Manual of Open-Ended Laboratory (OEL)

Faculty of Engineering

Norsuzailina Mohamed Sutan Jethro Henry Adam Abdul Razak Abdul Karim Norazzlina M.Sa'don Mah Yau Seng

Manual of Open-Ended Laboratory (OEL)

Norsuzailina Mohamed Sutan Jethro Henry Adam Abdul Razak Abdul Karim Norazzlina M.Sa'don Mah Yau Seng © Norsuzailina Mohamed Sutan, Jethro Henry Adam, Abdul Razak Abdul Karim, Norazzlina M.Sa'don, Mah Yau Seng 2017.

All rights reserved. No part of this publication may be reproduced, stored in retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publisher.

Published in Malaysia by

UNIMAS Publisher, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia.

Printed in Malaysia by

Malien Press Sdn Bhd G/Flr Lot 184, Section 49, Jalan Abell, 93100 Kuching, Sarawak, Malaysia.

Perpustakaan Negara Malaysia

Cataloguing-in-Publication Data

Norsuzailina Mohamed Sutan

Manual of Open-Ended Laboratory (OEL) / Norsuzalina

Mohamed Sutan, Jethro Henry Adam, Abdul Razak Abdul Karim,

Norazzlina M. Sa'don, Mah Yau Seng.

ISBN 978-967-2008-14-9

1. Competency-based education--Laboratory manuals.

2. Civil engineering--Study and teaching (Higher)--Activity programs

I. Henry, Jethro Adam. II. Abdul Razak Abdul Karim.

II. Norazzlina M Sa'don. IV. Mah, Yau Seng. V. Title.

620.00711

CONTENTS

PREFACE & ACKNOWLEDGEMENT	
CONTRIBUTING AUTHORS	
LIST OF FIGURES	
KNS 1451 CIVIL ENGINEERING LABORATORY 1 1	
C1 – Physical Characteristics of Fine Aggregate	2
C2 – Physical Characteristics of Coarse Aggregate	5
C3 – Concrete Mix Design	8
C4– Mixing, Fresh Properties, Casting, Demoulding and Curing	11
C5 – Mechanical Properties of Hardened Concrete Based	14

KNS 1461 CIVIL ENGINEERING LABORATORY 2 17 V1 – Vertical Distance Measurement (Levelling) 18 V2 – Angle and Distance Measurement 23 V3 – Traverse Survey 27 V4 – Setting Out Curve 30 V5 – Survey Camp 34 S1 – Shear Force 36 S2 – Bending Moment 39 S3 – Deflection of Beams 42 S4 – Mechanical Properties of Materials 45

KNS 2591 CIVIL ENGINEERING LABORATORY 349		49
F1 —	Flow Through Weir	50
F2 —	Flow Through a Venturi Meter	53
F3 —	Flow Through a Nozzle	56
F4 —	Flow Through an Orifice	59
F5 —	Experiment on Bernoulli's Principle	62

L1 –	Physical Characteristic of Soil	66
L2 –	Soil Compaction	69
L3 –	Hydraulic Properties	72

KNS 260	1 CIVIL ENGINEERING LABORATORY 4	75
H1 —	Flow through Closed Pipelines	76
H2 –	Flow in Rectangular Channel with an Obstacle	79
H3 –	Flow in Rectangular Channel with Sluice Gate	82
H4 –	Experiment on Hydraulic Jump	85
G1 –	Shear Strength	88
G2 –	Consolidation	91

KNS 3611 CIVIL ENGINEERING LABORATORY 5	95
J1 – California Bearing Ratio Test (Sub-grade)	96
J2 – Skid Resistance Test	99
J3 – Mix Design Analysis of Bituminous Material	102
J4 – Marshall Stability and Flow Test of Bituminous Material	105
J5 – Penetration of Bituminous Material	107
J6 – Softening Point Test of Bituminous Material	110
Y1 – Rainfall measurement using Tipping Bucket	112
Y2 – Stream-flow Measurement using Current Meter	115
Y3 – Hydrological Assessment	118

KNS 362	1 CIVIL ENGINEERING LABORATORY 6	121
T1 –	Spot speed and traffic volume studies	122
W1-	Suspended Solids	125
W2 –	pH, Acidity and Alkalinity	129
W3 –	Biochemical Oxygen Demand (BOD)	133
W4 -	Chemical Oxygen Demand (COD)	136
W5 –	Coagulation and Flocculation	139

W6 – Mini Project	142
APPENDIX A	145
APPENDIX B	146

PREFACE & ACKNOWLEDGEMENT

This First Edition of Manual of Open-Ended Lab (OEL) for Civil Engineering Lab courses in the Faculty of Engineering, Universiti Malaysia Sarawak is written to fulfil the requirement of Outcome Based Education in Engineering Education by the Engineering Accreditation Council Malaysia. It consists of six (6) parts from Year 1 to Year 3. Each part comprises of two core subjects in laboratory except for the first year. The subject lists and codings used in this book are: First Year (Concrete (C), Survey (V) and Strength of Materials (S)), Second Year (fluid Mechanics (F), Soil Mechanics (L), Hydraulics (H) and Geotechnical (G) and Third Year (Higway (J), Hydrology (Y), Transportation (T) and Water/Wastewater (W)). The laboratory exercises are tied closely to the core courses in Civil Engineering Programme. Since this is the first edition, feedback and suggestions are most welcome especially from instructors, lab technicians and students. I am grateful to the Task Force Team consists of all Civil Engineering Lecturers that have contributed as authors and editors. On behalf of the team I would like to especially thank the Program Coordinator of Civil Engineering Department, Dr Mah Yau Seng, Head of Department of Civil Engineering, Dr Mohamad Raduan Kabit , Deputy Dean Academic of Faculty of Engineering, Associate Professor Dr Abdullah Yassin and last but not least Dean of Faculty of Engineering, Associate Professor Dr Al-Khalid Othman for their full support and guidance towards the completion of this OEL Manual.

Dr Norsuzailina Mohamed Sutan Head of OEL Task Force

CONTRIBUTING AUTHORS:

Ahmad Kamal ABDUL AZIZ Abdul Razak ABDUL KARIM Abd Azim ABDULLAH Jethro Henry ADAM Rohaida AFFANDI Nasser Rostam AFSHAR Rosmina AHMAD BUSTAMI Raudhah AHMADI Dygku Salma AWG ISMAIL Azhaili BAHARUN Norazlina BATENI Hin Joo BONG Zamri BUJANG **Ron Aldrino CHAN** Alsidqi HASAN Siti Halipah IBRAHIM Idawati ISMAIL Gaddafi ISMAILI Mohamad Raduan KABIT Puong Ling LAW Lik Pueh LIM Norazzlina M.SA'DON Yau Seng MAH

Md Abdul MANNAN Norsuzailina MOHAMED SUTAN Mohd Ibrahim Safawi MOHD ZAIN Chee Khoon NG Federik Joseph PUTUHENA Azida RASHIDI Nor Azalina ROSLI Fauzan SAHDI Onni Suhaiza SELAMAN Larry SILAS TIRAU Siti Noor Linda TAIB Ching Lee TEO Sim Nee TING Wan Hashim WAN IBRAHIM

LIST OF FIGURES

Figure V1	Example of Auto Level and Staff Points	20
Figure V2	Setting of Points	24
Figure V3	Example of Total Station and Prisms Points	28
Figure V4	Geometry of Curve	32
Figure F1	V-Notch and Rectangular-Notch Weirs	50
Figure F2	Venturi Meter	53
Figure F3	Melt Nozzle Design (a) and Geometries Studied in the Investigation (b)	56
Figure F4	Orifice	59
Figure L2	Standard Proctor Test Equipment	69
Figure L3	Setup for Hydraulic Properties Determination	72
Figure G2	A Typical Consolidation Cell	91
Figure J1	CBR Test Machine (a) and Proctor Test Equipment (b)	97
Figure J2	Pendulum Skid Resistance Tester	100

his Manual of Open-Ended Lab (OEL) for Civil Engineering Lab courses consists of six (6) parts from Year 1 to Year 3 of Civil Engineering Undergraduate Programme. The subject lists are: First Year (Concrete, Survey and Strength of Materials), Second Year (Fluid Mechanics, Soil Mechanics, Hydraulics and Geotechnical) and Third Year (Highway, Hydrology, Transportation and Water/Wastewater). The laboratory exercises are tied closely to the core courses in Civil Engineering Programme.

