the divided

parts can be extracted and studied. In order to implement image segmentation,

thesholding is one of the methods used. Thresholding is one of the computer

vision algorithm to implement the vision-based registration (Kato & Billinghurst,

1999).

After thresholding is applied towards an image, the result image will become

binary image. The binary image is an image consisting of black and white with

binary value. Therefore, the greyscale information of the image is removed.

24

However, a threshold value is needed so that the the greyscale value can be

divided into black or white.

The algorithm to perform thresholding towards a greyscale image is as follows:

1. Define a threshold value, T,

2. Search through all the pixels of the image,

3. If a pixel value is greater than T, then the pixel will be changed to black

(or white),

4. Else, the pixels will be changed to white (or black).

The greyscale value which is greater than the threshold value will be converted

into black. Contrarily, the greyscale value which is lesser than the threshold value

will be converted into white. The result of thresholded image is as follows:

ýýýt i Figure 2.4: Example of thresholded image.

Figure 2.4 shows the result of thresholding. The image is turned into black and

white with the binary value, 0 and 1. Furthermore, the image above shows the

25

existence of a fiduciary marker. It is easily perceived with human eyes. However,

farther image processing is needed in order to extract the information of the

fiduciary marker.

The default threshold value of the ARToolKit is 100 (Barakonyi, Fahmy, &

Schmalstieg, 2004). Besides that, different theshold value will result different

image. The resulting image might have too many black regions or too many white

regions. Therefore, an adaptive thresholding algorithm is developed for

ARToolKit (Pintaric, 2003).

Adaptive thresholding algorithm will adjust the threshold value in the real-time.

Furthermore, when the marker is intervened by occlusions which blocks the

lighting, the adaptive thresholding algorithm is able to modify the threshold value.

However, adaptive thresholding algorithm targets only one marker instead of

multiple markers.

Further processing methods are applied to the binary image so that the registration

of the AR system can be implemented.

2.3.3 Labelling

After the thresholding is implemented towards the image, a binary image is

acquired. Then, labelling method is implemented towards the binary image.

Labelling is a basic task of computer vision (Chaudary & Aggarwal, 1991).

26

Labelling is a technique which is used in AR system (Kawano, Ban, & Uehara,

2003).

The objective of labelling is to find the connected regions of the image (Rekimoto

& Ayatsuka, 2000). As a result, the square marker can be differentiated from the

environment. Moreover, the pattern within the fiduciary marker can be separated

from the square marker. Therefore, the pattern within the square marker can be

extracted for template matching. The pattern within the square marker is used to

identify the fiduciary marker, so that the related virtual object can be generated on

the identified marker.

The main task of connected component labelling algorithm is to locate the

connected components of the binary image and assign a unique label to every

connected component (Mehta & Sahni, 2005). In order to implement connected

component labelling, every pixel of the binary image is accessed. Since the binary

image is used, the pixels of the image which has the value 1, is assigned with a

unique label (Pitas, 2000). So that the current accessed pixel will be labelled as

the connected regions. The 8-neighbourhood of the accessed pixel is checked for

the connectedness of the other labelled regions. Otherwise, a new unique label is

assigned to the pixel. Consequently, the pixel will form a new region.

Labelling technique is a computer vision algorithm. It is commonly used in

augmented reality (Kawano, Ban, & Uehara, 2003; Mehta & Sahni, 2005;

27

Kerdvibulvech & Saito, 2008). After the connected component labelling is

implemented, the contour of the square marker needs to be extracted.

2.3.4 Edge Detection

Edge detection is applied to the binary image with the connected component

labelling (Zhang, Fronz, & Navab, 2002; Wagner & Schmalstieg, 2007). Using

edge detection, the contour of the square marker can be extracted. As a result, the

four lines and four vertices of the square marker can be calculated. The four

vertices are important for calculating the transformation matrix of the camera.

Eventually, the registration of the AR system is completed.

The result of edge detection is as follow:

Figure 2.5: Example of edge detection performed on an image.

28

Figure 2.5 shows that the contour of the marker is extracted. As a result, four lines

of the square marker can be known. The intersections of the four lines consists of

four vertices which are useful for AR registration.

There are several types of edge detection methods. The commonly used edge

detection methods are Robert operator, Sobel operator, Prewitt operator, Canny

operator, and Krisch operator (Acharya & Ray, 2005). Sobel operator and Prewitt

operator are frequently used in image analysis (Woods, 2006). Furthermore, Sobel

operator is used in AR system for edge detection (Kawano, Ban, & Uehara, 2003).

Sobel operator is a 3x3 gradient operator (Acharya & Ray, 2005). Sobel operator

uses two types of convolution masks. The convolution masks are as follows:

121 -1 01
000 and -2 02

-1 -2 -1 -1 01

The above convolution masks are horizontal convolution mask and vertical

convolution mask. Since Sobel operator is a gradient operator, the gradient

components need to be calculated. The formulae of the calculation of gradient

component are as follows:

GX=[f (i-1, j-1)+2f(i-1, j)+ f(i-1, j+1)]

-[f (i+1, j-1)+2f(i+1, j)+ f(i+1, j+1)] and

29

Gy=[f (i-1, j-1)+2f(i, j-1)+f (i+ 1, j-1)]

-[f(i-1, j+1)+2f(i, j+1)+f(i+1, j+1)]

The above formulae are the calculations for the gradient components. The first

formula is the horizontal gradient component, and the second formula is the

vertical gradient component. Next, the gradient magnitude can be calculated using

the formula as follow:

GýfýxýY)]= Gz+Gy

Finally, a threshold value is used to determine the result of the image. When the

gradient magnitude is greater than the threshold value, the current pixel can be

assigned by 1. If the gradient magnitude is lesser than the threshold value, the

current pixel can be assigned by 2. As a result, the contour of the image can be

extracted.

Eventually, the four vertices can be calculated using the four lines of the square

marker. The transformation matrix is computed and the 3D object is generated

according to the identified pattern.

2.4 Template Matching

Vision-based registration AR system uses a fiduciary marker to generate the

virtual object in the real environment. The fiduciary marker is designed with a

30

square border and a unique pattern. In order to generate correct virtual object, the

pattern within the square border needs to be identified. Therefore, template

matching is a technique to identify the pattern within the square border (Zhang,

Fronz, & Navab, 2002; Wagner & Schmalstieg, 2007). For instance, ARToolKit

uses the traditional template matching algorithm to compare the detected fiduciary

marker with the stored patterns (Mooser, You, Neumann, 2006).

Template matching is a common technique in computer vision for feature-based

tracking and object recognition (Thayananthan, Navaratnam, Torr, & Cipolla,

2004). Template matching technique measures the similarity between the template

and the image. The algorithm of template matching is to find the data of the image

which is best matched with the data of the template (Fredriksson, 2001;

Fredriksson, Mäkinen, & Navarro, 2007).

Correlation is a template matching technique that finds the similarity between the

template and the image (Hardenberg, 2001). Sum of squared differences (SSD) is

calculated in correlation template matching. The formula of correlation template

matching is shown as follow:

SSD(x, y)=I: (S(u, v)-I(x+u, y+v)2)
, where uxv is the size of the

u, v

template (S), and I is the image.

When SSD is small, there is a high correlation between the template and the

31

compared image. When SSD equals to zero, then the image is identical to the

template. However, correlation template matching is lighting sensitive

(Hardenberg, 2001).

To solve the lighting problem, normalised cross-correlation (NCC) is used. NCC

divides the correlation value by the overall luminosity (Hardenberg, 2001). The

formula is as follows:

S(u, v)"1(x+u, y+v)
NCC(x, y)= u'v2

ýS (u, v) , 1z(x+u, y+v)
U, v U. v

By using template matching, the object can be detected according to the stored

template.

Template matching algorithm is used to search a pattern in an image. Thus, every

pixel of the image needs to be accessed (Russ, 2007). However, since AR system

involves in real-time rendering, it is impossible to access every pixel of the image

in real-time. This is because accessing every pixel of the image will cause the

system latency. In order to improve the AR rendering performance, a square

marker is used. This is because, after the square marker is detected, the pattern

within the border is extracted for template matching. Therefore, template

matching algorithm does not need to search the pattern from the whole image. As

a result, the pattern within the square border can be identified in real-time and the

32

virtual object can be generated on top of the fiduciary marker.

Z5 Virtual Objects Generation

The main purpose of AR is to create the 3D virtual objects which are realistic so

that the augmented objects will integrate into the visual perception of the

perceiver (Azuma, 1997). In order to achieve the purpose, shading plays an

important role in computer graphics. This is because, lighting, shading, and

texture will make the virtual objects become realistic. Besides that, lighting

condition and surface reflection needs to be calculated in real-time during the the

AR rendering. Therefore, the calculation of the lighting will affect the

performance of the AR rendering. Furthermore, a mirror can be used in order to

calculate the light source correctly (Kanbara & Yokoya, 2002). Thus, computer

generated lighting can be reflected correctly and produce the shading which is

compatible in the real environment. As a result, the virtual objects becomes more

realistic.

Texture mapping is a component of computer graphics which will improve the

visual perception in AR rendering. Texture mapping is a method that maps a 2D

image on 3D objects so that the 3D objects will be displayed with specific texture.

As a result, the surface of the 3D objects will be perceived as rough instead of

completely smooth.

In addition, animations of the computer generated objects are also important in

33

this research. This is because some of the 3D objects should be displayed with

movements, especially the animals, human beings, game characters, etc.

Therefore, this research also studies how to implement the animation of the 3D

objects during the AR rendering.

2.5.1 Shading

In this research, the shading of computer generated objects was studied. This is

because, shading will provide depth perception for the perceiver (Hubona, Shirah,

& Jennings, 2004). There are two types of shading: flat shading and vertex

shading (Simpson, 2002). Flat shading appears when the lighting is reflected

across the whole surface of the polygon (Simpson, 2002). In contrast, the vertex

shading appears when the colour is assigned differently to every vertex of the

polygon (Simpson, 2002). The basic vertex shading is Gouraud shading. Phong

shading is another vertex shading which is more complex than Gouraud shading.

Phong shading also assigns colour to every vertex of the polygon. Moreover,

Phong shading also averages the colour of the pixels based on the neighbour

pixels. As a result, Phong shading produces smoother shading than Gouraud

shading (Simpson, 2002). However, Phong shading is rarely used because it

requires more rendering time than Gouraud shading (Simpson, 2002).

2.5.2 Texturing

Texture mapping is another element of computer graphics. It is used to make the

34

virtual objects become realistic (Haerberli & Segal, 1993; Astle & Hawkins,

2004). If there is no texture mapping, the object will be drawn with the material

colour without any texture on the surface. As a result, the object will be displayed

with extreme smoothness of surface (Heckbert, 1986). When the virtual object is

wrapped with the texture using texture mapping, the object can be drawn with

small scale geometric differences (McMillian, 1997). Using texture mapping, a

simple object can be drawn with roughness without modifying the shape of the

object. Texture mapping can be used to create the appearance of substructure and

detail over a 3D object (Finney & ebrary Inc, 2004). Therefore, in this research,

texture mapping is studied to implement into the AR during rendering. When the

user renders the AR environment with the texture mapping, a simple object will be

drawn with detailed texture, and this will cause the object to appear more realistic.

The texture maps consist of arrays of data. Every element of the arrays of data is a

"texel". There are three types of texture mappings. They are one-dimensional

texture mapping, two-dimensional texture mapping, and three-dimensional texture

mapping. Normally, two-dimensional texture mapping is applied towards the 3D

virtual object. Therefore, a 2D image is used as a texture. This is because two-

dimensional texture has width and height properties.

The textures are mapped to the polygon which is described by vertices. Thus, each

vertex of the polygon is assigned with a texture coordinate. The texture coordinate

is called a U, V coordinate (Adams, 2004). As a result, the programmers can

35

deliberately define any part of the texture to map on the 3D object.

Furthermore, there are some restrictions of using textures. The texture is limited

with the size of power of two, such as 2,4,8,16,32, etc (Adams, 2004).

Moreover, the width and the height of the texture are same. For instance, 128x128

or 256x256. Because of the limitation of the video cards, normally the texture

with 256x256 size is used (Adams, 2004).

Because of this, this research targets on 256x256 2D texture mapping. The

textures are used to map on the 3D object in order to draw the substructure of the

object. As a result, the computer generated objects in the real environment will

produce an integrated perception for the AR system users.

2.5.3 Animations

Animations of the 3D objects are used in AR system (Starner, Mann, Rhodes,

Levine, Healey et al., 1997; Reiners, Stricker, Klinker, & Müller, 1998; Haller,

2002; Geiger, Oppermann, & Reimann, 2003; Gillet, Sanner, Stoffler, Goodsell, &

Olson, 2004; Barakonyi & Schmalstieg, 2006). This is certainly the case in an

interactive AR system. Examples for their use can be found in, machinery

maintenance on a laser printer (Starner et al., 1997), educational field for

biological processes (Gillet et al., 2004), animated agent who gives instructions

(Barakonyi & Schmalstieg, 2006), animated demonstrations for repairing vehicles

(Reiner et al., 1998), and animated characters as toys for children (Haller, 2002).

36

This is because, animations provide a series of steps which can be followed by the

users. As a result, users can learn new skills from the demonstrations or

instructions.

Animation is a series of successive frames and each frame is a still image. To

create the illusion of motion animation techniques are used. This process works by

producing successive still images (Williams, Kent, Holzman, & Williams, 1993).

This research studies on how to implement the animation of the virtual objects

during AR rendering. AR rendering with the animated object will enhance the AR

experience. This is because users will perceive the virtual objects not only in

different perspectives, but also different behaviours of the virtual objects.

Animation is one of the important components in this research. This is because

some computer generated objects require animations, this is especially true of

animals and human beings. In addition, animation is the essential part to make the

objects become alive (Mealing, 1998). Without animations, these objects become

static, thus reducing the realism of the generated objects. In order to simulate the

animal's behaviour, animation is the key component for the simulation. The

animal's behaviour simulation will improve the quality of the AR rendering. So

that, AR rendering with the virtual animals will provide a realistic impression on

the user. However, some objects do not require animation, such as furniture and

buildings.

37

In order to perform the animations of the virtual objects, animation data is stored

in the key frame (Kiss, 2002). The key frame data of the virtual objects contain

two parts. They are timing and transformation. Timing will determine the speed of

the frame which will be drawn during the animation. Yet, the transformation data

contains the translation, rotation, and scale transform of the objects (Chen, 2003;

Zhang & Liang, 2007).

Since animation data is saved as key frames, interpolation is required so that the

frames between the key frames can be drawn. Interpolation is a calculation to

acquire a series of frames between two key frames (Cunningham, 2007).

Therefore, when two key frames are given, the frames between them need to be

calculated and draw, the animations will be performed smoothly.

2.5.4 Graphic API (Application Programming Interface)

In order to implement the 3D rendering, graphic API is concerned. OpenGL,

Direct3D, and Java 3D are modem graphic APIs (Shirley, Ashikhmin, Gleicher,

Marschner, Reinhard, Sung et al., 2005). Java 3D is a 3D graphic API for Java

platform. Since this research is developing the system on Windows platform, Java

3D is not used to render the 3D objects. Therefore, OpenGL and Direct3D are

preferred in this research. Besides that, both APIs have the libraries that uses C++

programming language (Shirley et al., 2005).

Direct3D is part of DirectX suite of APIs which is developed by Microsoft

38

(Thom, 2005). It is a graphic API which simplifies the drawing process. It is able

to load 3D objects, implement the texture mapping, and build animations of the

3D objects. It is normally used in game development to display the 3D computer

graphics of the games. Since it is developed by Microsoft, Direct3D is targeting

Windows platform.

On the other hand, OpenGL is a high performance graphic system developed by

Silicon Graphics (Kilgard, 1993). It allows programmers to render high quality

2D and 3D objects. OpenGL can be used to render computer graphics primitives

such as points, lines, polygons, bitmaps, and images. Through these primitives,

higher quality objects can be rendered. OpenGL is important in this research since

the 3D objects of this research are rendered using OpenGL.

OpenGL is used in AR system (Reiner, Stricker, Klinker, & Müller, 1998; Wagner

& Schmalstieg, 2005). Furthermore, ARToolKit also uses OpenGL (Geiger,

Oppermann, & Reimann, 2003). Therefore, OpenGL was chosen to represent the

computer generated 3D objects in this research.

2.6 Interaction

AR technology improves users perception and the interaction with the real world

(Azuma, 1997). AR technology not only emphasises on the generation of the

virtual objects, but also the interaction with the virtual objects. Some of the

previous research studied on how users will interact with the AR applications

39

(Azuma, Baillot, Behringer, Feiner, Jullier, & MacIntyre, 2001). According to

Azuma et al. (2001), most of the previous researchers focused on the registration

of the virtual object in the real environment, but interaction of the system was less

focused.

Interaction with the completely virtual information is difficult (Azuma et al.,

2001). There is no tactile perception towards the virtual object. The users cannot

feel the virtual object through the tactile perception, but only through the visual

perception. Thus visual feedback is crucial in the interaction. Furthermore, audio

feedback can also be used in the interaction, so that the interaction becomes more

complete.

Though the virtual objects do not produce tactile feedback, a glove with tactile

feedback can be used (Azuma, 1997). The glove with tactile feedback can

simulate the real forces in the environment for the users, so that the users can feel

the objects during the interaction.

Glove-based user interaction technique was applied in the AR technology

(Thomas & Piekarski, 2002). A wired glove is worn by the users as an input

device. Then, the users can interact with the virtual objects in the AR

environment. Glove-based interaction allows the users to manipulate the AR

information in real-time. Besides wired glove, special dots on the hand can also be

used for interaction (Mackay, 1998). The special dots are used to assist the

40

detection of the hand position.

Similarly to the concept of adding special dots to the hand, Dorfinüller-Ulhaas

and Schmalstieg (2001) implemented marked glove for the interaction in the AR

system. Computer vision algorithms are applied to the markers of the glove to

detect the fmger. The real location of the fmger is translated to the virtual location.

Consequently, interaction with the virtual object can be performed by using the

marked glove.

2.6.1 Bare Finger Interaction

There was little research on the bare hand interaction in AR (Buchmann, Violich,

Billinghurst, & Cockburn, 2004). Hands are our essential medium for interaction.

Thus, AR system should allow us to use our bare hands for interaction. Bare hand

interaction is an interaction does not equip the glove as the input device. Bare

hand interaction produce a natural way of interaction (Buckmann, Violich,

Billinghurst, & Cockburn, 2004).

The interaction of the fingertips in AR system was studied in the previous

research (Buckmann, Violich, Billinghurst, & Cockburn, 2004). The

implementation of bare finger required computer vision algorithm and image

processing methods (Letessier & Borard, 2004). The techniques involved in bare

hand and bare finger detections are colour segmentation, edge detection,

connected component labelling, and image dii%rencing (Hardenberg & Berard,

41

2001). Image differencing is used for motion detection.

2.6.2 Colour Segmentation

Colour segmentation is frequently used to find the position of the objects

(Comaniciu & Meer, 1997). A colour consists of red, green, and blue components.

Colour segmentation method relies on the colour image instead of greyscale

image. The colour components are important in colour segmentation. The object

within the range of colour components can be extracted from the whole image.

The colour segmentation can be implemented in the finger tracking. This is

because human skin has its own range of colour.

The effectiveness of the colour segmentation depends on the targeted colour

range. Besides the RGB (red, green, and blue) colour component, there is also

HSV (hue, saturation, and value) colour model (Foley, 1995). RGB model can be

converted to HSV colour model by using an algorithm as follows:

Hue is measured as the angle of 360°. The hue value is based on the ROB

component. The hue of the red colour is 0°, green colour is 120°, and blue colour

is 240°. On the other hand, the saturation is a ratio ranging from 0 to 1. Saturation

is the purity of the colour. The value is also measured in the range from 0 to 1.

When the value is 0, the colour will become black. When the value is close to 1,

the saturation will affect the the colour. If the saturation is 0 and value is 1, the

42

void RgbToHsv(double r, double g, double b, double *h, double
*s, double *v) {

double maximum = max(r, g, b);
double minimum = min(r, g, b);
*v = max; //value
*s = (maximum != 0) ? ((maximum - minimum)/maximum) : 0;
if(*s == 0)

*h = 0; //Cannot defined
else {

double d= maximum - minimum;
if(r == maximum)

*h = (g-b)/d;
else if(g == maximum)

*h =2+ (b-r) / d;
else if(b == maximum)

*h =4+ (r-g) /d;

//Convert hue to degree
*h *= 60
if (*h < 0)

*h += 360

}
}

Figure 2.6: Algorithm of converting RGB to HSV.

colour will be white. The HSV colour model is popular in the work on skin colour

segmentation (Zarit, Super, Quek, 1999).

Colour segmentation can be applied towards the skin colour for the forger

tracking. According to Koval, Peer, and Solina (2003), a formula can be used to

describe the skin colour. The formula is as follows:

red > 95 and green> 40 and blue > 20 and
max (red, green, blue) -min (red, green, blue)> 15 and
fired- greenj> 15 and red> green and red> blue

The formula uses the ROB colour model. The formula above is applied towards

the pixel colour of the image so that the skin can be differentiated from the other

43

object. When a pixel colour of the image fulfils the condition of the formula, the

pixel is considered as skin. Consequently, the skin region can be extracted for the

use of forger tracking. In the AR system, the algorithm for skin colour

segmentation needs to be performed in real-time.

2.6.3 Finger Tracking

After the skin colour segmentation is implemented, fingers are normally targeted

for the interaction. Subsequently, fmger tracking is implemented as an input

device. The implementation of the fmger tracking involves the template matching

(Koike, Sato, & Kobayashi, 2001; Oka, Sato, & Koike, 2002). The normalised

cross-correlation (NCC) of the template matching for the fmger tracking was

used. As a result, lighting problem towards the detected finger can be reduced.

To accurately detect the finger especially the fingertips, a template of a fingertip is

used (Kjeldsen, Pinhanez, Pingali, Hartman, Levas, Podlaseck et al., 2002). When

one of the fingertips is tracked, the fingertip can be used as a pointer device in the

AR system. The fingertip as a pointer device allows interaction such as clicking,

touching, and pointing. These interactions can normally be done by a mouse

device. However, for the mobility of the AR system, mouse device is not a

suitable input device. Furthermore, mouse device does not produce natural way of

interaction. Hence, finger is used to replace the mouse device in this research.

44

2.7 Summary

This research studies on the Augmented Reality (AR) technology. The main

problem of the AR is the registration problem (Azuma, 1997). There are three

methods to solve the registration problem (thou, Wang, Yan, & Xu, 2000). They

are knowledge-based 3D registration, image processing based 3D registration, and

vision-based registration. Vision-based registration does not produce system

latency like the other two methods. Vision-based registration is focused in this

research. Computer vision algorithms simulate the visual perception of the

humans to understand the world information. Therefore, computer vision

algorithms are used in vision-based registration in order to understand the three-

dimensional relationship between the real world and virtual world. ARToolKit is

an obvious software toolkit for developing the AR applications. It uses the vision-

based registration. A fiduciary marker is needed for the vision-based registration.

Hence, ARToolKit uses square markers as the fiduciary markers for the

registration. Image processing methods are used to accomplish the computer

algorithm for registration. The greyscale transformation modify the image from

colour to greyscale. Thresholding is implemented to convert the image to binary

format. Labelling is used to fmd the connected components of the image. Then,

edge detection is applied to fmd the contour of the fiduciary marker. Edge

detection finds the contour by calculating the gradients of the image. Robert

operator, Sobel operator, or Prewitt operator is used to extract the contour of the

image. The vertices of the square marker are used to calculate the transformation

45

matrix so that the 3D object can be generated correctly. The pattern of the

fiduciary marker is recognised by using template matching method. The

generation of the realistic virtual objects is main purpose of AR. Generation of the

virtual objects involves shading, texturing, and also animations. Besides that, the

interaction with the virtual object is implemented in this research. Bare fmger

interaction is focused to produce natural interaction. Therefore, colour

segmentation towards the skin of the hand and fmger is implemented.

Furthermore, finger tracking is emphasised by using template matching for the

fingertips. As a result, the finger can be used as a pointer device to interact with

the virtual objects.

46

CHAPTER 3
METHDOLOGY

3.0 Overview

This chapter discusses about the research design. A combination of exploratory

model and reuse model is used as the research design. There are six stages of the

research design: 1) system specification, 2) collection of the objects, 3) objects

construction and modification, 4) system construction and modification, 5)

testing, and 6) implementation. Finally, an evaluation on the system functionality

was performed.

3.1 Research Design

This research involves development of a computer library, AR Application

47

Builder. The computer library was applied on an AR system which allows finger

for the interaction. The system development process in this research is a system

development life cycle (SDLC) with the combination of reuse model (Erdil, Finn,

Keating, Meattle, Park, & Yoon, 2003) and exploratory model (Center of

Technology in Government, 1998).

Reuse model refers to the usage of existing program components and modifying

them so that they are able to be used in the new system (Erdil et al., 2003). Reuse

model is suitable for object-oriented programming. C++ language was chosen for

the system development of this research. C++ is an object-oriented programming

language. Besides that, ARToolKit which was written in C language can be used

with C++. ARToolKit was reused in this research in order to perform registration

of the virtual objects and the real world. ARToolKit contains the computer vision

algorithms to detect and recognise the fiduciary markers for registration.

Exploratory model was used when the requirements of the system were difficult to

be identified at the beginning of the project (Center of Technology in

Government, 1998). Exploratory model can be used in the research of Artificial

Intelligence (AI). Exploratory model is able to be applied in this research because

this research involved computer vision, since computer vision is a subfield of Al.

Besides that, finger tracking for natural interaction in AR system required

computer vision algorithms to detect and recognise the finger. However,

ARToolKit did not provide feature of finger tracking for interaction. This research

48

uses exploratory model to develop the forger tracking algorithm based on

computer vision. Skin segmentation and template matching uses normalised cross-

correlation (NCC) was implemented to detect and recognise the fingertip of the

users. The combination of reuse model and exploratory model which includes the

cognitive approach in SDLC constitutes an SDLC-Cognitive-Intuitive approach in

this research. The computer vision simulates the visual perception of human. This

allows the system to understand the real world as human perceiving the stimuli of

the real world. Furthermore, the natural interaction with bare finger of the users

towards the virtual objects in the AR system is a response of human towards the

stimuli of the world.

There are six stages in the research design: 1) system specification, 2) collection

of the objects, 3) objects construction or modification, 4) system construction or

modification, 5) testing, and 6) implementation. System development process in

this research is shown as follows:

49

System specification tern specification

Fbuse
Collection of the objects model

Objects construction or
modification

System contsruction or
modifcation

N- L
Testing

6cploratory
model

I Implementation

Figure 3.1: Combination of reuse model and exploratory model for system
development process.

Figure 3.1 shows the stages of this research. Firstly, the system specification is

outlined. Secondly, according to the specification, the objects or the libraries of

software modules are collected. Then, the collected objects are modified and other

objects are built. Next, the system is constructed by using these objects. After the

system is constructed, it is tested by the developer. After the stage of testing, the

stages from the objects collection are repeated. The repetition is ended when the

desired outcome is produced. Lastly, the system is implemented.

3.1.1 System Specifications

In the first stage, system architecture of the research was designed as follows:

Figure 3.2 shows that the video input is retrieved through the DirectShow with the

video capture device. The DirectShow library can also load the video files. Then

50

System

Video Input I Finger tracking
and interaction

DirectShow
" Load video capture device
- Load video file

ý
OpenCV
- Skin segmentation
- Template matching

Image library
- Read-write BMP file
- Greyscale transformation
- Thresholding

ý--o
GLUT
- OpenGL window
- 3D objects

ARToolKit
- IIbAR. Iib: AR registration
- IibARgsub. lib:
OpenGL transformation

Image processing Registration

Figure 3.2: System architecture of AR Application Builder.

Video output

the video stream from DirectShow is processed by using the image library.

Greyscale transformation and thresholding were used to process the video stream.

Next, the processed video stream was used for AR registration. ARToolKit

libraries were used in this research for the AR registration. The video and virtual

objects were displayed through the OpenGL using the GLUT. OpenGL was used

because it is able to draw the 3D computer graphics as the augmented objects on

the video stream. Besides that, finger tracking was performed by using OpenCV

library. Finger detection was performed on the input video stream. Then the finger

information was used for interaction with the virtual objects in the real

environment. OpenCV contains computer vision algorithms that are required in

this research, especially template matching with sum of squared differences and

normalised cross-correlation.

Technology requirements of AR Application Builder were outlined as follows:

" Visual Studio C++ Express 2008

51

" Windows SDK for Windows Server 2008 and . NET Framework 3.5

" DirectX SDK June 2008 or above

" OpenGL Utility Toolkit (GLUT)

" ARToolKit 2.72

" OpenCV 1.1 pre 1

Since this research is targeted for the Windows platform, Microsoft Visual c++

2008 Express was used as an IDE (Integrated Development Environment). It is a

free IDE and contains Microsoft C/C++ Compiler version 9.0. In order to develop

Windows application, Windows SDK 6.1 (Windows SDK for Windows Server

2008 and . NET Framework 3.5,2008) was used. It contains the Windows libraries

and header files for developing Windows application. DirectShow was used to

enumerate the video capture device. GLUT was used to create OpenGL

compatible window to represent 3D computer graphics during the rendering of the

AR environment. ARToolKit which contains vision-based registration algorithm

was used to draw virtual objects on top of the fiduciary marker. OpenCV was used

to detect and recognise forger for forger tracking interaction.

Next, functional requirements of AR Application Builder were outlined as

follows:

" Video capture device enumeration

" Vision-based registration for AR

" Image processing

52

" Finger tracking

" 3D computer graphics generation

" Interactions

Finally, hardware requirements of AR Application Builder were also outlined. The

following list is the hardware requirements of AR Application Builder:

" Graphic card which supports OpenGL

"A video capture device such as a web camera is needed to capture the

image of the real environment.

3.1.2 Collection of the Objects

At the stage of collection of the objects, relevant libraries were collected for the

development of the system. The libraries which were essential in this research

were DirectShow, GLUT (OpenGL Utility Toolkit), ARToolKit, and OpenCV.

DirectShow is one of the components of DirectX. DirectShow is an application

programming interface (API) that can perform multimedia playback and

capturing. DirectShow is available in Windows SDK 6.1. In this research,

DirectShow was used for video capturing and open the video files.

OpenGL (Open Graphics Library) header and library files are available in

Windows SDK 6.1. GLUT was used as the utility toolkit to create the windows

53

I

that is compatible with OpenGL. Besides that, GLUT provides function to create

some primitive 3D objects like cube, cone, sphere, and teapot.

ARToolKit is an open source AR library under GPL license. This library was used

to implement the vision-based registration. Hence, square markers are needed for

the registration. Two ARToolKit libraries were used: libAR. lib and libARgsub. lib.

libAR. lib is used for AR registration and calculation of the transformation matrix.

libARgsub. lib is used to initialise the OpenGL setting so that it compatible to the

AR registration.

OpenCV contains several computer vision algorithms written in C programming

language. OpenCV was used in this research to implement the computer vision

algorithms such as edge detection, image segmentation, connected components

labelling, and template matching. These algorithms were used for finger tracking

and the interaction of the virtual object in AR environment.

3.1.3 Construction and Modification of the Objects

At this stage, several objects were constructed in this research for the needs of the

system. Besides that, some collected libraries were modified.

A DirectShow wrapper library was constructed. The library wrapped the

DirectShow functions into a class (object) so that it is compatible to the C++

programming language. Furthermore, enumeration of the video capture device

54

was implemented in the class to load a video capture device such as a web camera

or a digital video camera. Not only the enumeration of the video capture device,

the class is also able to load the video files such as AVI and MPEG.

An image library which can read write BMP file format was constructed. The

algorithm of reading and writing BMP file format was based on Bernard (2003)

and Sarath (2007). The image library was built with image processing functions:

greyscale transformation and thresholding. Greyscale transformation is essential

in computer vision because it reduces the information of the image since the

colour information is not used in AR registration. Thresholding is performed after

the greyscale information to make the image becomes segmented. The segmented

image provides the information of the fiduciary marker. Consequently, the

fiduciary marker can be extracted by using ARToolKit libraries.

The ARToolKit libraries were modified so that they are compatible to the system

of this research. This is because ARToolKit uses DSVL (DSVideoLib) library to

load the video capturing. However, the DSVL was replaced by DirectShow

wrapper library in this research, therefore modifications on the libAR. lib were

needed.

Furthermore, a computer graphics library was also built. The computer graphics

library contains the algorithm for shading, texturing, and animations. These

algorithms were used to generate the virtual objects as the augmented objects in

55

the AR system.

3.1.4 System Construction and Modification

At the stage of system construction or modification, the libraries which were

collected, modified, and constructed were used to develop the AR Application

Builder. The flow of the system is illustrated as follows:

56

Start

False

)v

Video capturing

y
Sample grabbing

Image processing

AR registration

3D computer
graphics generation

30
.I

Display

Finger tracking

y
Interaction

Exit

Figure 3.3: Flowchart of the implementation of AR Application Builder.

Figure 3.3 illustrates that the video is captured, and the video sample is grabbed.

Then, image processing is performed. Next, fiduciary marker is detected. If the

marker is detected, the AR registration is performed and 3D computer graphics

are generated. These were displayed as the video output. At the same time, the

forger is detected for the forger tracking. Then the interaction with the computer

57

generated objects is performed.

3.1.5 Testing

After the system was constructed, the system was also tested. The debugging was

carried out to fix the bugs of the system. Besides that, the functionalities of the

constructed libraries were tested to accomplish the development of the AR

Application Builder.

3.1.6 Implementation

At the implementation stage, AR Application Builder, a computer library was built

by integrating all the functions and libraries of this research study. Besides that,

the AR Application Builder was also used for developing some AR applications

for education, tourism, gaming, and entertainment.

3.2 Evaluation

After AR Application Builder was built, the system functionality evaluation was

carried out. According to previous research studied by Avery, Thomas,

Velikovsky, and Piekarski (2005), 44 participants were used to evaluate the user

satisfaction and learnability towards an AR system. Besides that, a research

studied by Kerdvibulvech and Saito (2008) used 15 participants to collect the

qualitative feedback towards an AR system. Evaluation method of this research

58

was based on qualitative method to ensure that AR Application Builder provided

the required functionalities towards the users.

30 students from the Faculty of Cognitive Sciences and Human Development

(FCSHD) of Universiti Malaysia Sarawak (UNIMAS) were selected as the

participants. They were selected in this research because of their computer

proficiency. The participants were given consent forms before the evaluation. The

consent form is attached in Appendix 1. The evaluation was conducted on 8

September, 2008, at the VR Lab in FCSHD, UNIMAS.

An AR application was built by using AR Application Builder for the evaluation.

The AR application generates a video player with the play, pause, and stop buttons

on the square marker. The users are able to use their finger to "click" the play,

pause, and stop buttons and view a video in the AR environment.

The participants were given the tasks for as follows:

1. Use a web camera to detect the marker.

2. Use the finger to click play button to start playing the video in AR system.

3. Click pause button to pause the video.

4. Click play button to resume the video.

5. Click stop button to stop the video.

6. Click play button to play the video from the beginning.

7. Watch the video completely.

59

The functionality of the fmger tracking for interaction was evaluated. The

participants were given a form of evaluation for the system functionality. The

form of evaluation are attached in Appendix 2.

3.3 Summary

System development process of this research is a combination of reuse model and

exploratory model. Exploratory model on Al field which uses computer vision

algorithms involves cognitive theory such as visual perception. As a result, the

combination of reuse model and exploratory model constitutes SDLC-Cognitive-

Intuitive approach in this research. There were six steps in system development

process in this research: 1) system specification, 2) collection of the objects, 3)

objects construction or modification, 4) system construction or modification, 5)

testing, and 6) implementation. The system was targeted on Windows platform.

C++ programming language was used. Several libraries were collected. They were

DirectShow, GLUT (OpenGL Utility Toolkit), ARToolKit, and OpenCV.

DirectShow was used for video capturing. GLUT was used with OpenGL to draw

the 3D computer graphics. ARToolKit was used for vision-based registration.

OpenCV was used for finger tracking and interaction. Besides that, ARToolKit

libraries were modified for the system compatibility. An image library was built

for reading and writing the BMP file. The image library contains some image

processing functions such as greyscale transformation and thresholding. Besides

that, another library which contains the algorithms of shading, texturing, and

60

animations was also built. Then, the system architecture was designed. Next, the

system was tested with the functionalities. Finally, AR Application Builder, a

computer library was built by integrating all functions and libraries together.

Furthermore, the evaluation was carried out to test the system functionality of the

fmger tracking for interaction with the virtual object in an AR application. The

application was built by using AR Application Builder. The participants were

given consent forms. They were given the tasks for using the forger to interact

with the virtual object in AR environment. The results of the evaluation were

collected for further analysis.

61

CHAPTER 4
DESIGN AND DEVELOPMENT

4.0 Overview

This chapter discusses how the AR Application Builder was developed in this

research project. Video capturing by using DirectShow is discussed. Development

of the image library which contains image processing functions is explained.

Next, the generation of the virtual objects by using OpenGL and GLUT is also

discussed. Finally, the implementation of finger tracking by using OpenCV is

discussed.

4.1 Video Capturing with DirectShow

A video capturing device such as web camera could be used as a capture device

62

for this research. DirectShow was needed in order to acquire the input data from a

web camera.

Filters are the basis of DirectShow that performs some operations towards the

multimedia stream (Sink, 2001). Filters are connected with each other through the

pins. There are many types of filters. A source filter is used to read a source

stream, then the stream data will go from the output pin of the source filter to the

input pin of the render filter. The source stream can be a video file, an audio file, a

video stream from a capture device, or a video stream from the internet. Next,

some operations can be performed towards the input stream. The input stream can

be split into audio data and video data, converted to another format, compressed,

decompressed, or finally rendered. These operations depend on the filters that are

used. The render filter can be used to display the stream data as a video or audio

depends on the source stream. The images below shows the conceptual diagram of

filters and pins in DirectShow.

63

-------------- --- ----------
aoCK. evi Video Mo In

Avi Splitter II frdshow Video Decoder
Microsoft Waveform: 12TOHFt2. WAV 1J in Text

Pins T
Filter Tl

Filter ffdshow Audio Decoder

VMR Inpio
Video Renderer

-º. Audio Input pin (rendered)

Default DirectSound Device Q)

ý
----- . .. - -----_i

Figure 4.1: Filters and pins of DirectShow.

Figure 4.1 shows that a "clock. avi" file is a source stream. Then the data of the

source stream flows from an output pin of the source filter to the input pin of a

filter called "Avi Splitter". Next, since the stream is split into video and audio, the

video stream flows to "ffdshow Video Decoder" filter while the audio stream

flows to "ffdshow Audio Decoder" filter. Finally, both streams are decoded and

continue flow to "Video Renderer" filter for the video stream and "Default

DirectSound Device" filter for the audio stream. Using the "Video Renderer", the

video of the "clock. avi" is displayed on the screen. Likewise, the "Default

DirectSound Device" filter is used to play the sound of the "clock. avi" file. The

algorithm of DirectShow is shown as follows:

64

//Create Filter Graph Manager
CoCreatelnstance(CLSID_FilterGraph, NULL, CLSCTX_INPROC,

IID IGraphBuilder, (void**)&pGraph);

//Create a base filter
CoCreatelnstance(CLSID_AsyncReader, NULL, CLSCTX_INPROC,

IID IBaseFilter, (void**)&pFileFilter);

//Add the base filter to the Filter Graph
pGraph->AddFilter(pFileFilter, L"Source Filter");

//Query interface of the Source Filter from base filter
pFileFilter->QueryInterface(IID_IFileSourceFilter,

(void**)&pFile);

//Load the file through Source Filter
pFile->Load(filename, NULL);

//Get unconnected output pin(s) of Source Filter
GetUnconnectedPin(pFileFilter, PINDIR OUTPUT, &outFilePin);

//Create another AviSplitter filter
CoCreatelnstance(CLSID_AviSplitter, NULL, CLSCTX_INPROC,

IID IBaseFilter, (void**)&pAviSplitFilter);

//Add AviSplitter filter to the Filter Graph
pGraph->AddFilter(pAviSplitFilter, L"AVI Splitter");

//Get unconnected input pin of AviSplitter Filter
GetUnconnectedPin(pAviSplitFilter, PINDIR_INPUT, &inSplitPin);

//Connect the output pin of Source filter with the input pin of
//AviSplitter filter
pGraph->Connect(outFilePin, inSplitPin);

//Get the output pins of AviSplitter filter
GetPin(pAviSplitFilter, PINDIR OUTPUT, 0, &outSplitPinl);
GetPin(pAviSplitFilter, PINDIR_ OUTPUT, 1, &outSplitPin2);

//Render both pins
pGraph->Render(outSplitPinl);
pGraph->Render(outSplitPin2);

Figure 4.2: Snippet of creating filters using DirectShow.

The coding above shows that the filters are added and the pins are connected for

the video streaming. In this research, the capture device such as web camera was

enumerated and it was used as the source stream. The real environment was

captured as the video stream for AR registration. Enumeration of the video

65

capture device was implemented. The coding of the enumeration of the video

capture device is shown as follows:

//Create Capture Graph Builder 2, required for capture device
CoCreatelnstance(CLSID_CaptureGraphBuilder2, NULL, CLSCTX_INPROC,

IID_ICaptureGraphBuilder2, (void**)&pCapture);

//Create Filter Graph
CoCreatelnstance(CLSIDFilterGraph, NULL, CLSCTX_INPROC,

IID_IGraphBuilder, (void**)&pGraph);

//Set Filter Graph for Capture Graph Builder 2
pCapture->SetFiltergraph(pGraph);

//Enumerate a filter for the capture device
FindCaptureDevice(&pSrcFilter);

//Add the capture device to the filter graph
pGraph->AddFilter(pSrcFilter, L"Video Capture");

//Continue with adding other filters, and connect the filters
//through the pins. Sample Grabber filter and Null Renderer
//can be added. Finally, render the pins.

Figure 4.3: Snippet of video capture device enumeration in DirectShow.

The coding above shows the algorithm of video capture device enumeration. The

video capture device was used as the source filter in this research for the AR

system. The frames of the video stream were grabbed for the image processing

and AR registration.

4.1.1 Sample Grabbing

By using DirectShow, a video file or video capture device can be played. The

image data of the video stream needs be grabbed for the image processing and AR

registration, so that the 3D objects can be drawn on the video. DirectShow

66

provides a filter, Sample Grabber, which can be used to grab the image of the

video stream. The Sample Grabber filter is added after source filter to grab the

image data. The image below shows the conceptual diagram of the Sample

Grabber in DirectShow:

ffdshow Audio Decoder

in
Null Renderer

ý Audo hpt pin (rendered)
Defauft DirectSound Device

Figure 4.4: Example of Sample Grabber filter in DirectShow.

Figure 4.4 shows that a "SampleGrabber" filter is added after the "AVI Splitter".

Consequently, the image of the video stream can be grabbed for image processing

and vision-based AR registration. A snippet of coding of Sample Grabber is

shown as below:

67

//Create the Filter Graph, insert the Source Filter, Avi Splitter
// Filter, and connect them

//Create the Sample Grabber
CoCreatelnstance(CLSID_SampleGrabber, NULL, CLSCTX INPROC,

IID_IBaseFilter, (void**)&pGrabFilter);

//Add the Sample Grabber to the Filter Graph
pGraph->AddFilter(pGrabFilter, L"SampleGrabber");

//Get the unconnected input pin of Sample Grabber Filter
GetUnconnectedPin(pGrabFilter, PINDIR INPUT, &inGrabPin);

//Query interface of Sample Grabber filter
pGrabFilter->QueryInterface(IID_ISampleGrabber,

(void**)&pGrabber);

//Set the media type that will received by Sample Grabber
pGrabber->SetMediaType(&grabType);

//Connect the video output pin of Avi Splitter Filter with the
// input pin of Sample Grabber filter
pGraph->Connect(outSplitPinl, inGrabPin);

//Get the connected media type of the Sample Grabber filter
pGrabber->GetConnectedMediaType(&mt);

//Set callback of Sample Grabber
pGrabber->SetCallback(&grabCB, 1);

//Get the unconnected output pin of Sample Grabber filter
GetUnconnectedPin(pGrabFilter, PINDIR OUTPUT, &outGrabPin);

//Create Null Renderer
CoCreatelnstance(CLSID_NullRenderer, NULL, CLSCTX_INPROC,

IID_IBaseFilter, (void**)&pNullFilter);

//Add Null Renderer to the Filter Graph
pGraph->AddFilter(pNullFilter, L"Null Renderer");

//Render the output pin of the Sample Grabber
pGraph->Render(outGrabPin);

//Render the audio stream from Avi Splitter filter
pGraph->Render(outSplitPinl);

Figure 4.5: Snippet of creating Sample Grabber in DirectShow.

The coding above shows the example of using Sample Grabber to connect with

the source filter. Consequently, the image data of the video stream can be grabbed

for further processing.

68

4.2 Image Processing

An image library was built in this research so that greyscale transformation and

thresholding can be performed. Besides that, reading and writing BMP file

functions were also included in the image library.

An image file contains 2-dimensional data. Each data of the image is a pixel

which consists of red, green, and blue. Image processing is applied to the image

data in real-time detection.

Greyscale transformation function was written in the image library. The coding of

the greyscale transformation is shown as follows:

void PictureGreyscale(unsigned char** pData, int width, int height)
{

float temp;
int i=0;
while(i<width*height)

temp=0.299f * *(*pData + i*3) + 0.587f
*(*pData + i*3 +1) +
0.114f * *(*pData + i*3 +2); //With the sequence RGB

*(*pData+i*3) _ *(*pData+i*3+1) = *(*pData+i*3+2) _
(int)temp;

i++;

}
}

Figure 4.6: Snippet of greyscale transformation function.

The coding above shows that the first parameter is a pointer to the image data,

followed by width and height. The formula to convert the colour image into

greyscale is performed to the image data.

69

Next, thresholding function was also written in the library. The algorithm is

shown as follows:

void PictureThresholding(unsigned char** pData, int width, int
height, int threshold) {
int i;
for(i=O; i<width*height; i++) {

*(*pData + i*3) = *(*pData+i*3) > threshold ? 255 : 0;
*(*pData +i*3 +1) = *(*pData+i*3+1) > threshold ? 255 0;
*(*pData +i*3 +2) = *(*pData+i*3+2) > threshold ? 255 : 0;

Figure 4.7: Snippet of thresholding function.

The coding above shows the function thresholding. The parameters of the function

are pointer to the image data, width, height, and a threshold value. Based on the

threshold value, the image is converted into black and white.

These functions are applied towards the image grabbed from the video stream.

The processed images are then used for AR registration.

4.3 AR Registration

AR requires real-time detection and complex calculation for the registration of the

real environment and 3D world. The ARToolKit was used in this research to

perform the registration. libAR. lib and libARgsub. lib from ARToolKit were used

in this research.

arDetectMarker() is a function from libAR. lib. This function was used for the

70

marker detection. A modification was implemented so that the function is

compatible to the system. The modification is shown as follows:

//Original
int arDetectMarker(ARUint8 *dataPtr, int thresh,

ARMarkerlnfo **marker_info,
int *marker num);

//Modified
int arDetectMarker(ARUint8 *dataPtr, int w, int h, int thresh,

ARMarkerInfo **marker_info,
int *marker num);

Figure 4.8: The modification of arDetectMarker() for the compatibility of the
system.

Two parameters were added to arDetectMarkerO. They were width and height of

the image. The parameters were needed in this research because this research did

not use libARvideo. lib for loading captured video. Instead, DirectShow library

was used for the video capturing. As a result, modification was done to

accomplish the task of marker detection.

After the marker is detected, a transformation matrix is calculated. The algorithm

of marker detection is shown as follows:

71

ARMarkerlnfo *marker_info;
int marker num;
arDetectMarker((unsigned char*)img. pData, img. width, img. height,

100, &marker info, &marker num);

int i, j, k;
for(i=O; i<g_objnum; i++) {

k=-1;
for(j=O; j<marker num; j++) {

if(g_obj[i]. id==marker_info[j]. id)
if(k == -1) k=j;

else if(marker info[k]. cf

{

< marker_info[j]. cf) k=j;
}

}
if(k==-l) {

g_obj[i]. visible=0;
continue;

}
if(g_obj[i]. visible==0){

arGetTransMat(&marker_info[k], g_obj(i]. marker_center,
g_obj[i]. marker width,
g_obj[i]. trans);

}
else {

arGetTransMatCont(&marker_info[k], g_obj[i]. trans,
gobj Li] . marker center,
g_obj[i]. marker_width, g_obj[i]. trans);

}
g_obj[i]. visible=l;

}

Figure 4.9: Snippet of marker detection.

The algorithm above shows that when a marker is detected, arGetTransMatO and

arGetTransMatCont() are called. These functions are used to calculate the camera

position and orientation in matrix. The ARToolKit matrix format is used. Thus, the

matrix needs to be converted to OpenGL matrix format. The coding below shows

the conversion of the matrix format:

72

double gl_para[16];
for(i=O; i<g_objnum; i++) {

if(g_obj[ii. visible==0) continue;
argConvGlpara(g_obj[i]. trans, gl_para);

//Draw object here
glMatrixMode(GLMODELVIEW);
glLoadIdentity();
argDraw3dCamera(0,0);

glMatrixMode(GLMODELVIEW);
glLoadMatrixd(gl_para);

if(g_obj(i]. id==0)
//Draw the object using OpenGL

}
}

Figure 4.10: Snippet of converting AR matrix to OpenGL matrix.

The coding above shows that argConvGlparao is called. This function is used to

convert the ARToolKit matrix format to OpenGL matrix format. argConvGlpara()

is one of the functions of libARgsub. lib. After the conversion, glLoadMatrxd()

function is called to load the transformation matrix in OpenGL. As a result, the 3D

computer graphics can be drawn in a correct view for the users as an AR object.

73

4.4 Virtual Objects Generation with OpenGL

Besides the image library, a computer graphic library was also built in this

research. OpenGL is a 3D graphic API. It was used to represent 2D and 3D

objects in this research. GLUT is used to perform system level operation, such as

creating the window which has a compatible device context for OpenGL. Besides

that, it also allows the integration of the keyboard and mouse input in the

OpenGL. Primitives 3D objects such as cube, sphere, and teapot can be drawn

using the functions of GLUT.

OpenGL was used to draw 3D objects in this research. A 3D object was described

in 3D vertices. The coordinate of every vertex needed to be known. In OpenGL,

glVertex*() function can describe the coordinate of the vertices. However, these

vertices did not represent any colour. The material colour of the object needed to

be described. There were two ways to see the colour of the 3D objects. It

depended on the existence of light. If the lighting was enabled, glMaterial*Q

should be used to describe the material colour. On the other hand, if the lighting

was disabled, glColor*() should be used. Both methods produced the result

differently. When lighting was enabled and glMaterial*() was used, the 3D objects

will be drawn with shadow. On the other hand, if the lighting was disabled, the

objects will be rendered with glColor*(), and the shadow will not be drawn. The

lighting was preferred in this research project because the 3D objects will be

appeared with the shading. This makes the 3D objects have better appearance and

provide better visual perception for the users. With the help of shading, it will

74

provide depth perception for the perceiver (Hubona, Shirah, & Jennings, 2004).

4.4.1 Shading

There are two types of shading, flat shading (or surface shading) and vertex

shading. OpenGL does not provide calculation for the shading. The calculation of

the shading needs to be implemented manually. Flat shading is easier than vertex

shading. Flat shading required fewer statements in the algorithm than vertex

shading. Besides that, vertex shading produced better view, because vertex

shading enhances the depth perception and the smoothness of the 3D object.

The normal, or the perpendicular vector of the surface, was needed for the flat

shading calculation. The coordinates of three vertices are required in order to

calculate the normal. For instance, the vectors were vl, v2, and v3. To apply the

normal to the OpenGL, glNormal*Q function is used. The coding below shows a

snippet of glNormal*Q.

glBegin(GL_POLYGON);
glNormal(nl, n2, n3);
glVertex(vl, v2, v3);
glVertex(v4, v5, v6);
glVertex(v7, v8, v9);
glEnd(;

Figure 4.11: Statements with glNormal*Q in OpenGL for the lighting.

The function glNormal*() is used within glBegin() and g1EndO. Any vertex after

the glNormal*() is affected by the normal value. The snippet above shows an

75

example of flat shading. Three vertices which create a polygon use same normal

vector. The lighting will be reflected perpendicularly to the face of the polygon.

Flat shading algorithm is shown as follows:

i=0;
while(i < numberOfVertex) {

glBegin(GL_POLYGON);
glNormal3fv(normal);
glVertex3fv(vertexl);
glVertex3fv(vertex2);
glVertex3fv(vertex3);
g1End(;
i++;

}

Figure 4.12: Flat shading algorithm in OpenGL.

When a list of vertices that describe a 3D object, the function is able to draw the

object with the flat shading.

Vertex shading is more complex than flat shading. Vertex shading is the normal

lighting that reflects perpendicularly from the vertex. The normal vector of each

vertex needed to be calculated. All the normal vectors of the faces that connected

to the vertex needed to be acquired in order to calculate the normal vector of the

vertex. By summing up all the normal vectors, and normalise it, the result will be

the normal vector of the vertex. If a list of vertices which describes a 3D object

was given, the algorithm is shown as follows:

76

nFace = Calculate the number of face
For each face, calculate the faceNormal
Initialise all vertexNormal to (0,0,0)
Initialise currFace=O
For each vertex

if vertex is in the current face

vertexNormal(i] = vertexNormal[i] + faceNormal[currFace]
else

increase currFace by 1
For each vertexNormal

Normalise vertexNormal

Figure 4.13: Vertex shading algorithm for OpenGL.

When each vertex normal is calculated, the list of vertex normals is used in

OpenGL by using glNormal*() as the algorithm of flat shading. The computer

generated object will be shown with the shading, which was smoother than flat

shading. The vertex shading enhances the smoothness of the virtual object. The

snippet using the glNormal*() in vertex shading is shown as below:

glBegin(GL_POLYGON);
glNormal3f(nl, n2, n3);
glVertex3f(vl, v2, v3);
glNormal3f(n4, n5, n6);
glVertex3f(v4, v5, v6);
glNormal3f(n7, n8, n9);
glVertex3f(v7, v8, v9);
g1End();

Figure 4.14: OpenGL statements of vertex shading.

The coding above shows that every vertex is defined after different normal, the

vertices do not share the same normal. Every vertex is displayed with different

shading. The lighting is reflected with different angles according to each normal.

77

4.4.2 Texturing

In 3D computer graphics, texture mapping is an essential component for texturing.

Texture mapping in OpenGL only supports the width and height, which are power

of two (2,4,8,16, ...) (Miller, 2000). The texture is 2D and it will wrap the 3D

object according to the coordinate described by glTexCoord*Q.

To implement texture mapping, an image is used. Width, height, and the image

data in RGB (red, green, and blue) were acquired. This data was stored in

memory. glBindTexture() function was called in order to bind the texture to the

3D object. The implementation of texture mapping in OpenGL is shown as below:

GLuint textureId = glGenTextures()
glBindTexture() to bind the textureId to a target object
glTexImage2D() to set the texture image properties
glTexParameteri() to set the texture parameter
glEnable(GL_TEXTURE_2D)
For each vertex

glTexCoord2f(tx, ty) where tx and ty is the texture coordinate
glVertex3f(vx, vy, vz) where vx, vy, and vz are the coordinate

of the vertex
glDisable(GL TEXTURE 2D)
glDeleteTextures() to delete the texture using textureId

Figure 4.15: Pseudo code of texture mapping in OpenGL.

A 2D image is used as a texture in order to map to the 3D object. The texture

mapping enhances the visual perception towards the 3D objects because the

surface was drawn with roughness instead of entire smoothness. Therefore, the

prerequisite to implement the 2D texture mapping was to load a 2D image data

into the memory, then the OpenGL can use the 2D image data to map onto the 3D

object.

78

In this research project, the video stream of the real environment was displayed

through the GLUT window and OpenGL as the output. As a result, the 3D objects

can be integrated with the video stream as the augmented objects.

4.4.3 Animations

Animation is another important component in 3D computer graphics. Animation

is a series of images which makes the viewers feel that the 3D objects are moving.

In 3D computer graphics, the key frame of the animation is required and the key

frame data is stored in a file. In this research project, there were two types of key

frame data. They were transformation data and vertex data.

The transformation data describes the position of the 3D object. The animation

makes the 3D object change its position without changing the shape. Generally,

there are three types of transformation: translation, rotation, and scale transform.

These types of transformation do not change the shape of the 3D object in an

animation, but the position of the object relatively to the world.

All the transformation type is included in the coding above. Translation, rotation,

and scale transform exist together in a frame. On the other hand, the vertex data is

different from transformation data. A vertex does not have any shape. Rotation

and scale transform do not affect a vertex, only the 3D coordinate affects the

vertex. Therefore, the vertex data describes the 3D coordinate of every vertex of

the object. In animation, different 3D coordinates of every vertex are stored for

79

currFrame = 0; //Initialise

while(currFrame < maxFrame)
glTranslatef(tx, ty, tz); //where tx, ty, tz are the translation

//parameters of currFrame
glRotatef(deg, rx, ry, rz); //where deg is the angle, rx, ry, rz

//are the rotation parameters of currFrame
glScalef(sx, sy, sz); //where sx, sy, sz are the scale parameters

//of currFrame

//Draw the object in currFrame

}
currFrame++;

Figure 4.16: Snippet of transformation animation in OpenGL.

every key frame. Every key frame displays the vertices in different coordinates.

As a result, the shape of the 3D object was changed gradually. The following is

the algorithm to perform the animation of vertices.

currFrame = 0; //Initialise

while(currFrame < maxFrame) (
//Draw the object in currFrame
glBegin(GL_POLYGON);
glVertex3f(xl, yl, zl);
glVertex3f(x2, y2, z2);
glVertex3f(x3, y3, z3);

//x*, y*, z* are the coordinates of the vertices in
// current frame

glEnd();

currFrame++;

Figure 4.17: Snippet of vertex animation in OpenGL.

The algorithm above shows that the vertices are defined from frame to frame. The

key frame data stores the different coordinates of the vertices which described the

shape of the object. Consequently, the coordinates of the vertices are changed

from frame to frame and animation occurs.

80

However, interpolation is required in order to make the animation work more

smoothly. Interpolation is to estimate an intermediate value of two variables when

one of the variable corresponds to several discrete values of the other variable. In

this research project, interpolation was used to calculate the frames between two

given key frames of an animation. Interpolation is a calculation of the coordinate

of the vertices between two key frames, or the transformation of the 3D object

between two key frames. The calculation of interpolation for coordinate of the

vertices and transformation of the 3D object were same. The calculation of the

interpolation is shown as below:

output; =inputFramel, +(inputFrame2, -inputFramel,)X currUnit
max Unit

Figure 4.18: Formula of interpolation for animation.

When a list of vertices or transformation value is given, the above formula can be

used. max Unit is a constant which can be decided by the programmer. The

currUnit will be increased from frame to frame in order to make the 3D object

animated smoothly. The snippet of coding below shows how to use the

interpolation to perform animation:

81

void Calclnterpolate(float *vl, float *v2, int size,
int currUnit, int maxUnit,
float *vout) {

int i;
for(i=O; i<size; i++) {

vOut[i]=vl[il + ((v2[i]-vl[i])*currUnit/maxUnit);

}
}

currUnit = 0;
while(currUnit < maxUnit) {

//Calculate interpolation
float *vInter; //A list of vertices for interpolation
Calclnterpolate(&v[framel], &v[frame2], size, currUnit, maxUnit,

vInter);

//The result of interpolation vertices is stored in vInter

//Draw the vertices using vInter.

currUnit++;
}

Figure 4.19: Snippet of interpolation for animation.

The coding above shows that Calclnterpolate() function uses the formula to

calculate the interpolation coordinates of the vertices. Consequently, the

calculated vertices are drawn. Then, the increment of the currUnit is

implemented. The algorithm is performed until currUnit was equal to max Unit,

which was defined by the programmer. This is the interpolation between two key

frames. The animation was also performed in this research to produce animated

3D virtual objects for the users.

4.5 Finger Tracking

Finger tracking was implemented in this research for the interaction with the

82

virtual objects. The implementation of the forger tracking began with the skin

colour segmentation. The formula for the skin colour according to Kovai;, Peer,

and Solina (2003) was used. The coding of skin segmentation is shown as below:

for(int i=O; i<width * height * 3; i+=3) {
if(imageData[i] > 95 && //red

imageData[i+1] > 40 && //green
imageData[i+2] > 20 && //blue
max(imageData[i], imageData[i+l], imageData[i+2]) -

min(imageData[i], imageData[i+l], imageData[i+2]) > 15 &&
abs(imageData[i) - imageData[i+1]) > 15 &&
imageData[i] > imageData[i+1] &&
imageData[i] > imageData[i+2])

skin[i] = 1;
else

skin[i] = 0;

Figure 4.20: Snippet of colour segmentation based on Kova6, Peer, and Solina
(2003).

The snippet above shows that every pixel of the image is traversed. If the colour

components of the current pixel fulfilled the skin colour conditions, then an array

is assigned with true. Thus, the array stores the skin region of the image. After the

colour segmentation towards the skin of the fingers, the position of the finger

region is known.

A template of a fingertip was used in this research. The following image is the

template of the fingertip in this research:

83

Figure 4.21: Template of fingertip used in forger tracking

Figure 4.21 shows the fingertip after the skin colour segmentation. The image was

saved as the template for template matching.

OpenCV contains function for template matching. The function of template

matching in OpenCV is cvMatchTemplateO. This function provides different

matching methods including sum squared of differences (SSD) and normalised

cross-correlation (NCC). The template matching with NCC method was used to

match the fingertip of the user. After the template matching, the fingertip of the

users was tracked. The two-dimensional information of fingertip was used for the

interaction. As a result, the interaction was able to be performed with the finger

tracking.

4.6 Summary

Video capturing was used in this research to capture the video of the real

environment. DirectShow was used for video capturing. After the video stream

was captured, the greyscale transformation and thresholding were applied to the

captured video. Thus, an image library was built. The processed video stream was

84

used for AR registration. ARToolKit libraries were used for the registration. Then,

the virtual objects were drawn by using OpenGL with GLUT. Finally, OpenCV

was used for forger tracking. The 2D coordinate of the tracked fingertip was used

for the interaction with the virtual objects.

85

CHAPTER 5
FINDINGS AND DISCUSSIONS

5.0 Overview

This chapter discusses the findings of the research after the development of the

AR Application Builder. Video capturing which uses DirectShow is discussed.

Image processing functions of the image library is also discussed. The generation

of the virtual object using OpenGL is discussed. Furthermore, the AR registration

which uses ARToolKit libraries is discussed. Some of the applications built in this

research is shown. Interaction by using mouse clicks and fmger tracking is also

discussed. Finally, the outcome of the evaluation on the finger tracking for the

interaction with the virtual object in an AR system is discussed.

86

5.1 Video Capturing

DirectShow was used in this research. A class was written to wrap the DirectShow

functions. The main functions of the class was to load a capture device such as

web camera. A screenshot of using the DirectShow to capture image of the real

environment is shown as below:

; ý, ý........ ,..... _. . ý..... } . 3-ý

jýpplit::! iJ, j
File Mode

--odd Figure 5.1: Screenshot of video capturing using DirectShow.

Figure 5.1 is a screenshot of an image captured from capture device from the real

environment. The DirectShow library was able to load the capture device and

capture the image from the real environment in real-time. However, when there

were more than one capture device, the library will enumerate the first device

according to the setting of the computer system. Therefore, the other capture

devices might need to be disabled so that the target capture device can be

enumerated.

87

In addition, the library also had the ability to load video files. The image below

shows an example of loading a video file and displaying the video through

OpenGL:

Figure Screenshot of playing a video the using DirectShow and display in
OpenGL as texture mapping.

Figure 5.2 shows that the image data was grabbed from the video stream by using

DirectShow. Then the image data from the buffer was used as texture and mapped

to the OpenGL.

Besides that, the video file was able to be loaded in the AR rendering using the

library. As a result, the virtual object on the fiduciary marker was a video played

in real-time.

88

5.2 Image Processing

The image library which was built in this research was also tested. Several

functions were written in the image library. Greyscale transform based on Parekh

(2006) was one of the basic function that converts the colour image into greyscale

image. The following image is an example of implementation of greyscale

transform:

Figure 5.3: Greyscale transformation of the coloured image.

Figure 5.3 shows the difference of the colour image and greyscale image. There

colour components were reduced to a greyscale value for each pixel, lesser

memory storage was required to store the greyscale image.

Besides that, the thresholding function was also written in the library. The

following image shows the result of thresholding:

89

11-ii

Figure 5.4: Result image after thresholding is applied.

Figure 5.4 shows a result image of thresholding using threshold value 100.

Thresholding was a basic method in image processing and computer vision.

5.3 Virtual Object Generation

OpenGL was used for building computer graphic library in this research. The

library was tested for the functionality of shading. The following is a screenshot

of flat shading:

90

Figure 5.5: Flat shading of a 3D object in OpenGL.

Figure 5.5 shows the result flat shading. The lighting reflects perpendicularly from

the surface so that the surface of the 3D object appeared roughly. On the other

hand, the vertex shading produced the following output:

Figure 5.6: Vertex shading of a 3D object in OpenGL.

Figure 5.6 shows that vertex shading makes the surface of the 3D object appear

smooth because the lighting reflected perpendicularly from every vertex. Though

91

vertex shading was preferred in this research project, both algorithm were written

in the library.

The texturing functionality of the library was also tested. The following

screenshot shows an example of a 3D model with the texture mapping:

Vs V.
ýO

_. ýK li

B

tp%-%

ý ý'ý

lk

Figure 5.7: Texture mapping on a 3D object in OpenGL.

The figure above shows an example of texture mapping. The surface of the meteor

is wrapped by a texture to produce a rough surface. The texture mapping was

implemented in the AR system.

Moreover, the algorithm of the animations was also implemented in the library.

The following image shows an example of animation:

92

Figure 5.8: The static frames of animation in OpenGL.

Figure 5.8 shows a sequence of an animation of a 3D dog. The numbers of the

vertices are same in the three key frames. However, the coordinates of the vertices

are different in the three key frames. The shape of the dog was modified without

destroying the whole object because the number of vertices are same. The object

was animated smoothly with the interpolation.

5.4 AR Registration

The registration of the AR object in the real environment was implemented by

using ARToolKit libraries. Several applications were built by using the AR

Application Builder with the ARToolKit libraries for the registration. The

following screenshot is one of the applications in this research:

93

Figure 5.9: Screenshots of playing video in AR system.

The screenshots above shows a sequence of a video in an AR application. The

DirectShow library was able to be applied in AR system not only to enumerate the

capture device, but also to play the video file in the AR environment.

Furthermore, an AR game with the virtual aeroplane was also built by AR

Application Builder. The screenshots are shown as below:

94

m
Figure .

5.10: Screenshots of 3D aeroplane as an AR game.

Figure 5.10 shows a sequence of screenshots from an AR game of this research. A

3D model of an aeroplane was loaded by the applciation. During the AR

rendering, the 3D aeroplane flew around the fiduciary marker. Besides that, the

texture mapping was able to be applied to the aeroplane.

The AR application of tourism was also built in this research. The following

figure shows an example of 3D object in the tourism application:

i i
ýý iý

Figure 5.11: Screenshot of KLCC Twin Tower for tourism application.

The screenshot above shows a KLCC Twin Tower of Malaysia. It is a model for

the tourism application in this research. Besides the tourism application,

95

educational applications were also built. The following figure is a screenshot of an

example of an educational application:

ý ý; ,,.,

Nucleus

Ammombow

Chromamme

'Nucleoli

ucleus Membrane

ý\ ý, ýleoplasm

P igu i 5.12. Screenshot of animal cell in AR system as an education
application for biology.

Figure 5.12 shows an example of an organelle of an animal cell, nucleus, in the

AR system. This application was used for the students to study the biological

objects in the 3D perspective. The purpose of this application was to enhance the

students' understanding towards the biological objects.

Besides the animal cell, there was another educational application related to the

plant cell. The screenshot of the application is shown as below:

96

Figure 5.13: Screenshot of plant cell in educational application in biology.

The screenshot above shows the organelles of the plant cell in an AR system. The

purpose of this application was to allow the students to study the organelles of the

plant cell and how they looks like.

AR applications in education provide better learning environment to the users.

The three-dimensional virtual objects produce more information to the students.

The students are able to understand the learning objects better than traditional

learning instruments such as text books. The students can perceive the computer

generated virtual objects as the real objects because they are seamlessly integrated

in the real environment. The learning with the AR application allows the students

to construct new knowledge based on what they perceived in AR system. The

students can use the constructed knowledge in future. For example, the learning

objects of biology allows the students to understand the structure of the animal

97

cells and the plant cells. The students are able to compare the organelles of two

types of cells. The students can learn more through the insights of the AR learning

method.

5.5 Interaction

The interaction of the virtual object was also tested in this research. The

screenshots below show an example of interaction with the virtual objects by

using mouse:

Figure 5.14: Screenshots of interaction in AR system using mouse as an input
device.

Figure 5.14 shows a sequence of interactions with the virtual object in an AR

system. The mouse was used to click the red sphere. When the red sphere was

98

clicked, it turned into blue colour and expanded two more red spheres. Contrarily,

if the blue sphere was clicked, it turned into red colour again and the children

spheres were collapsed. When one of the spheres of the final level was clicked, a

video was displayed.

5.5.1 Finger Tracking

The finger tracking for the interaction was tested in this research. The forger

tracking allowed the forgers to manipulate the virtual object in real-time. This

produced a nature input towards the AR system. The screenshots for the forger

interaction towards the AR virtual object are shown as below:

ý ý
.

--

I 5. Scrcenshot, of tn cr tracking as an input device for
interaction in AR system.

Figure 5.15 shows that the teapot is able to be resized by the bare forger. The

99

system firstly detected the skin colour of the fingers in order to determine the

region of the finger. After the forger region was determined, the 2D position of the

forger was used to compare with the position of the green dots relatively. The

green dots were used to determine the size of the teapot. Hence, by using the bare

forgers, the dots were moved away. As a result, the size of the teapot was

modified.

Using fmger to interact with the virtual objects is a natural response of the users.

The users perceive the virtual objects as they are the real objects since they are

registered correctly in the real environment. The users can feel that the objects are

on top of the fiduciary marker. Therefore, the users will touch the virtual objects

by using fmger. The bare fmger tracking is important as it reduces the unnatural

behaviours such as using the wired glove to touch the virtual objects in the real

environment.

5.6 Evaluation

An application was built for the evaluation purpose. The application was an AR

video player with three buttons. The three buttons were play, pause, and stop. The

users were able to use their forger to touch the button and trigger the function of

the button. The screenshots of the application is shown as below:

100

2

Figure' 5.16: Screenshots of AR video player and using finger as an input device
to operate the virtual player.

Figure 5.16 shows that when a marker is detected, three buttons are appeared. A

green dot is also appeared on the fmger. The green dot is used as a cursor for the

user. Thus, the users are able to know where is the cursor and try to move their

fmger as the cursor to the target position of the screen.

An evaluation was conducted to test the system functionality of the finger tracking

for interaction with the virtual object in AR video player. The result was collected.

The following table shows the result of the evaluation:

101

Table 5.1
The result of the evaluation on the system functionality of the finger tracking for
interaction with the virtual object in AR system.

No. Tasks
Responses

Success Fail

1 Use a web camera to detect the marker
to show the buttons

2 Use the forger to click play button to
start playing the video in AR

3 Click pause button to pause the video

4 Click play button to resume the video

5 Click stop button to stop the video

6 Click play button to play the video from
the beginning

7 Watch the video completely

30 (100%) 0(0%)

28 (93.33%) 2 (6.67%)

27 (90%) 3 (10%)

28 (93.33%) 2 (6.67%)

28 (93.33%) 2 (6.67%)

28 (93.33%) 2 (6.67%)

30 (100%) 0(0%)

Table 5.1 shows that 100% of the participants were able to use the web camera to

detect the marker. None of the participants failed to do so. 93.33% of the

participants were able to use their finger to click the play button to start playing

the video in AR. 6.67% of the participants failed to do so. There were 90% of the

participants were able to pause the video, and 10% failed to pause the video.

93.33% of the participants were able to resume, stop, and play the video again

from the beginning, 6.67% of the participants failed to do so. Finally, all of the

participants were able to watch the video completely.

The table indicates that the detection of the marker was successfully recognised.

102

This is because the detection of the marker and AR registration implemented by

using ARToolKit. Furthermore, most of the users were able to click or touch the

buttons. However, the rate of successfulness for clicking the "pause" button was

less than other tasks. The reason was the position of the "pause" button which

allocated between the other buttons. The participants might unintentionally click

the other buttons before click the "pause" button. Finally, all the participants were

able to watch the video completely. This indicates that the integration of the video

in the AR application was a success.

The participants were able to use their forger as an input device for natural

interaction to interact with the virtual objects in the AR system. Computer vision

algorithms for skin segmentation was able to differentiate the finger from the

environment. Furthermore, the template matching which uses normalised cross-

correlation was able to track the fingertip of the participants. As a result, the

participants were able to use their fingertip as a pointer device in the AR system.

The fingertip replaced the functionality of the mouse to interact with the virtual

objects in the real environment. The participants could respond to the virtual

objects as the stimuli from the world visual perception towards the computer

generated objects. As a conclusion, the functionality of the AR Application

Builder AR was successfully implemented which allows the users to interact with

the virtual objects in the AR system using bare finger as an input device for the

interaction.

103

5.7 Summary

The DirectShow library was able to enumerate the capture device and also play

the video files. The image library was able to perform greyscale transformation

and thresholding towards the video stream. Then, the processed video stream was

used for vision-based registration. The vision-based registration algorithms

accomplished by using ARToolKit libraries. The computer graphic library which

was built in this research was able to perform shading, texture mapping, and

animations. These functions and libraries were used to build the AR Application

Builder. Several applications were built by using AR Application Builder in this

research. They were video in AR, tourism application, AR game, and AR

application in biology subject. Besides that, interaction by using a mouse was also

tested. Then, the fmger tracking was implemented to interact with the virtual

object. Finally, an evaluation was conducted to evaluate the system functionality

of the fmger tracking for interaction with the virtual object in AR. An application

was built for evaluation. The application was AR video player. The result of the

evaluation indicates that the integration of the fmger tracking for interaction with

the virtual objects in AR system was successfully implemented in this research.

The participants were able to interact with the virtual objects naturally without

using the devices such as mouse or wired gloves.

104

CHAPTER 6
CONCLUSION

6.0 Overview

This chapter is a conclusion of this research. The contributions of this research are

discussed. Recommendations for the future study are also discussed. Finally, the

research is concluded with a summary.

6.1 Contributions of the Study

The major contribution of this research is the comprehensive literature reviews on

the Augmented Reality (AR) technology. The AR technology involves the vision-

based registration to generate the 3D computer graphics. Besides that, image

processing methods are also discussed. The 3D computer graphics techniques are

105

also explained. Furthermore, finger tracking is also applied in this research. The

implementation of the algorithms also provide technical contribution towards the

future research.

AR Application Builder also contributes in cognitive science in the sense of visual

perception. AR requires computer vision to simulate human visual perception to

understand the real world (Meer, Stewart, & Tyler, 2000). Based on the 2D

fiduciary marker, the 3D virtual world can be constructed with computer vision

algorithms. The users can sense the stimuli generated by the AR system and

perceive with visual perception. The purpose of AR is to generate realistic virtual

objects (Azuma, 1997), this allows the users to perceive the virtual objects as they

are real objects. Consequently, the users will interact with the virtual objects.

Since the virtual objects are integrated in the real world, natural interaction is

important. The evaluation of this research indicates that AR Application Builder

which provides finger tracking feature allows the users to interact with the virtual

objects without using other device such as wired gloves.

This research developed a library, AR Application Builder. The source code of the

library is attached in Appendix 4. The users are able to use the library to create

their own AR applications. The most prominent feature of AR Application Builder

is the integration of the forger tracking. Furthermore, the finger can be used to

interact with the virtual objects in the AR system. This can enhance the AR

experience of the users because the users not only perceive the virtual objects in

106

the real environment, but also interact with the virtual objects with their bare

forger. The methods of forger tracking in this research can be used in future study

to produce a natural interactive AR environment.

Besides that, this research can contribute in educational field such as biology,

chemistry, and mathematics. In biology, DNA molecules, cells, tissues and organs

can be modelled. Then the 3D models are used in AR so that the students can

interact with them. The system of this research is used to create an application

about animal and plant cells as shown in Chapter 5. The organelles of the animal

and plant cells are displayed in AR environment for the students to study what the

organelles look like. Besides that, the students will understand better than 2D

perspective in the book because the organelles are represented in 3D perspective.

In chemistry, atoms, molecules, particles, and the structure of metals are able to be

modelled. Besides that, the physical reactions of the chemical object can be shown

in animation. For example, the animation can show the reaction of the water

molecules when the water is boiled.

In mathematics, the solid objects such as pyramid, tetrahedron, cuboid, sphere and

cone in AR allow the students to perceive the object at different angles. Therefore,

AR in biology, chemistry and mathematics helps the students to understand the

objects in different perspective and augment interest to learn the subject.

Besides the educational field, the system can also be used in developing AR in

107

games and toys. The virtual toys such as aeroplane, chess, furniture, jigsaw

puzzle, battle field models and cars can be modelled as shown in Chapter 5.

Sound and animation can also be included with the 3D objects. The virtual toys

can be enjoyed by the children because they can interact with the toys.

AR is of the technologies which emerges with the phone technology (Crago,

2008). The smartphone can run the software like a desktop computer, the

applications built by AR Application Builder are able to be ported into a phone

device in future.

The applications which were developed in this research project had been

participated in several conferences and exhibitions. The participated conferences

and exhibitions are attached in the Appendix 3.

6.2 Recommendations for Future Study

This research implemented the finger tracking for interaction with 2-dimensional

information. There was no depth information of the finger. The depth information

of the finger tracking can be integrated in the future research so that the users can

interact with the virtual objects with depth information. As a result, the users were

able to move the object further from the camera or nearer to the camera.

Furthermore, finger gesture recognition can be implemented in the future study.

The finger gesture can be used to interact with the virtual objects in the AR

108

system. The gesture recognition can produce different commands towards the AR

system.

Besides that, voice recognition can also be integrated as another natural way of

interaction. Voice recognition can be used to express the commands to the AR

system. Simple commands were useful in the AR system as a supplementary

interactions.

Usability of the AR system is also important. Usability evaluation can be

conducted in the future study to improve the forger tracking for interaction of this

research. As a result, the users can use the system with high satisfaction and ease.

6.3 Summary of the Research

This research developed a computer library, AR Application Builder. AR

Application Builder allows the users to develop the AR applications. Moreover,

finger tracking for interaction with the virtual objects was also implemented in

this research. As a result, the user can use their bare finger to interact with the

virtual objects in the AR system.

The literature review of this research includes the Augmented Reality (AR)

technology, vision-based AR registration, image processing, template matching,

virtual objects generation, and interaction with the forger tracking.

109

The methodology of this research uses a combination of reuse model and

exploratory model for system development process to develop the AR Application

Builder. The system uses DirectShow to load the video capture device, ARToolKit

for vision-based registration, OpenGL and GLUT to draw the virtual objects,

OpenCV for fmger tracking and interaction. Furthermore, an image library for

image processing was written, and a computer graphic library for shading, texture

mapping, and animations was also written. AR Application Builder was built by

integrating these functions and libraries together.

Furthermore, evaluation was conducted to test the system functionality of forger

tracking for virtual objects in AR system. The evaluation result shows that the

forger tracking for interaction was successfully implemented. The skin colour

segmentation and template matching with normalised cross-correlation method

applied for forger tracking. As a result, the users can use their finger to interact

with the virtual objects in AR system.

Several applications were built in this research using AR Application Builder.

They were AR toys, AR puzzle, AR chess, AR aeroplane, AR mobile pet, and AR

film. Besides that, there were also applications involved biological field and

tourism. Finally, the AR Application Builder can be improved and implemented

with future studies.

110

REFERENCES
Aaltonen, A., & Lehikoinen, J. (2006). Exploring augmented reality

visualizations. In proceedings of the working conference on advanced visual
interfaces, 453-456. USA: ACM New York.

Acharya, T., & Ray, A. K. (2005). Image processing. Principles and applications.
New Jersey: John Wiley & Sons, Inc.

Adams, J. (2004). Programming role playing games with DirectX. UK:
Thomson/Course Technology.

Ahn, I., Lehr, M., & Turner, P. (2005). Image processing on the GPU University
of Pennsylvania. Retrieved March 4,2007, from
http: //www. cis. upenn. edu/-suvenkat/700/projects/alt. pdf

Ansar, A. & Daniilidis, K. (2001). Linear augmented reality registration. In W.
Skarbek (Ed.), Computer Analysis of Images and Patterns: 9th International
Conference, CAIP 2001, Warsaw, Poland, September 5-7,2001: Proceedings.
New York: Springer.

Avery, B., Thomas, B. H., Velikovsky, J., & Piekarski, W. (2005). Outdoor
augmented reality gaming on five dollars a day. In proceedings of the Sixth
Australasian Conference on User Interface, 40,79-88. Australia: Australian
Computer Society, Inc.

Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Jullier, S., & Maclntyre, B.
(2001). Recent advances in augmented reality. Computer Graphics and
Applications, IEEE, 21(6), 34-47.

Azunia, R. T. (1997). A survey of augmented reality. Teleoperators and virtual
environments, 6(4), 355-385.

Barakonyi, I., & Schmalstieg, D. (2006). Ubiquitous animated agents for
augmented reality. IEEE/ACM International Symposium on Mixed and
Augmented Reality (ISMAR 2006), 145-154.

Barakonyi, I., Fahmy, T., & Schmalstieg, D. (2004). Remote collaboration using
Augmented Reality Videoconferencing. In proceedings of Graphics Interface

111

2004,89-96. Canada.

Barfield, W. & Caudell, T. (2001). Basic concepts in wearable computers and
augmented reality. In W. Barfield & T. Caudell (Eds.), Fundamentals of
wearable computers and augmented reality (pp. 3-26). Mahwah, New Jersey:
Lawrence Erlbaum Associates.

Bernard, M. (2003). How to load a bitmap. In GameDev. net. Retrieved April 2,
2007, from http: //www. gamedev. net/reference/articles/articlel966. asp

Billinghurst, B. (2002). Augmented reality in education. New Horizons for
Learning. Retrieved March 1,2007, from
http: //www. newhorizons. org/strategies/technology/billinghurst. htm

Billinghurst, M., & Kato, H. (2002). Collaborative augmented reality.
Communications of the ACM, 45(7), 64-70.

Billinghurst, M., Cheok, A., Kato, H., & Prince, S. (2002). Real world
teleconferencing. IEEE Computer Graphics and Applications, 22(6), 11-22.

Billinghurst, M., Kato, H., & Poupyrev, I. (2001). The MagicBook: Moving
seamlessly between reality and virtuality. Computer and Graphics, 745-753.

Bimber, 0., EncarnagAo, L. M., & Schmalstieg, D. (2003). The virtual showcase as
a new platform for augmented reality digital storytelling. In proceedings of the
workshop on virtual environments 2003,87-95. USA: ACM New York.

Bonsor, K. (2001). How augmented reality will work. HowStuf, Works. Retrieved
January 26,2007, from http: //www. howstuffworks. com/augmented-
reality. htm/printable

Britannica Concise. (2007). Image processing. In Encyclopedia Britannica.
Retrieved March 5,2007, from http: //concise. britannica. com/ebc/article-
9367827/image-processing

Buchmann, V., Violich, S., Billinghurst, M., & Cockburn, A. (2004). FingARtips:
gesture based direct manipulation in Augmented Reality. In proceedings of the
2nd international conference on Computer graphics and interactive techniques
in Australasia and South East Asia, 212-221. USA: ACM New York.

112

Burdea, G. C. & Coiffet, P. (2003). Virtual reality technology. Wiley-IEEE.

Center of Technology in Government. (1998). A survey of system development
process models. University at Albeny/SUNY. Retrieved March 6,2007, from
http: //www. ctg. albany. edu/publications/reports/survey_of sysdev/survey_of s
ysdev. pdf

Chaudary, V., & Aggarwal, J. K. (1991). On the complexity of parallel image
component labeling. In C. L. Wu, H. D. Schwertman, & K. So (Eds.),
Proceedings of the 1991 International Conference on Parallel Processing,
August 12-16,1991: Algorithms & Applications (pp. 183-187). CRC Press.

Chen, J. X. (2003). Guide to graphics software tools. London: Springer.

Cho, Y., Park, J., & Neumann, U. (1997). Fast color fiducial detection and
dynamic workspace extension in video see-through self-tracking augmented
reality. In proceedings of the Fifth Pacific Conference on Computer Graphics
and Applications, 168-177. Los Alamitos, CA: IEEE Computer Society Press.

Comaniciu, D. & Meer, P. (1997). Robust analysis of feature spaces: Color image
segmentation. In proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, San Juan, Puerto Rico, 750-755.

Cooper, N., Keatley, A., Dahlquist, M., Mann, S., Slay, H., Zucco, J. et al. (2004).
Augmented Reality Chinese Checker. In proceedings of the 2004 ACM
SIGCHI International Conference on Advances in Computer Entertainment
Technology, 117-126. USA: ACM New York.

Coquillart, S., & Gobel, M. (2004). Authoring of mixed reality applications
including multi-marker calibration for mobile devices. Eurographics
Symposium on Virtual Environments.

Crago, A. (2008). Top 5 Emerging Phone Technologies. In HowStuffWorks.
Retrieved March 30,2008, from
http: //communication. howstuffworks. com/emerging-phone-
technologies. htm/printable

Crowley, J., Berard, F., & Coutaz, J. (1995). Finger tracking as an input device for
augmented reality. International Workshop on Gesture and Face Recognition,
Zurich.

113

Cunningham, S. (2007). Computer craphics: Programming in OpenGL for visual
communication. Prentice Hall.

Dorfinüller-Ulhaas, K. & Schmalstieg, D. (2001). Finger tracking for interaction
in augmented environments. In proceedings of the 2nd ACM/IEEE
International Symposium on Augmented Reality (ISAR'01).

EDUCAUSE Learning Initiative. (2005). 7 things you should know about
augmented reality. Retrieved March 3,2007, from
http: //www. educause. edu/ir/library/pdf/ELI7007. pdf

Erdil, K., Finn, E., Keating, K., Meattle, J., Park, S., & Yoon, D. (2003). Software
maintenance as part of the software life cycle. Tufts University. Retrieved April
20,2007, from http: //hepguru. com/maintenance/Final-121603_v6. pdf

Fiala, M. (2005). ARTag Rev2 fiducial marker system: Vision based tracking for
AR. Workshop of Industrial Augmented Reality.

Finney, K. C., & ebrary Inc. (2004). 3D game programming all in one. UK:
Thomson/Course Technology.

Foley, J. D. (1995). Computer graphics: Principles and practice, Volume 385.
Addison-Wesley.

Fredriksson, K. (2001). Rotation invariant template matching. University of
Helsinki, Finland. Retrieved March 5,2007, from
http: //ethesis. helsinki. fi/julkaisut/mat/tieto/vk/fredriksson/rotation. pdf

Fredriksson, K., Mäkinen, V., & Navarro, G. Rotation and lighting invariant
template matching. Information and Computation, 205(7), 1096-1113. Elsevier.

Geiger, C., Oppermann, L., & Reimann, C. (2003). 3D-registered interaction-
surface in augmented reality space. IEEE International Augmented Reality
Toolkit Workshop, 5-13.

Gillet, A., Sanner, M., Stoffler, D., Goodsell, D., & Olson, A. (2004). Augmented
reality with tangible auto-fabricated models for molecular biology applications.
In proceedings of the Conference on Visualization, 235-241. Los Alamitos, CA:
IEEE Computer Society.

114

Goldstein, E. B. (2005). Cognitive psychology: Connecting mind, research and
everyday experience. New York: Thomson Wadsworth.

Gordon, G., Billinghurst, M., Bell. M., Woodfill, J., Kowalik, B., Erendi, A. et al.
(2002). The use of dense stereo range data in augmented reality. In proceedings
of the IEEE and ACM International Symposium on Mixed and Augmented
Reality (ISMAR 2002).

Goshtasby, A. A. (2005). 2-D and 3-D Image Registration. Wiley-IEEE.

Grimson, WE. L., & Mundy, J. L. (1994). Computer vision applications.
Communications of the ACM, 37(3), 44-51. USA: ACM New York.

Haerberli, P. & Segal, M. (1993). Texture mapping as a fundamental drawing
primitive. In proceedings of the Fourth Eurographics Workshop on Rendering,
259-266.

Haller, M. (2002). Student projects using ARToolKit. IEEE International
Augmented Reality Toolkit Workshop, 2.

Haller, M., Hartmann, W., Luckeneder, T., & Zauner, J. (2002). Combining
ARToolKit with scene graph librarires. In proceedings of the First IEEE
International Augmented Reality Toolkit Workshop.

Hamsphire, A., Seicher, H., Grasset, R., & Billinghurst, M. (2006). Augmented
reality authoring: Generic context from programmer to designer. In
proceedings of the 20th Conference of the Computer-Human Interaction
Special Interest Group (CHISIG) ofAustralia, 409-412. New York: ACM.

Hardenberg, C. (2001). Fingertracking and handposture recognition for real-time
human-computer interaction. University Berlin. Retrieved March 6,2007,
from http: //iihm. imag. fr/publs/2001/HardenbergOl-FingerTracking. pdf

Hardenberg, C. & Bbrard, F. (2001). Bare-hand human-computer interaction. In
proceedings of the 2001 Workshop on Perceptive User Interfaces, 1-8. USA:
ACM New York.

Heckbert, P. (1986). Survey of texture mapping. IEEE Computer Graphics and
Application, 6(11), 56-67.

115

Homberg, A., & NetLibrary Inc. (2007). Handbook of Machine Vision. Wiley-
VCH.

Hubona, G. S., Shirah, G. W., & Jennings, D. K. (2004). The effects of cast shadows
and stereopsis on performing computer-generated spatial tasks. Systems, Man
and Cybernetics, Part A, IEEE Transactions, 34(4), 483-493.

Irawati, S., Green, S., Billinghurst, M., Duenser, A., & Ko, H. (2006). "Move the
couch where? ": Developing an augmented reality multimodal interface. In
proceedings of the 2006 Fifth IEEE and ACM International Symposium on
Mixed and Augmented Reality (ISMAR'06), 183-186. Washington, USA: IEEE
Computer Society.

Kanbara, M., & Yokoya, N. (2002). Geometric and photometric registration for
real-time augmented reality. In IEEE and ACM International Symposium on
Mixed and Augmented Reality (ISMAR'02), 279. Los Alamitos, CA: IEEE
Computer Society

Kato, H., & Billinghurst, M. (1999). Marker tracking and HMD calibration for a
video-based augmented reality conference system. In proceedings of the 2nd
IEEE and ACM International Workshop on Augmented Reality, 99,85-94.
IEEE Computer Society.

Kato, H., Billinghurst, M., Morinaga, K., & Tachibana, K. (2001). The effect of
spatial cues in augmented reality conferencing. In proceedings of the 9th
International Conference on Human-Computer Interaction (HCI International
2001). Lawrence Erlbaum Associates.

Kato, H., Billinghurst, M., Poupyrev, I., Immato, K., & Tachibana. (2000). Virtual
object manipulation on a table-top AR environment. In proceedings of the
International Symposium on Augmented Reality (ISAR 2000), 111-119. New
York: ACM.

Kawano, T., Ban, Y., & Uehara, K. (2003). A coded visual marker for video
tracking system based on structured image analysis. In proceedings of the 2nd
IEEE and ACM International Symposium on Mixed and Augmented Reality.
Washington, DC: IEEE Computer Society.

Kerdvibulvech, C., & Saito, H. (2008). Guitarist fingertip tracking by integrating
a Bayesian classifier into particle filters. Advances in Human-Computer
Interaction, 2008. New York: Hindawi Publishing Corp.

116

Kilgard, M. J. (1996). The OpenGL Utility Toolkit (GLUT) programming interface
API version 3. Silicon Graphics, Inc. Retrieved October 14,2008, from
http: //users. informatik. uni-halle. de/ schenzel/ws02/opengl/spec3. pdf

Kiss, S. (2002). Computer animation for articulated 3D characters. University of
Twente, Technical Report TR-CTIT-02-45, ISSN 1381-3625.

Kjeldsen, R., Pinhanez, C., Pingali, G., Hartman, J., Levas, T., Podlaseck, M. et al.
(2002). Interacting with steerable projected displays. In proceedings of Fifth
IEEE International Conference on Automatic Face and Gesture Recognition,
402-407. IEEE Computer Society.

Klinker, G. (1999). Augmented reality: A problem in need of many computer
vision-based solutions. In NATO Advanced Research Workshop at the 8
International Conference on the Computer Analysis of Images and Patterns
(CAIP-99). Springer.

Koike, H., Sato, Y., & Kobayashi, Y. (2001). Integrating paper and digital
information on EnhancedDesk: A method for realtime finger tracking on an
augmented desk system. ACM Transactions on Computer-Human Interaction,
8(4), 307-322. New York: ACM.

Koller, D., Klinker, G., Rose, E., Breen, D., Whitaker, R., & Tuceryan, M. (1997).
Real-time vision-based camera tracking for augmented reality applications. In
proceedings of the ACM Symposium on Virtual Reality Software and
Technology, 87-94. USA: ACM New York.

Kovair, J., Peer, P., & Solina, F. (2003). Human skin colour clustering for face
detection. In proceedings of IEEE Region 8 Computer as Tool
(EUROCON'02), 2,144-148. Washington, DC: IEEE Computer Society.

Letessier, J. & Bdrard, F. (2004). Visual tracking of bare fingers for interactive
surfaces. In ACM Symposium on User Interface Software and Technology
(UIST), 119-122. New York: ACM.

Liu, Y., Storring, M., Moeslund, TB., Madsen, C. B., & Granum, E. (2003).
Computer vision based head tracking from re-configurable 2D markers for AR.
In proceedings of the Second IEEE and ACM International Symposium on
Mixed and Augmented Reality, 264-267. Washington, DC: IEEE Computer
Society.

117

Lourakis, M. I. A., & Argyros, A. A. (2004). Vision-based camera motion recovery
for augmented reality. In Computer Graphics International Conference
(CGI'04). Washington, DC: IEEE Computer Society.

Mackay, W. E. (1998). Augmented reality: Linking real and virtual worlds: A new
paradigm for interacting with computers. In proceedings of the Working
Conference on Advanced Visual Interfaces, 13-21. ACM New York.

Malik, S. (2002). Robust registration of virtual objects for real-time augmented
reality. Carleton University. Retrieved February 1,2007, from
http: //www. cv. iit. me. ca/-gerhard/PubSummary2/malik thesis_fmal. pdf

McMillan, L. (1997). An image-based approach to three-dimensional computer
graphics. University of North Carolina at Chapel Hill: USA. Retrieved October
19,2008, from ftp: //ftp. cs. unc. edu/pub/technical-reports/97-013. pdf

Mealing, S. (1998). The art and science of computer animation. Intellect Books.

Meegoda, J. N., Juliano, T. M., & Banerjee, A. (2006). Framework for automatic
condition assessment of culverts. Transportation Research Record, 1948(1),
26-34. Transportation Research Board of the National Academies.

Meer, P., Stewart, C. V., & Tyler, D. E. (2000). Robust computer vision: An
interdisciplinary challenge. Computer Vision and Image Understanding, 78(1),
1-7.

Mehta, D. P., & Sahni, S. (2005). Handbook of data structures and applications.
USA: CRC Press.

Milgram, P. & Kishino, F. (1994). A taxonomy of mixed reality visual displays.
IECE Transactions on Information and Systems E Series D, 77,1321-1321.
Institute of Electronics, Information & Communication Engineers.

Miller, N. (2000). OpenOL Texture Mapping: An Introduction. In GameDev net.
Retrieved October 13,2008, from
http: //www. gamedev. net/reference/articles/article947. asp

Mooser, J., You, S., & Neumann, U. (2006). TriCodes: A barcode-like fiducial
design for augmented reality media. In Multimedia and Expo, 2006 IEEE

118

International Conference, 1301-1304.

Oda, 0., Lister, L. J., White, S., & Feiner, S. (2008). Developing an augmented
reality racing game. In proceedings of the 2nd International Conference on
Intelligent Technologies for Interactive Entertainment, Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering (ICST),
Belgium.

Oka, K., Sato, Y., & Koike, H. (2002). Real-time fingertip tracking and gesture
recognition. IEEE Computer Graphics and Applications, 22(6), 64-71. IEEE
Computer Society.

Ong, S. K., Chong, J. W. S., & Nee, A. Y. C. (2006). Methodologies for immersive
robot programming in an augmented reality environment. In proceedings of the
4th International Conference on Computer Graphics and Interactive
Techniques in Australia and Southeast Asia, 237-244.

Parekh, R. (2006). Principles of Multimedia. New Dehli: Tata McGraw-Hill.

Phillips, K., & Piekarski, W. (2005). Possession techniques for interaction in real-
time strategy augmented reality games. In proceedings of the 2005 ACM
SIGCHI International Conference on Advances in Computer Entertainment
Technology. ACM New York.

Piekarski, W., & Thomas, B. (2002). ARQuake: The outdoor augmented reality
gaming system. Communications of the ACM, 45(1), 36-38. USA: ACM New
York.

Pintaric, T. (2003). An adaptive thresholding algorithm for the Augmented Reality
Toolkit. In proceedings of the Second IEEE International Augmented Reality
Toolkit Workshop (ART03). IEEE Computer Society.

Pitas, I. (2000). Digital image processing algorithms and applications. Canada:
Wiley-IEEE.

Reiners, D., Stricker, D., Klinker, G., & Muller, S. (1998). Augmented reality for
construction tasks: Doorlock assembly. In proceedings of the International
Workshop on Augmented Reality (IWAR'98): Placing artificial objects in real
scenes, 31-46. Natick, MA, USA: A. K. Peters, Ltd.

119

Rekimoto, J., & Ayatsuka, Y. (2000). Cybercode: Designing augmented reality
environments with visual tags. In proceedings of DARE 2000 on designing
augmented reality environments, 1-10.

Russ, J. C. (2007). The image processing handbook. USA: CRC Press.

Sanchez, J., & Canton, M. P. (2003). The PC Graphics Handbook. USA: CRC
Press.

Sarath. (2007). How to save bitmap to file? Retrieved April 9,2007, from
http: //sarathc. wordpress. com/2007/03/14/how-to-save-bitmap-to-file/

Schierwagen, A. (2001). Vision as computation, or: Does a computer vision
system really assign meaning to images? M. Matthies, H. Malchow, & J. Kriz
(eds.). Integrative systems approaches to natural and social sciences (pp. 579-
787). Berlin, Germany: Springer-Verlag.

Shirley, P., Ashikhmin, M., Gleicher, M., Marschner, S., Reinhard, R., Sung, K., et
al. (2005). Fundamentals of Computer Graphics. AK Peters, Ltd.

Shrivastava, P. (2005). Implementation and analysis of eidochromatic transfrom
for color image compression. Texas Tech University. Retreived September 16,
2008, from http: //etd. lib. ttu. edu/theses/available/etd-03302005-
162035/unrestricted/ETDsubmit 0405. pdf

Simon, G. & Berger, M. O. (2000). Registration with a moving zoom lens camera
for augmented reality applications. In D. Vernon (Ed.), Computer Vision,
ECCV 2000: 6th European Conference on Computer Vision, Dublin, Ireland,
June 26-July 1,2000: Proceedings (pp. 578-594). Germany: Springer-Verlag.

Simpson, J. (2002). Game engine anatomy 101. In ExtremeTech. Retreived
October 19,2008, from
http: //www. extremetch. com/article2/0,2845,594,00. asp

Sink, K. (2001). DirectX 8 and Visual Basic Development. USA: Sams Publishing.

Slay, H., Thomas, B., & Vernik, R. (2002). Tangible user interaction using
augmented reality. In proceedings of the Third Australian Conference on User
Interfaces, 7,13-20.

120

Starner, T., Mann, S., Rhodes, B., Levine, J., Healey, J., Kirsch, D., Picard, R. W.,
& Pentland, A. (1997). Augmented reality through wearable computing.
Presence, 6(4), 386-398.

Thayananthan, A., Navaratnam, R., Torr, P. H. S., & Cipolla, R. (2004). Likelihood
models for template matching using the PDF projection theorem. In
proceedings of British Machine Vision Conference (BMVC 2004). British
Machine Vision Association.

Thomas, B. H. (2003). Challenges of making outdoor augmented reality games
playable. In 2nd CREST Workshop on Advanced Computing and
Communicating Techniques for Wearable Information Playing in Nara, Japan.

Thomas, B. H. & Piekarski, W. (2002). Glove based user interaction techniques for
augmented reality in an outdoor environment. Virtual Reality, 6(3), 167-180.

Thorn, A. (2005). DirectX 9 graphics: The definitive guide to Direct3D. USA:
Wordware Publishing, Inc.

Wagner, D., & Schmalstieg, D. (2007). ARToolKitPlus for pose tracking on
mobile devices. In proceedings of 12th Computer Vision Winter Workshop
(CVWW'07), 6-8.

Williams, R. H., Kent, A., Holzman, A. G., & Williams, J. G. (1993). Encyclopedia
of computer science and technology: Volume 29. CRC Press.

Woods, E., Mason, P., & Billinghurst, M. (2003). MagicMouse: An inexpensive 6-
degree-of-freedom mouse. In proceedings of the Ist International Conference
on Computer Graphics and Interactive Techniques (GRAPHITE 2003). New
York: ACM.

Woods, J. W. (2006). Multidimensional signal, image, and video processing and
coding. USA: Academic Press.

Zarit, B. D., Super, B. J., & Quek, F. K. H. (1999). Comparison of five color models
in skin pixel classification. In proceedings of the International Workshop on
Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time
Systems, 50. USA: IEEE Computer Society.

121

Zhang, H., & Liang, D. (2007). Computer graphics using Java 2D and 3D. USA:
Prentice Hall.

Zhang, X., Fronz, S., & Navab, N. (2002). Visual marker detection and decoding
in AR systems: A comparative study. In proceedings of IEEE International
Symposium on Mixed and Augmented Reality (ISMAR'02), 79-106.
Washington, DC, USA: IEEE Computer Society.

Zhou, Y., Wang, Y., Yan, D., & Xu, T. (2000). Vision-based registration using 3-D
fiducial for augmented reality. In T. Tan, Y. Shi., & W. Gao, Advances in
Multimodal Interfaces - ICMI 2000: Third International Conference, Beijing,
China, October 14-16,2000: Proceedings. Germany: Springer.

122

APPENDICES

Appendix 1: Consent Form

Research Participant's Consent Form
Universiti Malaysia Sarawak (UNIMAS)

Faculty of Cognitive Sciences and Human Development
Research on "AR Application Builder:

Integration of Finger Tracking for Interaction in AR System"

I hereby consent to participate as a subject in a research entitled "AR Application
Builder: Integration of Finger Tracking for Interaction in AR System" conducted
by Allen Choong Chieng Hoon from Faculty of Cognitive Science and Human
Development, UNIMAS.

I will be asked to perform specific tasks. I am allowed to say whatever
comes to mind while I work. I can verbalize or talk incomplete sentences or
`making sense'. The research study will take about 30 minutes, however the
duration of task is at my preference.

I have been informed that data collected will be kept in strict confidence. I
am free to ask questions at any time without penalty. As I am working on the
tasks, I will not be provided help or answer questions. Even though the
experimenter is not able to answer most of my questions, I can ask them anyway.
The experimenter will note down my questions and answer any questions that I
still have after I have finished the entire task. This is because the experimenter
wants to create the most realistic situation possible.

I understand that my participation is completely voluntary, and that I am
free to withdraw from the research at any time I choose without penalty. I
understand that this research is not expected to involve risks of harm any greater
than those ordinarily encountered in daily life. I also understand that it is not
possible to identify all potential risks in any procedure, but that all reasonable
safeguards have been taken to minimise the potential risks. To the best of
experimenter's knowledge, there are no physical or psychological risks associated
with the procedures in this study

"I have read the above description of the study and of my rights as a subject. I
agreed to participate in this study. "

Signature of subject: Date:

123

Appendix 2: Evaluation Form

This test case aims to test how well you can use your forger to control the
application.

Success (J) No. Tasks / Fail (x) Comments/Remarks

1 Use a web camera to detect the
marker to show the buttons

2 Use the finger to click play
button to start playing the
video in AR

3 Click pause button to pause the
video

4 Click play button to resume the
video

5 Click stop button to stop the
video

6 Click play button to play the
video from the beginning

7 Watch the video completely

124

Appendix 3: List of Participated Conferences and

Exhibitions of this Research Project

" Ng, G. W. Amalia, M., Allen Choong, C. H. & Angeline Lee, L. S. (2007).

Augmented Toys Technology (ATTech) in Helping Traumatized Children

During Disasters. Ist International Malaysian Education Technology

Convention (IMETC 2007), Universiti Technology Malaysia, Johor.

" Ng, G. W. & Allen, C. C. H. (2008). Augmented Reality: The Potential of

Future Educational Technology. Joint Colloquium on "Cognitive and

Computational Methods", Universiti Malaysia Sarawak.

" Inaugural Unimas R&D Exhibition 2007, CAIS UNIMAS, 24-26

January 2007

4th Place: Augmented Reality in Education

" Malaysian Technology Exhibition (MITE) 2007, PWTC Kuala

Lumpur, 29-31 March 2007

Won Bronze Medal Award

Magic Board-Games: A New Way of Games Entertainment

" International Exposition of Research and Invention of Institutions of

Higher Learning 2007 (PECIPTA 2007), Kuala Lumpur Convention

Centre (KLCC), 10-12 August 2007

" Exhibition Augmented Reality in Education during visitor, Dr. Lai from

MIMOS Berhad to University Malaysia Sarawak, Malaysia.

" Exhibition Augmented Reality in Education for Signing Ceremony &

125

Memorandum (MoU) Documents Exhanges, Palace of The Golden Horses

Hotel, Seri Kembangan Selangor, Mines, KL.

" MSC Malaysia Mobile Interactive Content Competition 2007, Hotel

Crowne Plaza Princess, KL, 03 August 2007.

Short listed the top 6 to pitch for the competition: Augmented Toys

Technology (ATTech).

" Exhibition Augmented Reality in Education during visitors from Fakultas

Keguruan dan Ilmu Pendidikan (FKIP), Universitas Tangjung Pura,

Pontianak, Kalimantan, INDONESIA, to Faculty of Cognitive Sciences

and Human Development, University Malaysia Sarawak, Malaysia, 27

August 2007.

" MSC Malaysia APICTA 2007

Won Best Top 3 Research Project for the Best of Education & Training

category.

" Maus Mobile Content Challenge 2007

Participate

" Inaugural Unimas R&D Exhibition 2008, CAIS UNIMAS, 05-07

March 2008

3rd Place: Augmented Reality (AR) Application Builder: An Interactive

Real Time 3D Environment.

" MSC Malaysia APICTA 2008

15 October 2008, KLPAC

126

Winner for Best Tourism and Hospitality Category

Project Title: An Augmented Reality System for Recognising Text on

Street Signs for Tourism

Winner for Best Tertiary Student Project - Software/ Hardware

Category

Project Title: Finger Tracking and Bare-Hand Posture as an Input Device

using Augmented Reality

Winner for Best Tertiary Student Project - Creative Multimedia

Category

Project Title: An Interactive Augmented Reality Games: 3D Aeroplane

Games (3DCoolPlane)

" International APICTA 2008

12-15 November 2008, Jakarta, Indonesia

Merit Award for Best Tourism and Hospitality Category

Project Title: An Augmented Reality System for Recognising Text on

Street Signs for Tourism

127

Appendix 4: Source Code

////////////DirectShow

class CMyShow
{
public:

CMyShow{;
CMyShow();

//This function is to load the capture device such as webcam
int LoadCaptureDevice 0;

//This function is to load the avi file
int LoadAvi(LPCWSTR filename);

//This function is to run the stream
void Run();
//This function is to set window
void SetWindow(HWND hwnd, int ON_OFF);

CSampleGrabberCB grabCB;
IMediaControl *mediaControl;
IGraphBuilder *pGraph;

IMediaSeeking *mediaSeek;

//For the reference time, we need only their address
REFERENCE TIME curr; //Current time
void Stop();
void Pause();
void Play();

PLAYSTATE state; //Status

void Destroy(); //Destroy all the filter, including filter
graph and grabber.

private;
void InitMediaSeek();

CMyShow:: CMyShow() {}
CMyShow:: -CMyShow() {}

int CMyShow:: LoadCaptureDeviceO
{

HRESULT hr;

//CaptureGraph
ICaptureGraphBuilder2 *pCapture;

hr=CoCreateInstance(CLSID_CaptureGraphBuilder2, NULL, CLSCTX_INPROC

128

, IID_ICaptureGraphBuilder2,
(void**)&pCapture);

if(FAILED(hr)) printf("Fail pCapture\n");

//FilterGraph

hr=CoCreateInstance(CLSID_FilterGraph, NULL, CLSCTX_INPROC, IID_IGra
phBuilder, (void**)&pGraph);

if(FAILED(hr)) printf("Fail pGraph\n");

//Attach FilterGraph to the CaptureGraph, pCapture connect
pGraph

hr=pCapture->SetFiltergraph(pGraph);
if(FAILED(hr)) printf("Fail SetFiltergraph\n");

//Source Filter
IBaseFilter *pSrcFilter=NULL;
hr=FindCaptureDevice(&pSrcFilter);
if(FAILED(hr))

{
printf("Fail FindCaptureDevice\n");
return 0; //To inform that, if return 0, that means fail to

find capture device
}

//Add pSrcFilter to pGraph, pSrcFilter connect pGraph
hr=pGraph->AddFilter(pSrcFilter, L"Video Capture");
if(FAILED(hr)) printf("Fail AddFilter Video Capture\n");

//Connect StreamConfig with Source Filter through
ICaptureGraphBuilder2:: Findlnterface

IAMStreamConfig *pStreamCfg;
hr = pCapture->FindInterface(&PIN_CATEGORY_CAPTURE,

&MEDIATYPE_Interleaved, pSrcFilter,
IID_IAMStreamConfig, (void **)&pStreamCfg);

if(hr NOERROR)
hr = pCapture->FindInterface(&PIN CATEGORY CAPTURE,

&MEDIATYPE Video, pSrcFilter,
IID IAMStreamConfig, (void **)&pStreamCfg);

//For the property, because it is for IPin, therefore must use
StreamConfig to

ISpecifyPropertyPages *pProp;
CAUUID cauuid;
hr-pStreamCfg->QueryInterface(IID_ISpecifyPropertyPages,

(void**)&pProp);
if(hr==S OK)
{

hr=pProp->GetPages(&cauuid);
hr = O1eCreatePropertyFrame(NULL, //This should be parent

window
30,30, NULL, 1,
(IUnknown**)&pStreamCfg, cauuid. cElems,
(GUID*)cauuid. pElems, 0,0, NULL);

129

}
CoTaskMemFree(cauuid. pElems);
pProp->Release();

IPin *outSource;

hr=GetUnconnectedPin(pSrcFilter, PINDIR_ OUTPUT, &outSource); //pSrcF
ilter is Video Capture

if(FAILED(hr)) printf("Fail GetUnconnectedPin for
outSource\n");

//BaseFilter
IBaseFilter *pGrabFilter; //Use IBaseFilter because want to

enumerates Pins

hr=CoCreateInstance(CLSID_SampleGrabber, NULL, CLSCTX_INPROC, IID_IB
aseFilter,

(void**)&pGrabFilter); //Use SampleGrabber
if(FAILED(hr)) printf("Fail pGrabber\n");

//Add pGrabFilter to pGraph, pGrabFilter connect pGraph, where
pGrabFilter is for pGrabber

hr=pGraph->AddFilter(pGrabFilter, L"Sample Grabber");
if(FAILED(hr)) printf("Fail AddFilter Sample Grabber\n");

//pGrabFilter query interface
ISampleGrabber *pGrabber;
hr-pGrabFilter->QueryInterface(IID_ISampleGrabber,

(void**)&pGrabber);
if(FAILED(hr)) printf("Fail pGrabber\n");

//The media type that pGrabber will be connected
AM_MEDIA_TYPE setType;
ZeroMemory(&setType, sizeof(AN MEDIA TYPE));
setType. majortype - MEDIATYPE_Video;
setType. subtype = MEDIASUBTYPERGB24;
hr = pGrabber->SetMediaType(&setType);
if(FAILED(hr)) printf("Fail SetMediaType\n");

IPin *inGrab;

hr=GetUnconnectedPin(pGrabFilter, PINDIR_INPUT, &inGrab); //pGrabFil
ter is SampleGrabber Filter

if(FAILED(hr)) printf("Fail GetUnconnectedPin for inGrab\n");
//Connect 2 pins
hr=pGraph->Connect(outSource, inGrab);
if(FAILED(hr)) printf("Fail Connect 2 pins\n");

AM MEDIA TYPE mt;
hrpGrabber->GetConnectedMediaType(&mt);
if(FAILED(hr)) printf("Fail ConnectedMediaType\n");
// Examine the format block.
VIDEOINFOHEADER *vih;
if ((mt. formattype == FORMAT VideoInfo) &&

(mt. cbFormat >= sizeof(VIDEOINFOHEADER)) &&

130

{
(mt. pbFormat != NULL))

vih = (VIDEOINFOHEADER*)mt. pbFormat;

grabCB. Width=vih->bmiHeader. biWidth;
grabCB. Height=vih->bmiHeader. biHeight;

}
else
{

// Wrong format. Free the format block and return an error.
FreeMediaType(mt);

return 0;
}

// Free the format block when you are done:
FreeMediaType(mt);

//Need to render the pGrabFilter
IPin *outGrab;
hr=GetUnconnectedPin(pGrabFilter, PINDIR OUTPUT, &outGrab);

//Using Null Renderer, so that will not popup a window
//Because if popup a window, need to use IVideoWindow to turn

off the window
IBaseFilter *pNullRender;

CoCreatelnstance(CLSID_NullRenderer, NULL, CLSCTX INPROC, IID IBaseF
ilter,

(void**)&pNullRender);
pGraph->AddFilter(pNullRender, L"Null Renderer");

pGraph->Render(outGrab);

//Setup pGrabber
hr=pGrabber->SetOneShot(FALSE);
if(FAILED(hr)) printf("Fail SetOneShot\n");
hrapGrabber->SetBufferSamples(FALSE);
if(FAILED(hr)) printf("Fail SetBufferSamples\n");
//Callback function
pGrabber->SetCallback(&grabCB, 1);

//Release pSrcFilter
pSrcFilter->Release();
pGrabFilter->Release(;
pNullRender->Release();

this->InitMediaSeek(;

}
return 1;

void CMyShow:: Run()
{

pGraph->QueryInterface(IID IMediaControl,

131

(void**)&mediaControl);
mediaControl->Run(;

}
this->state=play;

int CMyShow:: LoadAvi(LPCWSTR filename)
{

HRESULT hr;

//FilterGraph

hr=CoCreateInstance(CLSID_FilterGraph, NULL, CLSCTX_INPROC, IID_IGra
phBuilder, (void**)&pGraph);

if(FAILED(hr)) printf("Fail pGraph\n");

IBaseFilter *pFileFilter;

hr=CoCreateInstance(CLSID_AsyncReader, NULL, CLSCTX_INPROC, IID_IBas
eFilter,

(void**)&pFileFilter);
if(FAILED(hr)) printf("Fail pFileFilter\n");

hr=pGraph->AddFilter(pFileFilter, L"Source Filter");
if(FAILED(hr)) printf("Fail pGraph->AddFilter\n");

IFileSourceFilter *pFile;
hr=pFileFilter->QueryInterface(IID_IFileSourceFilter,

(void**)&pFile);
if(FAILED(hr)) printf("Fail pFileFilter->QueryInterface\n");

hr=pFile->Load(filename, NULL);
if(FAILED(hr))
{

printf("Fail pFile->Load\n");
return 0; //Fail to load the file

}

IPin *outFilePin;
hr=GetUnconnectedPin(pFileFilter, PINDIR_OUTPUT, &outFilePin);
if(FAILED(hr)) printf("Fail GetUnconnectedPin outFilePin\n");

IBaseFilter *pAviSplitFilter;

hr=CoCreateInstance(CLSID_AviSplitter, NULL, CLSCTX INPROC, IID IBas
eFilter,

(void**)&pAviSplitFilter);
if(FAILED(hr))printf("Fail pAviSplitFilter\n");

hr-pGraph->AddFilter(pAviSplitFilter, L"AVI Splitter");
if(FAILED(hr)) printf("Fail AddFilter pAviSplitFilter\n");

IPin *inSplitPin;
hr=GetUnconnectedPin(pAviSplitFilter, PINDIR_INPUT, &inSplitPin);
if(FAILED(hr)) printf("Fail inSplitPin\n");

132

hr=pGraph->Connect(outFilePin, inSplitPin);
if(FAILED(hr)) printf("Fail connected\n");

IPin *outSplitPinl;
hr=GetPin(pAviSplitFilter, PINDIROUTPUT, O, &outSplitPinl);
if(FAILED(hr)) printf("Fail outSplitPinl\n");

IPin *outSplitPin2;
hr=GetPin(pAviSplitFilter, PINDIROUTPUT, 1, &outSplitPin2);
if(FAILED(hr)) printf("Fail outSplitPin2\n");

IBaseFilter *pGrabFilter;

hr=CoCreateInstance(CLSID_SampleGrabber, NULL, CLSCTX_INPROC, IID_IB
aseFilter,

(void**)&pGrabFilter);
if(FAILED(hr)) printf("Fail pGrabFilter\n");

hr=pGraph->AddFilter(pGrabFilter, L"SampleGrabber");
if(FAILED(hr)) printf("Fail AddFilter pGrabFilter\n");

IPin *inGrabPin;
hr=GetUnconnectedPin(pGrabFilter, PINDIRINPUT, &inGrabPin);
if(FAILED(hr)) printf("Fail inGrabPin\n");

ISampleGrabber *pGrabber;
hr=pGrabFilter->QueryInterface(IID_ISampleGrabber,

(void**)&pGrabber);
if(FAILED(hr)) printf("Fail pGrabFilter QueryInterface\n");

AMMEDIA
_TYPE

grabType;
ZeroMemory(&grabType, sizeof(AM_MEDIA

_TYPE)); grabType. majortype = MEDIATYPE_Video;
grabType. subtype = MEDIASUBTYPE_RGB24;

hr = pGrabber->SetMediaType(&grabType);
if(FAILED(hr)) printf("Fail pGrabber->SetMediaType\n");

bool invert=false; //Used twice
hr=pGraph->Connect(outSplitPinl, inGrabPin);
if(FAILED(hr))

{

}

hr=pGraph->Connect(outSplitPin2, inGrabPin);
if(FAILED(hr)) printf("Fail connect both pins\n");

invert=true;

//}

IPin *outGrabPin;
hr=GetUnconnectedPin(pGrabFilter, PINDIROUTPUT, &outGrabPin);
if(FAILED(hr)) printf("Fail outGrabPin\n");

AM MEDIA TYPE mt;

133

hr=pGrabber->GetConnectedMediaType(&mt);
if(FAILED(hr)) printf("Fail ConnectedMediaType\n");

VIDEOINFOHEADER *vih;
if ((mt. formattype == FORMAT

_Videolnfo)
&&

(mt. cbFormat >= sizeof(VIDEOINFOHEADER)) &&
(mt. pbFormat != NULL))

{
vih = (VIDEOINFOHEADER*)mt. pbFormat;

grabCB. Width=vih->bmiHeader. biWidth;
grabCB. Height=vih->bmiHeader. biHeight;

}

else
{

Wrong format. Free the format block and return an error.
FreeMediaType(mt);
return 0;

}

// Free the format block when you are done:
FreeMediaType(mt);

hr=pGrabber->SetOneShot(FALSE);
if(FAILED(hr)) printf("Fail SetOneShot\n");
hr=pGrabber->SetBufferSamples(FALSE);
if(FAILED(hr)) printf("Fail SetBufferSamples\n");
hr=pGrabber->SetCallback(&grabCB, 1);
if(FAILED(hr)) printf("Fail pGrabber->SetCallback\n"); //*/

hr=pGraph->Render(outGrabPin);
if(FAILED(hr)) printf("Fail pGraph->Render\n");

if(invert==false)
{

hr=pGraph->Render(outSplitPin2);
if(FAILED(hr)) printf("Fail pGraph->Render(outSplitPin2)\n");

}
else
{

hr=pGraph->Render(outSplitPinl);
if(FAILED(hr)) printf("Fail pGraph->Render(outSplitPinl)\n");

}

pFileFilter->Release();
pAviSplitFilter->Release(;
pGrabFilter->Release();
pNullFilter->Release();

this->InitMediaSeek(;

return 1;

}

134

//To set window, you must have video renderer, therefore, there
should be no null renderer
void CMyShow:: SetWindow(HWND hwnd, int ON_OFF)

{
HRESULT hr;

IVideoWindow *videoWindow;
hr=pGraph->QueryInterface(IID_IVideoWindow,

(LPVOID*)&videoWindow);
if(FAILED(hr)) printf("Fail QueryInterface(IID_IVideoWindow,

(void**)&videoWindow)\n");

//This part is to turn of the video
if(ON_OFF==0)
(

videoWindow->put AutoShow(OAFALSE);
return;

}

hr=videoWindow->put_Owner((OAHWND)hwnd);
if(FAILED(hr)) printf("Fail videoWindow-

>put_Owner((OAHWND)hwnd)\n");

hr=videoWindow->put_WindowStyle(WS_CHILDIWS_CLIPCHILDREN);
if(FAILED(hr)) printf("Fail put_WindowStyle\n");

if(videoWindow)
(

RECT rc;
GetClientRect(hwnd, &rc);
videoWindow->SetWindowPosition(O, O, rc. right, rc. bottom);

}

hr=videoWindow->put Visible(OATRUE);
if(FAILED(hr)) printf("Fail put_Visible\n");

}

void CMyShow:: InitMediaSeek()
(

HRESULT hr=pGraph->QueryInterface(IID_IMediaSeeking,
(void**)&mediaSeek);

if(FAILED(hr)) printf("Fail MediaSeeking\n");
}

void CMyShow:: Stop()
{

REFERENCE TIME start=O;
this->mediaSeek-

>SetPositions(&start, AM_SEEKING_AbsolutePositioning,
NULL, N'4_SEEKING_NoPosit toning);
//So that, after stoping, the position of the media will go

to "0"

//To avoid curr time mixed with pause, set curr to 0
this->curr=0;

135

//And need to stop running the media
this->mediaControl->Stop(;

}
this->state=stop;

void CMyShow:: Pause()
(

this->mediaControl->Pause();
this->mediaSeek->GetPositions(&this->curr, NULL);
//Since it is pausing, therefore need to GetPositions()
// of the current time.

}
this->state=pause;

void CMyShow:: Play()
{

//Check the current time first
if(this->curr-=NULL)

this->curr=O;

this->mediaSeek->SetPositions(&this-
>curr, AM_SEEKING_AbsolutePositioning,

NULL, AM SEEKING_NoPositioning);
this->mediaControl->Run(;

}
this->state=play;

void CMyShow:: Destroy()
{

this->mediaControl->Stop 0;
this->state=stop;

//From DirectShow documentation
IEnumFilters *pEnumFilter=NULL;
HRESULT hr=this->pGraph->EnumFilters(&pEnumFilter);
if(SUCCEEDED(hr))
{

IBaseFilter *pFilter=NULL;
while(S_OK==pEnumFilter->Next(1, &pFilter, NULL))
{

pGraph->RemoveFilter(pFilter);
pEnumFilter->Reset();
pFilter->Release();

}
pEnumFilter->Release(;

}

this->pGraph->Release Q;
this->mediaControl->Release(;
this->mediaSeek->Release(;

136

delete[] this->grabCB. buffer;
this->grabCB. buffer=NULL;
this->grabCB. Release(;

}

////////////////Image library

void PictureTranspose(unsigned char** pData, int* width, int*
height) {

int w=*width;
int h=*height;
BYTE* newData=new BYTE[w*h*3];

int i, j;
for(j=O; j<h; j++) {

for(i=O; i<w; i++) {
memcpy(&newData((i*h + j) * 3], *pData + ((j*w+i) * 3), 3);

}
}
delete[] *pData;
*pData=newData;
*width=h;
*height=w;

}

void PictureGreyscale(unsigned char** pData, int width, int height)
{

//Coding from
http: //www. ambuehler. ethz. ch/CDstore/www6/Posters/701/poster7Ol. h
tml

float temp;
int i=0;
while(i<width*height) {

temp-0.299f * *(*pData + i*3) + 0.587f * *(*pData + 1*3 +1) +
0.114f * *(*pData + i*3 +2); //With the sequence RGB

*(*pData+i*3) _ *(*pData+i*3+1) = *(*pData+i*3+2)
(int)temp;

i++;
}

}

void PictureThresholding(unsigned char** pData, int width, int
height, int threshold) {

int i;
for(ia0; i<width*height; int) {

*(*pData t 1*3) _ *(*pData+i*3) > threshold ? 255 ; 0;
*(*pData +i*3 +1) _ *(*pData+i*3+1) > threshold ? 255 : 0;
*(*pData +i*3 +2) - *(*pData+i*3t2) > threshold ? 255 : 0:

}
}

int LoadBmp(const char* filename, unsigned char** pData, int*
width, int *height) (

cout«"Start loading bitmap... "« filename;

ifstream file;

137

file. open(filename, ios:: binary);

if(! file. is_open()
cout«"Fail open file. "«endl;
return 0;

}

//Part 1: Get BITMAPFILEHEADER
BITMAPFILEHEADER bmfh;
file. read((char*)&bmfh, sizeof(BITMAPFILEHEADER));

//Check header
if(bmfh. bfType! =19778) { //"19778" is the magic number

cout«"Not a bitmap file. "«endl;
return 0;

}

//Part 2: Get BITMAPINFOHEADER
BITMAPINFOHEADER bmih;
file. read((char*)&bmih, sizeof(BITMAPINFOHEADER));

int w= *width = (int)bmih. biWidth;
int h= *height = (int)bmih. biHeight;
int bitcount=bmih. biBitCount;

if(bitcount<8) {
cout«"Error bitmap file. "«endl;
return 0;

}

//Part 3: Get the RGBQUAD, if the bitcount is 8.
//Get the number of colour
int nColour=l«bmih. biBitCount;
RGBQUAD *pColour;
if(bitcount=-8) (

pColour=new RGBQUAD(nColour);
file. read((char*)pColour, nColour*sizeof(RGBQUAD));

}

//Part 4: Get the image data.
//Calculate the padding, which the bitmap file, if the width

with rgb cannot be divided by 4,
// the data will be expanded with extra byte until dividable by

4
int padding-CalcWordPadding(w}(float)bitcount/8);
//Calculate the pixel data size;
int nDataSize=(int)((w*((float)bitcount/8)+padding) * h);

BYTE* pTemp=new BYTE[nDataSiae);
file. read((char*)pTemp, nDataSize);

//Close the file, since reading finish
file. close();

//Part 5: Convert the data into RGB pixel format

138

int nImageData = w*abs(h)*3; //"3" because of RGB
//And afraid that height might be negative

*pData=new BYTE[nlmageData];
if(bitcount==24)

ConvertBmp24(*pData, w, h, pTemp, nDataSize);
else if(bitcount==8)

ConvertBmp8(*pData, w, h, pTemp, nDataSize, pColour);

//Clean up
delete[] pTemp;
pTemp=NULL;

if(bitcount==8)
delete[] pColour;

cout«" end"«endl;

}
return 1;

int SaveBmp(const char* filename, unsigned char* pData, int

width, int height) (
cout«"Start saving bitmap file... "« filename;

int padding=CalcWordPadding(width*3);
int padwidth=width*3 + padding;

BITMAPINFOHEADER bmih={0};
bmih. biSize=sizeof(BITMAPINFOHEADER);
bmih. biBitCount=24;
bmih. biCompression=BI_RGB;
bmih. biHeight=height;
bmih. biWidth=width;
bmih. biPlanes=l;
bmih. biSizeImage= padwidth*height;

BITMAPFILEHEADER bmfh=(0);
bmfh. bfType=19778;
bmfh. bfOffBits=sizeof(BITMAPINFOHEADER) +

sizeof(BITMAPFILEHEADER);
bmfh. bfSize=bmfh. bfOffBits + bmih. biSizeImage;

int i, j;
ofstream file;
file. open(filename, ios:: binary);
if(! file. is open()) {

Gout «"Fail open file! "«endl;
return 0;

}
else {

file. write((char*)&bmfh, sizeof(BITMAPFILEHEADER));
file. write((char*)&bmih, sizeof(BITMAPINFOHEADER));

i=0;
while(i<width*height*3) {

139

file«pData [i+2] «pData [i+1] «pData [i] ;
i+=3;
if(i%(width*3)==0) {

for(j=O; j<padding; j++) (
file« (char)Ox00;

}
}//*/

}

}
file. close();

cout«" end"«endl;
return 1;

}

/////////////////OpenGL draw object
void Calclnterpolate(float *vl, float *v2, int size, int
currFrame, int maxFrame, float *vOut) {

//Description: This function calculate the interpolation
between vl and v2

// according to the currFrame of the maxFrame
int i
for(i=O; i<size; i++) {

v0ut[i]=v1[i] + ((v2[i]-vl[i])*currFrame/maxFrame);

}
}

void GlPolygon(float *v, int *vi, int size) {
//Description:
//v is the vertex array in 1D
//vi is the vertex index array in 1D, which termintated if the

value is -1,

float normal[3];
//Calculate 1st normal;
vectorNormal2(&v[vi[O]*3], &v[vi[1]*3], &v[vi[2]*3], normal);

//If the light is disabled
float colour[4];
if(gllsEnabled(GL LIGHTING) GL FALSE)

g1GetFloaty(GL_CURRENT_COLOR, colour); //*/

glBegin(GL_POLYGON);
int i;
for(i=O; i<size; itt) (

if(vi{il>=0) {
if(g1IsEnabled(GL LIGHTING)=-GL_FALSE) {

glColor4fv(colour);
}
glNormal3fv(normal);
glVertex3fv(&v[vi[i]*3]);

}
else if(vi[i]==-l) {

glEnd();

140

if(i<size-1)
glBegin(GLPOLYGON);
//For the next normal, if it is not the end

VectorNormal2(&v[vi[i+l]*3], &v[vi[i+2]*3], &v[vi[i+3]*3], normal);
}

}
}

void GlPolygonVertexShade(float *v, int *vi, int size) {
//Description:
//v is the vertex array in 1D
//vi is the vertex index array in 1D, which termintated if the

value is -1,

/* For the vertex shading, each vertex has its own normal. And,
if there is shared vertex

for several face, the normal will be added up. Therefore, the
algorithm is to check through

all the vertices, if the vertices connected to 2 or more faces,
then, need to calculate the normal of the

each face.
*1

//Note: Remember, when access every vertex, remember to
MULTIPLY BY 3

//Calculate number of face
int nFace=O;
int i;
for(i=O; i<size; i++) {

if(vi[i]<O) nFace++;
}

//For each face, calculate its normal
float *normal=new float[nFace*3]; //Because of x, y, z

VectorNormal2(&v[vi[0]*3], &v[vi[1]*3], &v[vi[2]*3], &normal[0]);
First normal

int j=1;
for(i-O; i<size; itt) {

if(vi[i]==-1 && i<size-1) {

}

VectorNormal2(&v[vi[itl1 *33 , &v[vi[i+2j*3j, &v[vi[i+3j*3J, &normal(j
{3l);

}
}

++; //Next face J

//Calculate number of vertices
int nVertex=0;
for(i=O; i<size; i++)

141

if(vi[i]>nVertex)
nVertex=vi[i];

}

nVertex++; //Include 0

//Calculate normal for each vertex
float *normal2=new float[nVertex*3]; //Include 0

memset(normal2,0, nVertex*3*sizeof(float)); //Set every normal
to 0

j=0; //For face
for(i=0; i<size; i++) {

if (vi (i] >-O) (
VectorAdd(&normal2[vi[i]*3), //So that, the normal2 and v

are in same index
&normal[j*3], //The normal of the face
&normal2[vi[i)*3)); //Output

}
else if(vi[i]==-l) {

j++;
}

delete[] normal;
normal-NULL;

//Normalise every normal
for(i=O; i<nVertex; i++)

VectorNormalise(&normal2[i*3], &normal2[i*3]);
}//*/

//Draw all the info
float colour(4);
glGetFloaty(GL_CURRENT_COLOR, colour);

glBegin(GL_POLYGON);
for(i=O; i<size; i++) {

if(vi[i]>=0) {
if(g1IsEnabled(GL LIGHTING)==GL_FALSE) glColor4fv(colour);
glNormal3fv(&normal2[vi[i]*3]);
glVertex3fv(&v[vi[i]*3]);

}
else if(vi[i]==-l) {

glEnd();
if(i<size-1) {

glBegin(GL POLYGON);

}
}

}
g1End(); //+/

delete[] normal2;
normal2=NULL;

}

void GlPolygonVertexNormal(float *v, int *vi, int size, float *n, int
*ni)

142

//Note: The size of normal should be same as size of vertex.

//Draw all the info
float colour[4];
glGetFloaty(GL_CURRENT_COLOR, colour);

glBegin(GL_POLYGON);
int i;
for(i=O; i<size; i++) {

if(vi[i]>=0) (
if(gllsEnabled(GL LIGHTING)==GL FALSE) glColor4fv(colour);
glNormal3fv(&n[ni[i]*3]);
glVertex3fv(&v[vi[i]*3]);

}
else if(vi[i]= -1) {

glEnd();
if(i<size-1) {

glBegin(GL POLYGON);
}

}
}
g1End(};

}

void GlPolygonTexture(float* v, int* vi, int size, float* t, int*
ti, float ratioU, float ratioV) (

//Calculate number of face
int nFace=0;
int i;
for(i=O; i<size; i++) {

if(vi[i]<O) nFace++;
}

//For each face, calculate its normal
float *normal=new float[nFace*3]; //Because of x, y, z

vectorNormal2(&v[vi[0]*3], &v[vi[1]*3], &v[vi[2]*3], &normal[0]);
First normal

int j=1;
for(i=0; i<size; i++) {

if(vi[i]==-1 && i<size-1) {

vectorNormal2(&v[vi[i+1]*3], &v[vi[i+2]*3]º&v[vi[it3]*3], &normal[j
*3]):

}
}

j++; //Next face

//Calculate number of vertices
int nVertex=O;
for(i=O; i<size; i++) {

if(vi[i]>nVertex)
nVertex=vi[i);

143

}
nVertex++; //Include 0

//Calculate normal for each vertex
float *normal2=new float[nVertex*3]; //Include 0
memset(normal2,0, nVertex*3*sizeof(float)); //Set every normal

to 0
j=0; //For face
for(i=O; i<size; i++) {

if(vi[i]>=0)
VectorAdd(&normal2[vi[i]*3], //So that, the normal2 and v

are in same index
&normal[j*3], //The normal of the face
&normal2[vi[ii*3]); //Output

}
else if(vi[i]---l) {

j++;
}

}//*/
delete[] normal;
normal=NULL;

//Normalise every normal
for(i=O; i<nVertex; i++) (

VectorNormalise(&normal2[i*3], &normal2[i*3]);

//Draw all the info
float colour[4];
glGetFloaty(GL_CURRENT_COLOR, colour);

float texcoord[2];

glBegin(GL_POLYGON);
for(i-O; i<size; i++) {

if(vi[i]>=0) {
texcoord[O]=t[ti[i]*2]* ratioU; //This is because, the

texture might be used with glTexSubImage2D()
texcoord[1]=t[(ti[i]*2+1) I* ratioV;

g1TexCoord2fv(texcoord);
glNormal3fv(&normal2[vi[i]*3]);
glVertex3fv(&v[vi[i)*3));

}
else if(vi[i}-=-1)

g1End(;
if(i<si2e-1) {

glBegin(GL_POLYGON);
}

}

g1End();

delete[] normal2;
normal2=NULL;

144

}

/////////OpenGL animation

class CTransform {
public:

CTransform();
CTransform(const CTransform& transform);

-CTransform();

void Reset(;

void GlTransformAll();

float translation[3];
float rotation[4];
float scale[3];
float scaleOrientation[4];

float* pPosKey; //PositionInterpolator key
int nPosKeySize;

float* pPosKeyValue; //Position2nterpolator keyValue
int nPosKeyValueSize;

float* pOriKey; //OrientationInterpolator key
int nOriKeySize;

float* pOriKeyValue;
int nOriKeyValueSize;

float* pScaKey; //PositionInterpolator for set-scale event
int nScaKey;

float* pScaKeyValue;
int nScaKeyValue;

float* pScaOriKey; //OrientationInterpolator key for
setscaleOrientation event

int nScaOriKey;

float* pScaOriKeyValue;
int nScaOriKeyValue;

//To adjust the speed
int nUnitMax; //Unit is the "unit" frame between the frame
int nTimeMax; //Time is the calculation for the whole

animation.

private;
int m_posFramel;
int m_posFrame2;
int m posCurrInter;

int m oriFramel;

145

int moriFrame2;
int m oriCurrInter;

int m currTime;

int m_nUnitStep;
int m_nTimeStep;

void CTransform:: GlTransformAll() {
int row;
float* plnter;

//Position
if(m-PosCurrInter>nUnitMax)

m_posCurrInter=0;
m_posFramel++;
m_posFrame2++;

}
if(m_posFramel==nPosKeySize-1)

m_posFramel=0;
m_posFrame2=1;

}

{

//Orientation
if(m_oriCurrInter>nUnitMax)

m_oriCurrInter=0;
m_oriFramel++;
m oriFrame2++;

{

}
if(m_oriFramel==nOriKeySize-1)

m_oriFramel=0;
m oriFrame2=1;

}

{

{

//Position
if(nPosKeySize>O) {

row=nPosKeyValueSize/nPosKeySize;
pInter=new float[3];
Calclnterpolate(&pPosKeyValue[m_posFramel*row],

&pPosKeyValue[m_posFrame2*row],
3, //Because only need 3
m_posCurrlnter,
nUnitMax,
pInter);

glTranslatef(pInter[O], plnter[l], pInter[2]);
delete[] Pinter;
m posCurrlnter+=m_nUnitStep;

}
else

glTranslatef(translation[O], translation[1], translation[2]);

//Orientation
{ if(nOriKeySize>O)

146

row=nOriKeyValueSize/nOriKeySize;
pInter=new float[4];
Calclnterpolate(&pOriKeyValue[m_oriFramel*row],

&pOriKeyValue[m oriFrame2*row],
4

I
m_oriCurrInter,
nUnitMax,
pInter);

//Calculate the degree
float deg=Rad2Deg(pInter[3]);
glRotatef(deg, pInter[O], pInter[l), pInter[2]);
delete[] pInter;
m_oriCurrInter+=m_nUnitStep;

)
else

glRotatef(rotation[0], rotation[l], rotation[2], rotation[3]);

glRotatef(scale0rientation[0], scaleOrientation[1], scale0rientatio
n[2], scale0rientation[3]);

glScalef(scale[0], scale[1], scale[2]);
glRotatef(-

scale0rientation[0], scale0rientation[1], scale0rientation[2], scale
Orientation[3]);
}

//////////////OpenGL texture
class CTexture {
public:

CTexture{;
char szFile[256];
void Texturelnit{);
void TextureDestroy{);

};
unsigned int texId[1]; //For OpenGL

CTexture:: CTexture() {
this->Reset(;
texId[0]=-1; //Initialise
memset(szFile, 0,256);

}

void CTexture! Texturelnit()
LoadPicture(szFile);
Resize (256,256) ;
g1GenTextures(1, texId);

glPixelStorei(GL_UNPACK ALIGNMENT, 1);
glBindTexture(GL_TEXTURE_2D, texId[0]);

g1TexImage2D(GL_TEXTURE_2D, O, GL_RGB, 256,256,0, GL_RGB, GL_UNSIGNED_
BYTE, this->pData);

147

giTexParameteri (GL TEXTURE 2D, GL TEXTURE MIN FILTER, GLLINEAR);
g1TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

}

void CTexture:: TextureDestroy() {
glDeleteTextures(1, texId);
this->Reset(;

}

///////////Finger tracking
void skinSegmentation(unsigned char* imageData, int width, int
height)

for(int i=0; i<width * height *3; i+=3) {
int r, g, b;
r= imageData[i];
g= imageData[i+1];
b= imageData[i+2];

int max - r;
if(g>max)

max = g;
if (b>max)

max = b;

int min = r;
if (g<min)

min = g;
if (b<min)

min = b;

if (r > 95 && g> 40 && b> 20 &&
(max - min > 15) &&
(abs(r - g) > 15) &&
r>g && r> b)

}
}

= imageData[i+1] = imageData[i+2] g 0;

{
}
else

imageData[i]
}

void fingerTracking() (

g_show->GrabBitmap(;
if(! g show->cbBuffer) return;

//To Ipllmage
g_img - cvCreateImage(cvSize(g_show->width, g_show-

>height), IPL DEPTH 8U, 3);

g_img->origin=1;
memcpy(g_img->imageData, g_show->pData, g_show->cbBuffer);

//For skin segmentation

148

Ipllmage* finger = cvCloneImage(g_img);
cvCvtColor(finger, finger, CV_BGR2RGB);
skinSegmentation((unsigned char*) finger->imageData, finger-

>width, finger->height);
cvCvtColor(finger, finger, CV_RGB2BGR);

Ipllmage* result = cvCreateImage(
cvSize(finger->width - g_finger->width + l, finger->height

g_finger->height + 1),
IPL_DEPTH_32F, 1);

result->origin = 1;

//Template matching
cvMatchTemplate(finger, g_finger, result, CV_TM_CCORR_NORMED);
double minval, maxval;
CvPoint minloc, maxloc;
cvMinMaxLoc(result, &minval, &maxval, &minloc, &maxloc);

if(maxval > 0.6) (
cvCircle(result, maxloc, l, cvScalar(0,255,0), 5);
maxloc. x += (float)g_finger->width/2;
maxloc. y +_ (float)g_finger->height/2;

}
cvCircle(g_img, maxloc, l, cvScalar(0,255,0), 5);

cvReleaseImage(&finger);
cvReleaseImage(&result);

}

149

