

WASTE THERMAL HEAT PUMP

Nicholas Han Tin Huat

Bachelor of Engineering with Honours (Mechanical and Manufacturing Engineering) 2010

				R13a
		BORANG PENGE	SAHAN STATUS THESIS	
Judul:	WASTE THERN	MAL HEAT PUMP		
		SESI PENO	GAJIAN: <u>2009/2010</u>	
Saya			AS HAN TIN HUAT	
		(HURU	(F BESAR)	
		rkan tesis * ini disimpar lengan syarat-syarat keg	n di Pusat Khidmat Maklumat Akademik, Universit gunaan seperti berikut:	i
1. 2. 3. 4. 5.	Pusat Khidmat Ma untuk tujuan penga Membuat pendigit Pusat khidmat Ma tesis ini sebagai ba	ajian sahaja. an untuk membangunka klumat Akademik, Univ	versiti Malaysia Sarawak dibenarkan membuat sali an Pangkalan Data kandungan Tempatan. rersiti Malaysia Sarawak dibenarkan membuat salin nstitusi pengajian tinggi.	
			t uang berdarjah keselamatan atau kepentingan ermaktub di dalam AKTA RAHSIA RASMI 1972).	
	TERHAD	(Mengandungi makluma Badan di mana penyelio	at TERHAD yang telah ditentukan oleh organisasi/ dikan dijalankan).	
	√ TIDAK TERHAD			
			Disahkan oleh	
			Disalikali oleli	
(T/	ANDATANGAN P	ENULIS)	(TANDATANGAN PENYELIA)	
Al	amat tetap:			
<u>Ta</u>	o 18 Jln Bernam 11. man Bernam 3590(njong Malim Perak)	<u>EN. ISKANDAR BIN JOBLI</u> Nama Penyelia	
Та	rikh:		Tarikh:	
			ah Dalitar Falaafah, Sarjana dan Sarjana Muda	

UNIVERSITI MALAYSIA SARAWAK

CATATAN * Tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah, Sarjana dan Sarjana Muda. Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT dan TERHAD.

APPROVAL SHEET

The following final year project:

Title: Waste Thermal Heat Pump

Author: Nicholas Han Tin Huat

Matrics Number: 16822

Is hereby read and approved by:

En.Iskandar bin Jobli

Date

(Supervisor)

WASTE THERMAL HEAT PUMP

NICHOLAS HAN TIN HUAT

Thesis is submitted to Faculty of Engineering, University Malaysia Sarawak In Partial Fulfillment of the Requirements For the Degree of Bachelor of Engineering With Honours (Mechanical and Manufacturing Engineering) 2010 To my beloved family and friends

ACKNOWLEDGEMENT

I would like to thank and express my appreciation to my supervisor, En. Iskandar bin Jobli of University Malaysia Sarawak for his guidance and encouragement rendered to me in completing my final year project successfully. Your suggestion and advice makes my works simpler and easier and I appreciate your effort very much.

I also would like to thank the supporting staff of UNIMAS Engineering Department especially Mr. Azaman and Ms. Zila for their commitment and support to me in providing the necessary facilities. Without their help I will not have been able to complete my research with ease.

Finally, I would like to thank my family especially my mother who always give me the encouragements and financial support throughout my study in UNIMAS. Last but not least, thank you to Ong Sue Ann, my girlfriend who have inspired me and encouraged me to work an extra mile than others.

TABLE OF CONTENTS

	Page
APPROVAL SHEET	
ACKNOWLEDGEMENT	i
ABSTRAK	ii
ABSTRACT	iii
TABLE OF CONTENT	iv
LIST OF FIGURES	viii
LIST OF TABLES	
LIST OF ABBREVIATION	XV
Chapter 1 INTRODUCTION	
1.1 Introduction to Biomass	1
1.2 Introduction to Heat	2
1.3 Introduction to Heat Pump	3
1.4 Problem Statement	5
1.5 Objectives	5
1.6 Scope of Study	6

Chapter 2 LITERATURE REVIEW

2.1 Types of Biomass Conversion Process	7
---	---

2.1.1 Thermal Conversion	8
2.1.1.1 Combustion	8
2.1.1.2 Gasification	10
2.1.1.3 Pyrolysis	12
2.1.2 Biochemical Conversion	12
2.1.2.1 Aerobic Digestion (Composting)	12
2.1.2.1.1 Heat Produced from Composting	14
2.1.2.3 Anaerobic Digestion	15
2.2 Introduction to Heat Pump System	17
2.2.1 A Typical Heat Pump Cycle	18
2.2.1.1 Air-Source Heat Pump in Heating Cycle	19
2.2.1.2 Air-Source Heat Pump in Cooling Cycle	20
2.2.1.3 Air-Source Heat Pump in Defrost Cycle	21
2.2.2 Heat Pump Components	22
2.2.2.1 Evaporator and Condenser Coils	22
2.2.3 The Efficiency of a Heat Pump	23
2.2.4 Refrigerants	26
2.2.4.1 Types of Refrigerants	27
2.2.4.2 Refrigerant Selection Consideration	27

2.2.5 Types of Heat Pump Systems	27
2.2.5.1 Air-Source Heat Pumps	28
2.2.5.2 Water-Source Heat Pumps	30
2.2.5.3 Refrigerators	34
2.2.5.4 Air-Conditioners	36
Chapter 3 METHODOLOGY	
3.1 Introduction	39
3.2 Evaporator Heat Exchanger Design	41
3.3 Experiment Materials	43
3.3.1 Materials Preparation	43
3.3.2 Materials Moisture Content	45
3.3.3 Materials Mass Reduction Before and After Experiment	46
3.4 System Design	46
3.5 Types of Systems	48
3.5.1 A System with a Heat Extraction System	49
3.5.2 A System without a Heat Extraction System	50
3.6 Measuring Instruments	51
3.6.1 Data Logger	52

3.6.2 Personal Computer (PC) 52

	3.6.3 Tracer DAQ Data Logger Software	53
Chap	ter 4 RESULTS AND DISCUSSION	
	4.1 Introduction	55
	4.2 Compost Temperature Analysis for Control System	56
	4.3 Compost Temperature Analysis for Heat Extraction System	59
	4.4 Double Stage Heating Analysis	63
	4.5 Moisture Content Analysis	67
	4.6 Power Output Analysis	68
Chap	ter 5 CONCLUSION AND RECOMMENDATION	
	5.1 Conclusion	73
	5.2 Recommendation	74
REFI	ERENCES	76
APPE	ENDIX	80

LIST OF TABLES

Table	Title	Page
Table 1	Moisture Content Analysis	67
Table 2	Average Power Output per kg Dry Grass	69

LIST OF FIGURES

Figure	Title	Page
Figure 1	Types of Biomass Sources	2
Figure 2	A Heat Pump System	4
Figure 3	Thermochemical and biochemical processes classification	7
Figure 4	External heating increases the temperature of wood	9
Figure 5	Pyrolysis starts and the chemical structure of wood is decomposed. Light pyrolysis products volatilize from the surface	9
Figure 6	Combustion starts. Pyrolysis products react with oxygen and produce more heat, causing a strongly growing chain reaction	9
Figure 7	Processes in Gasification	10
Figure 8	Comparison of anaerobic and aerobic system	14

Figure 9	Path of Anaerobic Digestion	16
Figure 10	Air-Source Heat Pump in Heating Cycle	19
Figure 11	Air-Source Heat Pump in Cooling Cycle	20
Figure 12	Picture of (a) Indoor / outdoor coil and (b) Water coil	23
Figure 13	Reversed heat engine (Heat Pump)	24
Figure 14	Picture of (a) Packaged unit and (b) Split System	28
Figure 15	Picture of ground coupled heat pumps (GCHP)	30
Figure 16	Picture of ground water heat pumps (GWHP)	31
Figure 17	Picture of surface water heat pumps (SWHP)	31
Figure 18	Typical Tube-in-Tube Heat Exchanger (Water Coil)	33
Figure 19	A kitchen refrigerator and its four main components	34
Figure 20	Refrigerator in single stage vapor compression cycle	34

Figure 21	Air-conditioner in single stage vapor	37
	compression cycle	
Figure 22	Various air-conditioning process	38
Figure 23	Flow chart for the experiment procedure	40
Figure 24	The picture of container box 1 without grass clipping	41
Figure 25	The picture of container box 2 without grass clipping	42
Figure 26	The picture of container box 1 filled with grass clipping	44
Figure 27	The picture of container box 2 filled with grass clipping	45
Figure 28	A schematic diagram of a heat pump system	47
Figure 29	Container with heat recovery system	49
Figure 30	Container without heat recovery system	50
Figure 31	The picture of a thermocouple placed inside the container	51
Figure 32	The picture of Data Logger	52

Figure 33	The picture of BenQ laptop model JoybookR	53
	45	
Figure 34	TracerDAQ Data Logger Software in Strip	54
	Chart Pattern	
Figure 35	Save Options	54
Figure 36	Compost Temperature for the first cycle	56
Figure 37	Compost Temperature for the second cycle	57
Figure 38	Compost Temperature in Container 1 for the	59
	first cycle	
Figure 39	Compost Temperature in Container 2 for the	59
	first cycle	
Figure 40	Compost Temperature in Container 1 for the	60
	second cycle	
Figure 41	Compost Temperature in Container 2 for the	60
	second cycle	
Figure 42	Picture of Compost (a) Before and (b) After	62
	Composting	
Figure 43	Water Temperature for first cycle	63
Figure 44	Water Temperature for second cycle	64

Figure 45	Picture of Double Stage Heat Extraction	65
	System	
Figure 46	Single vs Double Stage Heating (1st Cycle)	68

Figure 47	Single vs Double Stage Heating (2nd Cycle)	69

LIST OF ABBREVIATION

q	-	rate of heat production (W)
М	-	mass of composting material (kg)
C _p	-	specific heat of composting material (cal per g per °C)
Т	-	rate of temperature change (°C per h)
COP	-	coefficient of performance
$T_{\rm H}$	-	sink temperature
T_L	-	source temperature
$Q_{\rm H}$	-	heat from hot reservoir
Q _C	-	heat from cold reservoir
W	-	work input from the compressor
M _n	-	moisture content (%) of material
W_{W}	-	wet weight of the sample
W _d	-	weight of the sample after drying
∆w	-	change in grass weight
\mathbf{W}_{i}	-	weight of grass before decomposition

\mathbf{W}_{f}	-	weight of grass after decomposition
dQ/dt	-	heat transfer rate (kJ/s)
m	-	mass flow rate (kg/s)
Ср	-	constant pressure for the refrigerant kJ/kgK
T _{out}	-	water temperature at the outlet ($^{\circ}\!C$)
T_{in}	-	water temperature at the inlet (°C)

ABSTRACT

The objective of this experiment is to develop a heat exchanger system that used the biomass decomposition process heat as the source of energy. The system will be design and construct based on the operating principles of geothermal heat pumps and the feasibility and flexibility of the system will be analyzed. The design is comprised of a heat exchanger coil that is placed at the bottom of the container with water circulates through the coil to extract heat from the decomposition process. The proposed system will be compared to a control system, a system without heat exchanger coil to see the effect of heat exchanger coil on the biomass temperature and also its decomposition rate. This experiment also introduced the double stage heating system to increase the temperature difference of the water between the inlet and outlet of the system. The moisture content of the grass in the first cycle is 71.5% and 74.8% for the second cycle. The average power output per kg dry matter produced from the double stage heating for the first and second cycle is 0.41 Watt/kg and 0.47 Watt/kg.

ABSTRAK

Objektif eksperimen ini adalah bagi membangunkan sistem penukar haba yang menggunakan proses penguraian biojisim haba sebagai sumber tenaga. Sistem itu akan direka dan dibina berdasarkan prinsip operasi pam haba geoterma dan sistem praktikal serta kelonggarannya akan dianalisis. Reka bentuk meliputi satu gegelung penukar haba yang terletak di dasar bekas dengan air mengalir dalam gegelung untuk mengekstrak haba daripada proses penguraian. Sistem yang dicadangkan akan dibanding dengan satu sistem kawalan, satu sistem tanpa gegelung penukar haba untuk melihat kesannya terhadap suhu biojisim dan juga kadar penguraiannya. Eksperimen ini juga memperkenalkan sistem pemanasan peringkat berganda untuk meningkatkan perbezaan suhu air antara serokan dan kedai sistem. Kandungan lembapan rumput untuk kitaran pertama ialah 71.5% dan 74.8% untuk kitaran kedua. Output kuasa purata setiap kg bahan kering yang dihasilkan daripada pemanasan peringkat berganda untuk kitaran pertama dan kedua ialah 0.41 Watt / kg dan 0.47 Watt / kg.

CHAPTER 1

INTRODUCTION

1.1 Introduction to Biomass

In this 21st century, the evolution of technolgy and population growth has increased the demand for power supply. Hence energy has become one of the most important issue to be discussed in this project. Energy can be divided into two main types which is renewable energy such as biomass, hydro, geothermal and wind energy. The another type is non-renewable energy such as petroleum, natural gas and coal. The inadequate of energy supply, the fluctuating of foreign fossil fuel and also the environment conditions have force us to exploit for alternatives energy sources available on our planet.

In the mean time, biomass energy is one of the options available to support and sustain the the expanding energy demand from the users. The word 'biomass' tell us this form of energy is derived from a biological materials derived from living or recently living organisms. Actually, biomass substance such as plant matter, garbage, crops, landfill and biofuels have a chemical energy which can be converted into heat energy by various means to produced heat to generate electricity. Biomass energy is derived from three distinct energy sources for exmaple wood, waste and alcohol fuels (**Wikipedia**, **Biomass**, **2009**). Biomass is a renewable energy because its supplies are continously and not limited.

Figure 1 : Types of Biomass Sources (Biomass, 2008)

1.2 Introduction to Heat

Energy can exist in numerous forms such as thermal, mechanical, kinetic, potential, electric, magnetic, chemical and nuclear which their sum constitutes the total energy E of a system. The first law of thermodynamic states that energy can be neither created or destroyed during a process where it can only change forms. This law also known as the conservation of energy principle (**Cengel & Boles, 2006, p. 70**).

Heat energy is transferred between two systems if there is a temperature difference between them. In case if both systems is at the same temperature, no heat transfer will take places and this is called adiabatic process. A process can be adiabatic if the system is well insulated or both the system and the surroundings are at the same temperature but the energy content and the temperature of the system may still changed by others mean such work(**Cengel & Boles, 2006, p. 61**).

Heat is transferred by three mechanism for example conduction, convection and radiation. Conduction is the mode of heat transfer in which energy exchange takes place from the region of high temperature to that of low temperature by the kinetic motion or direct impact of molecules. Convection is the transfer of energy between a solid surface and the adjacent fluid that is in motion. Radiation is the transfer of energy due to the emission of the elctromagnetic waves known as photons (**Ozisik**, **1985**, **p. 2**).

1.3 Introduction to Heat Pump

Heat is a form of energy that is transfer between two systems by virtue of a temperature difference (**Cengel & Boles, 2006, p. 60**). Heat can only be transfer between two system from a higher temperature medium to a lower temperature medium and impossible to exist for the vice versa condition. This heat transfer process occurs in nature witout require any devices.

To enable a heat to transfer from a low-temperature medium to a hightemperature medium, a special devices called heat pumps is required to allow this process to take place. In fact heat pump is a reverse cycle of a heat engine that moves heat from a low temperature heat source to a higher temperature heat sink using mechanical work. The common examples are food refrigerators and freezers, air conditioners and reversible-cycle heat pumps for providing thermal comfort (Wikipedia, Heat Pump, 2009). A heat pump is similar to a conventional air-conditioning system where it function is to transfer heat from low to a higher temperature medium. The difference of heat pump compare to air-conditioning is this system can reverse its running cycle. When the system is operating in reverse direction, heat are absorbs from the outside and releases it inside the building (Langley, 1989, p. 2). The systems consist of a compressor, condenser, expansion valve and evaporator which is the four main components in heat pumps system.

Figure 2 : A Heat Pump System (Cengel & Boles, 2006, p. 288)