
Parallel Computation of Electric Potential in the 

EHD Ion-Drag Micropump and the Performance 

Analysis of the Parallel System

1
Shakeel Ahmed Kamboh, 

2
Jane Labadin,

 3
Andrew 

Ragai Henry Rigit  
1,2

Faculty of Computer Science & Information 

Technology 
3
Faculty of Engineering 

Universiti Malaysia Sarawak 

 94300 Kota Samarahan, Sarawak, Malaysia 
1
shakeel.maths@yahoo.com, 

2
ljane@fit.unimas.my, 

 

3
arigit@feng.unimas.my

3 

Ling Teck Chaw  

Faculty of Computer Science & Information 

Technology  

University of Malaya  

50603 Kuala Lumpur, Malaysia  

tchaw@um.edu.my 

 

 

 

 

 
Abstract—The numerical solution of a computationally 

intensive model becomes more complex in terms of 

execution time required by a single processor. To speedup 

the computation, a suitable parallel computing 

architecture is required. This paper attempts to achieve a 

fast finite difference solution of electric potential in an 

EHD ion-drag micropump. A 2D Poisson’s equation is 

solved on a cluster of low cost computers using MATLAB. 

Numerical solution is obtained for the different mesh 

refinements and then the execution time, communication 

time, speedup and efficiency of parallel system are 

analyzed. The results showed that the speedup and 

efficiency of the system increases by increasing the grid 

points. The results also reveal that for each data size there 

is an optimum number of workers for obtaining the 

parallel numerical solution in minimum processing time.  
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I. INTRODUCTION  

The accuracy of numerical solution of the partial 
differential equations depends on the fine discretization 
of the computational domain and the large number of 
iterations. Particularly, when the geometry is nonlinear 
or irregular, the size of data set increases significantly. 
In such situation, the complexity of the numerical 
algorithms increases and demands greater computational 
resources. Computational scientists, who have 
conventionally run their numerical algorithms on a 
single computer, are experiencing unacceptably long 
run-times [1]. The objective of this work is to investigate 
and analyze the computational time required for 
different grid sizes. A simple parallel computing 
algorithm was implemented on MATLAB parallel 
computing environment based on a single program 
multiple data (SPMD) model.  

This paper begins with the introduction of the 
problem and the motivation of the study. The rest of the 
paper is arranged as follows: In Section II, some related 
works are reviewed. Section III describes methodology 
and data parallelization of the problem. The results are 
discussed in Section IV. Finally, the concluding remarks 
and directions for future work are given in Section V.  

 

II. BACKGROUND   

Parallel computing is a type of computation in which 
complex and large calculations are carried out 
simultaneously by dividing the problem into smaller 
ones, which are then solved in parallel [2]. Among the 
various parallelism methods, the most commonly used 
are the task parallelism, pipeline parallelism, data 
parallelism or combination of these three methods [3, 4]. 
For the numerical solution of partial differential 
equations that is obtained at each grid point or for each 
discrete element, the data parallelism is a suitable 
choice. Data parallelism is especially useful for pixel 
(points) and block-wise operations that can be efficiently 
parallelized when the number of parallel nodes is large 
[5]. The initial data is distributed among the different 
computers also called the workers followed by a proper 
distribution or partitioning algorithm (Fig.1). The same 
task is executed by all the workers such that each worker 
computes its own piece of data.  

Parallelism has been successfully used in many 
domains of science and technology, such as high 
performance computing (HPC), servers, graphics 
accelerators, and many embedded systems. A variety of 
computational problems have been solved by using 
different high performance computing tools and 
architectures. Although, many [6-11] high speed 
computing architectures reported in the literature have 
been used for HPC but in case of unavailability of 
supercomputing infrastructure the cluster of available 
computers can be utilized. The clusters are useful for 
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parallel and/or distributed computing and have the 
advantages of low cost, flexibility of configuration and 
upgrade, and scalability to meet the size and time 
requirements for the specific workloads [12]. This paper 
focuses on the solution of computationally intensive 
applications on a remote cluster of computers using 
MATLAB.  

 
Fig.1 Data parallelism for a computational problem 

 
 

III. PARALLEL NUMERICAL SOLUTION OF POISSON'S 

EQUATION 

The Poisson’s equation is an elliptic type partial 
differential equation and is one of the basic governing 
equations of Electrohydrodynamics. This equation is a 
direct consequence of Gauss’s law for electricity and 
relates the electric potential with the space charge 
density [13]. Finding the electric potential and the 
electric field distributions is an important practical 
problem in EHD ion-drag pumping. The general form of 
Poisson’s equation in Cartesian coordinates is given as 
follows,  
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where V is the electric potential (Volts), eq   the space 

charge density (C/m
3
) and   the relative permittivity  

(F/m). For a two dimensional case the above equation 
can be written with respect to its coordinates as, 
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where both V  and eq are the functions of x  and y . In 

order to obtain the numerical solution the Eq. (2) is 
discretized using central finite difference schemes and is 
given by, 
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where i and j represent the nodes location while h and k 
are the step sizes in x and y directions respectively. The 
description of charge density and initial and boundary 

conditions can be found in [14-15]. Eq. (3) is expressed 

explicitly for jiV , and solved by using the Gauss-Siedel 

iterative method [16].  

To compute parallel solution, Eq. (3) is parallelized 
using data parallelism technique such that the 
computational domain is partitioned into p horizontal 

strips (sub-domains), where p is the number of 

processors or workers. Each subdomain is distributed to 
each distinct worker and the solution task is passed on 
the corresponding codistributed data. The interior points 
of each subdomain are computed locally by each worker 
while there is a data dependency for border elements 
(halo points) between each two workers that need 
necessary communication. This task is done by using 
message passing functions along all the neighborhoods 
between the sub-domains. The borders elements are 
located by their indices values i and j and are updated 
simultaneously using the message passing functions. 
The process remains continue until the solution values 
reach to a predefined error tolerance.  

In order to implement the solution algorithm on a 
parallel system the MATLAB distributed and parallel 
computing environment was used [17-18]. A remote 
cluster of eighteen desktop computers was configured as 
one Master or Client; one Job Manager and the rest of 
them were set as Workers. The description of the 
system is given in the table 1. The node status of the 
system was tested for interactive parallel computation 
and then the numerical solution algorithm was 
implemented. The average execution time and the 
maximum communication time were noted down for the 
different mesh refinements such as 64x64, 128x128, 
192x192, 256x256 and 320x320. 

The performance of the parallel system was 
evaluated by the following metrics [19]; 

speedup, pTTS /1 , (4) 

parallel efficiency, pSEp / , (5) 

computational cost, ppar pTC  , (6) 

where 1T (sec) is time spent for the algorithm for the 

solution of a given problem on a single processor 

(worker), pT (sec) is the time, which is needed for the 

algorithm on a parallel architecture with p  number of 

processors of the same type. 

 
Table 1. Hardware and software used for the parallel 

computing 
 

CPU Intel ® Pentium (R) D, DELL 

Processor 2.80 GHz 

Memory 2.00 GB 

Interconnection speed 1.00 Gbps Ethernet 

Operating System Windows 7-Professional 32-bit 

Parallel Environment MATLAB Parallel/Distributed Computing 
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