
Parallel Computation of Electric Potential in the

EHD Ion-Drag Micropump and the Performance

Analysis of the Parallel System

1
Shakeel Ahmed Kamboh,

2
Jane Labadin,

 3
Andrew

Ragai Henry Rigit
1,2

Faculty of Computer Science & Information

Technology
3
Faculty of Engineering

Universiti Malaysia Sarawak

 94300 Kota Samarahan, Sarawak, Malaysia
1
shakeel.maths@yahoo.com,

2
ljane@fit.unimas.my,

3
arigit@feng.unimas.my

3

Ling Teck Chaw

Faculty of Computer Science & Information

Technology

University of Malaya

50603 Kuala Lumpur, Malaysia

tchaw@um.edu.my

Abstract—The numerical solution of a computationally

intensive model becomes more complex in terms of

execution time required by a single processor. To speedup

the computation, a suitable parallel computing

architecture is required. This paper attempts to achieve a

fast finite difference solution of electric potential in an

EHD ion-drag micropump. A 2D Poisson’s equation is

solved on a cluster of low cost computers using MATLAB.

Numerical solution is obtained for the different mesh

refinements and then the execution time, communication

time, speedup and efficiency of parallel system are

analyzed. The results showed that the speedup and

efficiency of the system increases by increasing the grid

points. The results also reveal that for each data size there

is an optimum number of workers for obtaining the

parallel numerical solution in minimum processing time.

Keywords-Poisson’s equation; parallel numerical

solution; finite difference methods; modeling and

simulation

I. INTRODUCTION

The accuracy of numerical solution of the partial
differential equations depends on the fine discretization
of the computational domain and the large number of
iterations. Particularly, when the geometry is nonlinear
or irregular, the size of data set increases significantly.
In such situation, the complexity of the numerical
algorithms increases and demands greater computational
resources. Computational scientists, who have
conventionally run their numerical algorithms on a
single computer, are experiencing unacceptably long
run-times [1]. The objective of this work is to investigate
and analyze the computational time required for
different grid sizes. A simple parallel computing
algorithm was implemented on MATLAB parallel
computing environment based on a single program
multiple data (SPMD) model.

This paper begins with the introduction of the
problem and the motivation of the study. The rest of the
paper is arranged as follows: In Section II, some related
works are reviewed. Section III describes methodology
and data parallelization of the problem. The results are
discussed in Section IV. Finally, the concluding remarks
and directions for future work are given in Section V.

II. BACKGROUND

Parallel computing is a type of computation in which
complex and large calculations are carried out
simultaneously by dividing the problem into smaller
ones, which are then solved in parallel [2]. Among the
various parallelism methods, the most commonly used
are the task parallelism, pipeline parallelism, data
parallelism or combination of these three methods [3, 4].
For the numerical solution of partial differential
equations that is obtained at each grid point or for each
discrete element, the data parallelism is a suitable
choice. Data parallelism is especially useful for pixel
(points) and block-wise operations that can be efficiently
parallelized when the number of parallel nodes is large
[5]. The initial data is distributed among the different
computers also called the workers followed by a proper
distribution or partitioning algorithm (Fig.1). The same
task is executed by all the workers such that each worker
computes its own piece of data.

Parallelism has been successfully used in many
domains of science and technology, such as high
performance computing (HPC), servers, graphics
accelerators, and many embedded systems. A variety of
computational problems have been solved by using
different high performance computing tools and
architectures. Although, many [6-11] high speed
computing architectures reported in the literature have
been used for HPC but in case of unavailability of
supercomputing infrastructure the cluster of available
computers can be utilized. The clusters are useful for

2013 8th International Conference on Information Technology in Asia (CITA)

978-1-4799-1092-2/13/$31.00 ©2013 IEEE

parallel and/or distributed computing and have the
advantages of low cost, flexibility of configuration and
upgrade, and scalability to meet the size and time
requirements for the specific workloads [12]. This paper
focuses on the solution of computationally intensive
applications on a remote cluster of computers using
MATLAB.

Fig.1 Data parallelism for a computational problem

III. PARALLEL NUMERICAL SOLUTION OF POISSON'S

EQUATION

The Poisson’s equation is an elliptic type partial
differential equation and is one of the basic governing
equations of Electrohydrodynamics. This equation is a
direct consequence of Gauss’s law for electricity and
relates the electric potential with the space charge
density [13]. Finding the electric potential and the
electric field distributions is an important practical
problem in EHD ion-drag pumping. The general form of
Poisson’s equation in Cartesian coordinates is given as
follows,



eq
V  , (1)

where V is the electric potential (Volts), eq the space

charge density (C/m
3
) and  the relative permittivity

(F/m). For a two dimensional case the above equation
can be written with respect to its coordinates as,



eq

y

V

x

V










2

2

2

2

, (2)

where both V and eq are the functions of x and y . In

order to obtain the numerical solution the Eq. (2) is
discretized using central finite difference schemes and is
given by,



jijijijijijiji eq

k

VVV

h

VVV ,

2

1,,1,

2

,1,,1 22





  (3)

where i and j represent the nodes location while h and k
are the step sizes in x and y directions respectively. The
description of charge density and initial and boundary

conditions can be found in [14-15]. Eq. (3) is expressed

explicitly for jiV , and solved by using the Gauss-Siedel

iterative method [16].

To compute parallel solution, Eq. (3) is parallelized
using data parallelism technique such that the
computational domain is partitioned into p horizontal

strips (sub-domains), where p is the number of

processors or workers. Each subdomain is distributed to
each distinct worker and the solution task is passed on
the corresponding codistributed data. The interior points
of each subdomain are computed locally by each worker
while there is a data dependency for border elements
(halo points) between each two workers that need
necessary communication. This task is done by using
message passing functions along all the neighborhoods
between the sub-domains. The borders elements are
located by their indices values i and j and are updated
simultaneously using the message passing functions.
The process remains continue until the solution values
reach to a predefined error tolerance.

In order to implement the solution algorithm on a
parallel system the MATLAB distributed and parallel
computing environment was used [17-18]. A remote
cluster of eighteen desktop computers was configured as
one Master or Client; one Job Manager and the rest of
them were set as Workers. The description of the
system is given in the table 1. The node status of the
system was tested for interactive parallel computation
and then the numerical solution algorithm was
implemented. The average execution time and the
maximum communication time were noted down for the
different mesh refinements such as 64x64, 128x128,
192x192, 256x256 and 320x320.

The performance of the parallel system was
evaluated by the following metrics [19];

speedup, pTTS /1 , (4)

parallel efficiency, pSEp / , (5)

computational cost, ppar pTC  , (6)

where 1T (sec) is time spent for the algorithm for the

solution of a given problem on a single processor

(worker), pT (sec) is the time, which is needed for the

algorithm on a parallel architecture with p number of

processors of the same type.

Table 1. Hardware and software used for the parallel

computing

CPU Intel ® Pentium (R) D, DELL

Processor 2.80 GHz

Memory 2.00 GB

Interconnection speed 1.00 Gbps Ethernet

Operating System Windows 7-Professional 32-bit

Parallel Environment MATLAB Parallel/Distributed Computing

2013 8th International Conference on Information Technology in Asia (CITA)

