International Conference on Intelligent and Advanced Systems 2007

Partitioning for a Concept-Based SoC Design to
Address Product Evolution

Waseem Ahmed', Adrus Mohamad Tazuddin®, Wong Ming Ming’, Liaw Tzy Renn* and Douglas Myers’
Curtin University of Technology, Sarawak Campus, Miri, Malaysia
'waseem@curtin.edu.my, {*ultimate_cloud, *classic_phone, *sim_liaw} @hotmail.com,
>Curtin University of Technology, Perth, Australia
d.myers@exchange.curtin.edu.au

Abstract- To address changes encountered during product
evolution in SoCs, a concept based design methodology based on
UML 2.0 is presented in this paper. A system specification given
in the form of UML 2.0 sequence and class diagrams is
segregated into concepts with a Generic Adaptive Layer (GAL)
around them. GALs offer generic adaptability to existing
concepts and change localization during product evolution. The
major advantage of using the presented methodology is an
improvement in the development time of the system during both
the design and the maintenance phases. Experiences from using
three categories of concepts are presented.

1. INTRODUCTION

The last decade has seen a substantial increase in the number
and variety of embedded systems, which range from the
cheap and simple devices used in consumer electronic
appliances to the more expensive and sophisticated devices
used in industrial robotics and aviation.

There have been three noticeable trends in embedded
systems. The first two are an increase in size and complexity
of the embedded devices. Some of the contributing factors for
this increase in size and complexity are application
convergence, higher density of silicon chips which
subsequently allow more functionality to be put on them,
increased software-to-hardware ratio, Multi-Processor
System-On-Chip (MPSoC), distributed embedded systems
and Network-on-Chip (NoC). The third noticeable trend is
product evolution. Embedded systems, particularly those in
the consumer electronics domain, exhibit an extremely high
turnover in terms of product releases. A company that spends
6-18 months developing a new product from scratch,
incrementally changes this product for its subsequent releases.
These changes range from simple bug fixes to more complex
porting of the application to a different operating system or
implementation platform. These systems, in general, have
many such changes imposed on them. To retain or increase
their market share, a system provider has to cater to these
changing demands in a timely manner or face market loss.

The common approaches to address increase in size and
complexity have been reuse, product lines, component-based
design and the use of visual design paradigms like UML and
MDA. Systematic product evolution, however, has been a
problem. Evolution involves maintenance of code and is not

easy if no pro-active maintenance measures have been taken
at the design phase. For a system to be useful beyond its first
release, it has to be malleable and accommodative to both
internal changes and changes imposed by the external
environment.

In terms of functionality, the difference between
consecutive releases of the system may not be large. But the
development effort that goes into performing adaptive,
corrective or preventive maintenance on the system [1] for the
next release or version is substantial. This effort is further
complicated if the base architecture of the system is not
coherent to the developers performing maintenance of the
system. The preservation of the base architecture of the
system is dependent on the way the initial partitioning of the
system has been performed. The role of a partitioning
algorithm in the codesign of mixed hardware-software
systems is to either maximize or minimize a cost function
based on a set of quality constraints like performance, size
and energy consumption. While attaining its intended
objectives it, however, results in a breakdown of the
architecture. The resultant code is fragmented, unstructured,
unmanageable and incomprehensible to anyone outside the
core design group and the initial base architecture is lost after
partitioning and cannot be easily obtained though reverse
engineering. Partitioning is extremely detrimental to product
evolution and works against the good design principles of
software engineering and reuse.

This necessitates a strategy that addresses system design
more holistically. A concept based architecture that uses
generic adaptive layers (GAL) has been proposed in this
paper that improves reuse and modularity while taking a pro-
active approach to maintenance in the design phase.

The rest of the paper is organized as follows. Section II
compares the presented methodology to existing similar
approaches. Section III describes the GAL. Section IV
describes the need for a Concept Repository and its
maintenance. This is followed by the section on Concept
Identification and the automation of GAL generation. Section
VI describes the case study followed by conclusions in
section VII.

II. RELATED WORK

There have been various approaches to address the

1-4244-1355-9/07/$25.00 @2007 IEEE

~ 1335

