MULTIPLE OBJECTIVES HYBRID METAHEURISTIC FOR SPATIAL-BASED REDISTRICTING: THE FRAMEWORK AND ALGORITHMS

BONG CHIN WEI

A thesis submitted
in full fulfillment of the requirements for the degree of PhD in Information Technology

FACULTY OF COMPUTER SCIENCE AND INFORMATION TECHNOLOGY
UNIVERSITI MALAYSIA SARAWAK
2006
DECLARATION

No portion of the work referred to in this report has been submitted in support of an application for another degree or qualification of this or any other university or institution of higher learning.

Bong Chin Wei
01-01-0033
2006
ACKNOWLEDGEMENTS

I have benefited greatly from the contribution of many people. I would especially like to recognise and thank the following people:

First and foremost, my beloved husband, Hong Yoong, and my family. I cannot express how much their love and support have meant to me over the years – without whom this thesis will not be possible. I dedicate this thesis to Hong Yoong, who has been my constant source of strength. I am incredibly lucky to have a wonderful partner with whom to share my life.

My supervisor, Dr Wang Yin Chai. His continuous motivation and ideas about creativity got me started down this path and his guidance and encouragement have kept me going. I’ve enjoyed working with him – brain-storming, writing and presenting – and he has taught me a great deal about how to conduct research. I also like to thank Dr Wong Chee Weng who helped in the writing of the thesis, Assoc. Prof. Narayanan and Dr Alvin Yeo for their support.

My other colleagues who have provided a conductive environment for my research work.

Thanks too to the Postgraduate Research Department.

This work was supported fully by PTPTP, the Award of Postgraduate and Post-doctoral Fellowship.
LIST OF PUBLICATIONS

Publication in Journals and Book

Publication in International Conference Proceeding

Bong Chin Wei, Wang Yin Chai and Wong Chee Weng (2004). Multiobjectives Metaheuristic for
Redistricting: The State-of-the-art. In Proceeding of International Conference of OCEANS'04
MTS/IEEE/TECHNO-OCEAN'04 (OTO'04). Kobe, Japan.

Bong Chin Wei and Wang Yin Chai (2004). An Intelligent GIS-based Spatial Zoning with Multiobjectives
Hybrid Metaheuristic Method. In Proceeding of The 17th International Conference on Industrial and
Engineering Applications of Artificial Intelligence And Expert System, IEA/EIA 2004. Ottawa,
Canada.

Bong Chin Wei and Wang Yin Chai (2002). A Shape Compactness Measurement Indexing With Fuzzy
Multicriteria Decision-making Approach. In Proceeding of 7th International Conference on Computer

Bong Chin Wei and Wang Yin Chai (2002). Incorporating Fuzzy Multicriteria Decision Support in GIS
based Forestland Zoning. In Proceeding of International Conference On Artificial Intelligence In

Publication in National Conference Proceeding

Bong Chin Wei, Wang Yin Chai and Wong Chee Weng (2004). Interactive Multiobjectives Decision
Support for Zone Definition Procedure. In Proceeding of Seminar Kebangsaan Sains Pemutusan
(SKSP2004). Anjuran Fakulti Sains Kuantitatif, Universiti Utara Malaysia.

Bong Chin Wei (2005). Multi-objective Metaheuristic for Spatial-based Zone Design Problem. In
Proceeding of National Computer Science Postgraduate Colloquium, NaCSPC'05. Universiti Sains
Malaysia.

Postgraduate Colloquium of Faculty of Computer Science and Information Technology. Universiti
Malaysia Sarawak.
TABLE OF CONTENT

DECLARATION... II
ACKNOWLEDGEMENTS.. III
LIST OF PUBLICATIONS.. IV
TABLE OF CONTENT... VI
LIST OF TABLES... XII
LIST OF FIGURES.. XIII
ABSTRACT ... XVII
ABSTRAK ... XIX
LIST OF ACRONYMS .. XXI

CHAPTER 1 OVERVIEW.. 1
 1.1 Introduction... 1
 1.2 Background of the study .. 2
 1.2.1 Redistricting a spatial decision problem.. 3
 1.2.2 Redistricting is multiple criteria decision problem... 4
 1.2.3 Redistricting is multiple objectives combinatorial optimisation 7
 1.3 Statement of the research problem .. 9
 1.4 Objectives of the study ... 10
 1.5 Research Methodology ... 11
 1.6 Scope of the Research ... 14
 1.7 Contributions ... 15
1.7.1 The multiple objectives spatial redistricting framework ... 16
1.7.2 The redesign of hybrid metaheuristic .. 16
1.7.3 The design and implementation for the framework ... 17
1.8 Organisation of Thesis ... 17

CHAPTER 2 REDISTRIBUTING: A COMPREHENSIVE REVIEW ... 21
2.1 Introduction .. 21
2.2 Redistricting Problem and Complexity .. 23
 2.2.1 Redistricting is super-wipeout ... 24
 2.2.2 Redistricting – A spatial multiple criteria decision problem ... 26
2.3 Redistricting Applications and Solutions .. 32
 2.3.1 General Redistricting Scheme for the Existing Applications .. 37
 2.3.1.1 Limited research study in redistricting decision-making method 40
 2.3.1.2 Optimisation search method in redistricting process .. 41
 2.3.2 GIS in Redistricting ... 45
2.4 Multiple objectives Metaheuristic for Redistricting .. 48
 2.4.1 A scenario of multiple objectives redistricting problem solving .. 49
 2.4.2 Single objective against multiple objectives redistricting problem solving 51
 2.4.3 Multiple objectives redistricting problem solving versus common multiple objectives problem solving .. 52
 2.4.4 Multiple objectives redistricting problem solving versus general location problem solving ... 54
 2.4.5 Multiple objectives redistricting problem solving in this research 55
2.5 Summary .. 56
CHAPTER 3 MULTIPLE OBJECTIVES SPATIAL REDISTRICTING FRAMEWORK (MOSREF) 58

3.1 Introduction .. 58

3.2 Comprehensive Analysis of Multiple Objectives Redistricting Problem 59

3.3 Design of MoSReF .. 64

3.3.1 Multiple objectives problem definition ... 69

3.3.1.1 Variables ... 72

3.3.1.2 Constraint .. 72

3.3.1.3 Objective functions ... 73

3.3.1.4 Multiple objectives rules and notations ... 73

3.3.2 Approximation of non-dominated set .. 75

3.3.2.1 Dominancy comparison ... 76

3.3.2.2 Quality measurement ... 78

3.3.3 Decision-maker (DM) preferences .. 80

3.3.4 Optimal reference set .. 81

3.3.5 Process flow of MoSReF ... 82

3.4 The Role of GIS in MoSReF ... 83

3.5 Summary .. 86

CHAPTER 4 REDESIGN OF A HYBRID METAHEURISTIC FOR MOSREF .. 87

4.1 Introduction .. 87

4.2 Features of the Proposed Search Strategy .. 88

4.2.1 Usage of Tabu Search (TS) technique ... 89

4.2.2 A wide exploration of the solution space with intensification and diversification 90

4.2.3 Strategic oscillation enhancement with Scatter Search (SS) and Path Relinking (PR) 91

4.3 Architectural Design of Proposed MoSReF with HMH .. 93
4.3.1 Exploration of the solution space ... 94
 4.3.1.1 Diversification ... 95
 4.3.1.2 Intensification ... 99
 4.3.2 The tabu list and the tabu daemon ... 103
 4.3.3 Stopping criteria .. 105
 4.4 HMH in MoSReF ... 106
 4.5 Summary ... 109

CHAPTER 5 THE MULTIPLE OBJECTIVES HYBRID METAHEURISTIC SPATIAL
REDISTRICTING: PROTOTYPING AND EXPERIMENT .. 110
 5.1 Introduction ... 110
 5.2 Experiment .. 111
 5.2.1 The hardware and software component .. 111
 5.2.2 The data component .. 112
 5.3 Prototype Design and Development ... 116
 5.3.1 Module one: Generate seed solution ... 118
 5.3.2 Module two: Neighbouring tabu move .. 120
 5.3.3 Module three: Compare dominancy degree ... 122
 5.3.4 Module four: Define multiple objectives and enhanced weight vector 122
 5.3.5 Module five: Measure quality .. 124
 5.3.6 Module six: Manipulate pareto-optimal solution 125
 5.3.7 Module Seven: Improve territory .. 125
 5.4 Coding of Spatial Redistricting .. 129
 5.4.1 Overlaying analysis .. 129
 5.4.2 Adjacency analysis .. 131
5.4.3 Continuity analysis .. 132

5.5 Screenshot of the Developed Prototype ... 134

5.6 Summary .. 136

CHAPTER 6 ANALYSIS AND EVALUATION OF THE PROPOSED FRAMEWORK 138

6.1 Introduction .. 138

6.2 The Case Study .. 140

6.3 Evaluation Methodology ... 141

6.4 Performance Analysis of the MoSReF Components .. 143

6.4.1 Performance Analysis of the Approximation of ND set ... 143

6.4.1.1 Dominancy comparison .. 144

6.4.1.2 The scalarising function used .. 147

6.4.1.3 The γ-parameter ... 148

6.4.1.4 Performance Analysis of the Reference Set Handling ... 150

6.4.2 Performance Analysis for the Proposed HMH .. 151

6.4.2.1 The proposed diversified and intensified strategies ... 152

6.4.2.2 The tabu daemon, ρ-value ... 153

6.4.2.3 The Move strategy ... 155

6.4.2.4 Avoidance of local optimal ... 156

6.4.3 The overall performances .. 157

6.4.3.1 Problem Size ... 157

6.4.3.2 Number of objectives defined .. 159

6.5 Comparative Result with Single Objective Solutions ... 161

6.6 Conclusion ... 170
CHAPTER 7 CONCLUSION ..173

7.1 Summary ..173

7.2 Revisiting the Dissertation Contribution ...175

7.2.1 Developed multiple objectives spatial redistricting framework ...176

7.2.2 Developed hybrid metaheuristic ...177

7.2.3 The design, implementation and evaluation for the framework ...179

7.3 Optimal Performance for the Proposed Redistricting Algorithm ..181

7.4 Recommendations for Future Work ..182

7.4.1 Extended study on interactive multiple objectives optimisation ...182

7.4.2 Parallel algorithm for redistricting process ..182

7.4.3 Multiple objectives evolutionary techniques for redistricting ...183

LIST OF REFERENCES ..184

Appendix A: Multiple Criteria Decision-Making Methods ..206

Appendix B: Sample Result Of Dominancy Comparison ..212

Appendix C: Sample Result Of Scalarising Functions Used ..213

Appendix D: Sample Result Of Reference Set Handling ...214

Appendix E: Sample Result Of Intensification And Diversification Strategies Used ..215

Appendix F: Sample Result Of Different Problem Sizes ...216

Appendix G: Sample Result On Single Objective And Multiple Objectives Decision-Making217

xi
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Summary of redistricting applications with respective goals or constraints</td>
<td>30</td>
</tr>
<tr>
<td>2.2 Redistricting applications with respective areas, methods, and implementation tools from 1995 to 2004</td>
<td>33</td>
</tr>
<tr>
<td>3.1 The features of existing redistricting applications in Table 2.2 that finalize and lead to the requirement of MoSReF</td>
<td>62</td>
</tr>
<tr>
<td>3.2 Characteristics of multiple objectives redistricting decision-making framework compared to the general characteristics of a spatial decision-making framework</td>
<td>63</td>
</tr>
<tr>
<td>5.1 The seven main modules in the prototype</td>
<td>128</td>
</tr>
<tr>
<td>6.1 Result of the M values for the strong and weak dominance with respect to different number of seed solutions</td>
<td>146</td>
</tr>
<tr>
<td>6.2 Mean values of the M, N and N/M for checking the dominancy and measuring the quality before insert the solutions in the RS</td>
<td>151</td>
</tr>
<tr>
<td>6.3 The M values and its percentage of improvement with the advance tools</td>
<td>152</td>
</tr>
<tr>
<td>6.4 The M values for MOVE I, MOVE II and a COMBINATION MOVE for a three-objective problem with size of 50 basic units</td>
<td>155</td>
</tr>
<tr>
<td>6.5 Weight vectors for each of the objectives</td>
<td>163</td>
</tr>
<tr>
<td>6.6 Result of WAMCF - MoSReF comparison for 3 Objectives, 50 Basic Units</td>
<td>163</td>
</tr>
<tr>
<td>6.7 Result of WAMCF - MoSReF comparison for 3 Objectives, 100 Basic Units</td>
<td>163</td>
</tr>
<tr>
<td>6.8 Result of WAMCF - MoSReF comparison for a 4-objective and 50 Basic Units problem</td>
<td>166</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>6</td>
</tr>
<tr>
<td>1.2</td>
<td>6</td>
</tr>
<tr>
<td>1.3</td>
<td>9</td>
</tr>
<tr>
<td>1.4</td>
<td>13</td>
</tr>
<tr>
<td>1.5</td>
<td>14</td>
</tr>
<tr>
<td>2.1</td>
<td>24</td>
</tr>
<tr>
<td>2.2</td>
<td>26</td>
</tr>
<tr>
<td>2.3</td>
<td>37</td>
</tr>
<tr>
<td>2.4</td>
<td>47</td>
</tr>
<tr>
<td>2.5</td>
<td>50</td>
</tr>
<tr>
<td>3.1</td>
<td>66</td>
</tr>
<tr>
<td>3.2</td>
<td>67</td>
</tr>
<tr>
<td>3.3</td>
<td>71</td>
</tr>
<tr>
<td>3.4</td>
<td>71</td>
</tr>
<tr>
<td>3.5</td>
<td>77</td>
</tr>
<tr>
<td>3.6</td>
<td>77</td>
</tr>
</tbody>
</table>

An example of inferior and non-inferior solutions in a bi-objective electoral redistricting (Barkan, 2001) ... 71

Graph of objective space for tri-objectives \((f_1(x), f_2(x), f_3(x))\) ... 77

Manhattan distance for each alternative \((x_1\text{ and } x_2)\) is measured from existing solution \((x)\) to get proximity function to compare their dominancy in the objective space. ... 77
3.7 Every new district generated \((x_1, x_2, \text{ and } x_3)\) would be qualified by ATSF for the quality measurement.

3.8 The process flow of the MoSReF in producing the optimal solution set.

3.9 An example of spatial analysis process.

3.10 Spatial redistricting problem solving requires geometric reasoning and adjacency analysis. Geometric reasoning incorporates both spatial and logical deductive reasoning.

3.11 Discontinuous zone for Zone A and Zone B because Zone A and Zone B have two different geometries and they are called multi-part geometry.

4.1 The design of the proposed HMH for the MoSReF.

4.2 The gradual expansion of the SEED from a random selected basic unit to a completed district plans with three districts.

4.3 Algorithm for seed solution and random diversification generator.

4.4 The gradual expansion of the SEED when facing the hard constraint.

4.5 Algorithm for the PR generation method in the ITR.

4.6 Generating improved territory by using the ITR from the parent layer 1 and parent layer 2 to a composite layer.

4.7 Sequential tabu neighbouring move for MOVE I.

4.8 Sequential tabu neighbouring move for MOVE II.

4.9 Algorithm for generated subset combination.

4.10 Scatter search generation method in the GSC.

4.11 Algorithm for Neighbouring tabu move with tabu list and tabu daemon.

4.12 The overall design of the multiple objectives spatial redistricting decision-making with hybrid metaheuristic based on the MoSReF as in Figure 3.1.

4.13 Procedure for HMH when combine with MoSReF.
5.1 The input, process and output of the experiment. There are four different categories of map layers involved in the overall process ... 115
5.2 Workflow of the prototype development process .. 116
5.3 Context Level Diagram for the prototype .. 117
5.4 Diagram 0 for Data Flow Diagram ... 118
5.5 The district plan with three districts (bold lines) produced from the basic unit layer (smaller polygon with number) .. 119
5.6 Data flow diagram Level Two for Module One .. 119
5.7 Data flow diagram Level Two for Module Two .. 120
5.8 Data flow diagram Level Three for Module 2.2 .. 121
5.9 Data flow diagram Level Three for Module 2.3 .. 121
5.10 Data flow diagram Level Two for Module Three .. 121
5.11 The algorithm for determining the weight vector .. 121
5.12 Data flow diagram Level Two for Module Four .. 123
5.13 Data flow diagram Level Two for Module Five .. 124
5.14 Data flow diagram Level Two for Module Six .. 127
5.15 Data flow diagram Level Two for Module Seven ... 127
5.16 The intersect method syntax .. 131
5.17 The dissolve method syntax ... 131
5.18 Coding for adjacency analysis .. 133
5.19 Coding for spatial continuity checking .. 133
5.20 Screenshots of the prototype: (a) Main engine (b) Dialogue for obtaining DM preferences for the case of five objectives .. 135
6.1 Selected input layer for the case study ... 141
6.2 The rule set for the weak dominancy comparison ... 145
6.3 The rule set for the strong dominancy comparison .. 145
6.4 M values for strong and weak dominance with COMBINATION move, with different number of seed solutions ... 146
6.5 M values for experiment with two different scalarising functions .. 148
6.6 M values for experiment with different γ-parameter values ... 149
6.7 Result for dominancy checking before inserting pareto-optimal solution to RS 151
6.8 Percentage improvement for the three different ways: improvement with the ITR, Intensifier and the combination .. 153
6.9 M values for experiment with different ρ-value ... 154
6.10 The result of conventional greedy search algorithm and proposed MoSReF 157
6.11 The graph of the M, N and N/M for different problem sizes .. 158
6.12 Result for the problem with different number of objectives defined 160
6.13 Individual results for first objective of WAMCF – MoSReF comparisons with 3 initial seeds, 3 objectives defined and 100 Basic Units ... 165
6.14 Individual results for first objective of WAMCF – MoSReF comparisons with 5 initial seeds, 3 objectives defined and 100 Basic Units ... 165
6.15 Comparative individual results for the first objective for the 4-objective 50 basic units problem... 168
6.16 Comparative individual results for the third objective for the 4-objective 50 basic units problem... 168
6.17 Results of the 3-objective and 4-objective problems for 50 and 100 Basic Units 170
ABSTRACT

Redistricting is a process to divide a land surface into two or more pieces by partitioning geographical zones or districts into territories, subject to some side constraints. Redistricting is an important spatial optimisation problem because it decides the space management of a particular region and is related to location data. In more specific and scientific way, redistricting is multiple objectives combinatorial optimisation problem as it involves optimal arrangement of a group of discrete entities to satisfy various criteria for evaluating of the quality of the given arrangement or solution. Thus, there is a minimisation or maximisation objective related to each of these criteria. However, no single solution optimises simultaneously all the objectives and there is a need to select the best compromise solution. In addition, there are often a variety of competing objectives in real world situations, and perfect solution to achieve any one of the objectives may be impossible. A very obvious knowledge gap exists in the current trend of methods for redistricting problem with existing real world multiple objectives natures. Consequently, this thesis aims to resolve the gap of the current trend of redistricting approaches with a framework of MODM approach. This research has designed and developed a generic multiple objectives decision support framework for redistricting to provide a more realistic perception of redistricting problems. This thesis considers the multiple objectives definition, identifies a wider range of alternatives, and describes the relationship between alternatives. The multiple objectives redistricting approach designed is called Multiple Objectives Spatial Redistricting Framework (MoSReF) and it is supported by redesigning a search strategy from a hybrid metaheuristic, called HMH. The two proposed mechanisms operate closely together to show the realities of the multiple objectives spatial redistricting problem because it considers the relationships between multiple objectives, which may be conflicting as well as complementing. The HMH incorporates the symbiotic methods of tabu search, scatter search, and path relinking that not only has a wide exploration in the search space but also avoid being trapped in a local optimal. The multiple
objectives redistricting decision-making is formulated based on a natural and open extension of simulation
models because it enables the decision-makers to understand a problem by considering it based on their
preferences and to grasp the required tradeoffs in the problem. The integration of the decision-makers’
knowledge with the multiple objectives constitutes the genuine knowledge in the complex decision-
making process. Later, the research has creatively designed and developed a workable prototype of the
proposed MosReF. The prototype developed has defined the procedures for spatial data handling,
dominancy comparison, decision-makers’ preferences, selection of scalarising function, power search with
intensification and diversification, and handling of optimal solutions set. The result and analysis of the
developed prototype has proved the applicability and effectiveness of the multiple objectives spatial
redistricting framework. The analysis of the result managed to demonstrate the concept of the multiple
objectives spatial redistricting solution to generate a pareto-optimal solution set in a reference set. The
overall performance of the developed redistricting algorithm was evaluated under different circumstances
and it clearly showed its advantages. These advantages included the result of the analysis, which is robust
given the realities and nature of multiple objectives spatial information. It also demonstrated an adequate
reflection of the district planner’s perception towards multiple objectives and their degrees of confidence
in their subjective assessment. A comparison with a MADM method also showed concrete evidence on
several aspects that the multiple objectives framework is more promising.
ABSTRAK

Pembahagian semula kawasan adalah satu proses untuk membahagikan permukaan tanah kepada dua atau lebih bahagian dengan memisahkan kawasan geografi kepada sempadan tanah dengan kekangan tertentu. Ia adalah masalah pengoptimum yang penting kerana ia memutuskan pengurusan ruang untuk sesuatu tempat dan ia berkaitan dengan data lokasi. Secara spesifik dan saintifik, pembahagian semula kawasan merupakan masalah pengoptimuman kombinasi pelbagai-objektif kerana ia melibatkan susunan satu kumpulan entiti yang bersaing bagi memenuhi pelbagai kriteria untuk penyemakan kualiti yang dihasilkan daripada susunan susunan atau penyelesaian. Oleh yang demikian, terdapat suatu objektif peminimum atau pemaksimum yang terikat kepada setiap kriteria tersebut. Walau bagaimanapun, tidak terdapat satu penyelesaian yang dapat memenuhi semua objektif pada masa yang sama dan pilihan untuk penyelesaian yang terbaik adalah diperlukan. Tambah pula, biasanya terdapat pelbagai objektif yang sering bersaing dalam situasi dunia sebenar dan penyelesaian yang sempurna yang boleh mencapai antara salah satu objektif adalah mungkin tidak wujud. Satu jurang pengetahuan yang jelas muncul dalam cara penyelesaian terkini untuk masalah pembahagian semula kawasan dengan keadaan pelbagai objektif dalam dunia sebenar. Justeru itu, tesis ini bertujuan menyelesaikan jurang kecenderungan bagi kaedah terkini dengan rangka kaedah pemutusan pelbagai objektif. Oleh itu, kajian ini telah mereka dan menghasilkan satu rangka bantuan pemutusan pelbagai objektif yang generik untuk menyediakan satu persepsi yang realistik bagi masalah pembahagian semula kawasan. Tesis ini mempertimbangkan definisi pelbagai objektif, mengenalpasti pilihan lain yang lebih luas, dan menggambarkan hubungan antara pilihan lain dengan jelas. Penyelesaian masalah pembahagian kawasan yang direka dipanggil sebagai Rangka Kerja Pembahagian Semula Spatial Pelbagai Objektif (Multiple Objectives Spatial Redistricting Framework (MoSReF)) dan ia disokong dengan mereka semula satu strategi pencarian daripada gabungan cara metaheuristic, dipanggil HMH. Dua mekanisma dicadangkan untuk beroperasi bersama-
LIST OF ACRONYMS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHP</td>
<td>Analytical Hierarchical Process</td>
</tr>
<tr>
<td>ATSF</td>
<td>Achievement Tchebycheff Scalarising Function</td>
</tr>
<tr>
<td>DM</td>
<td>Decision-maker</td>
</tr>
<tr>
<td>ELETRE</td>
<td>Elimination and Choice Translating Reality</td>
</tr>
<tr>
<td>GA</td>
<td>Genetic Algorithm</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographical Information System</td>
</tr>
<tr>
<td>GSC</td>
<td>Generated Subset Combination</td>
</tr>
<tr>
<td>ITR</td>
<td>Improved Territory Procedure</td>
</tr>
<tr>
<td>HMH</td>
<td>Hybrid Metaheuristic</td>
</tr>
<tr>
<td>MADM</td>
<td>Multiple Attributes Decision-making</td>
</tr>
<tr>
<td>MAUP</td>
<td>Modifiable Areal Unit Problem</td>
</tr>
<tr>
<td>MCDM</td>
<td>Multiple Criteria Decision-making</td>
</tr>
<tr>
<td>MODM</td>
<td>Multiple Objectives Decision-making</td>
</tr>
<tr>
<td>MoSReF</td>
<td>Multiple Objectives Spatial Redistricting Framework</td>
</tr>
<tr>
<td>NAT</td>
<td>Neighbouring Tabu Move</td>
</tr>
<tr>
<td>PR</td>
<td>Path Relinking</td>
</tr>
<tr>
<td>RS</td>
<td>Reference Set</td>
</tr>
<tr>
<td>SA</td>
<td>Simulated Annealing</td>
</tr>
<tr>
<td>SEED</td>
<td>Random Seed Generator</td>
</tr>
<tr>
<td>SS</td>
<td>Scatter Search</td>
</tr>
<tr>
<td>TS</td>
<td>Tabu Search</td>
</tr>
<tr>
<td>WAMCF</td>
<td>Weighted Additive Multiple Criteria Function</td>
</tr>
</tbody>
</table>
Chapter 1 Overview

1.1 Introduction

The process of redistricting involves the division of a land surface into two or more pieces (Leach and Kandel, 1993). According to Bozkaya et al. (2003), the aim of redistricting is to partition geographical zones or districts into territories, subject to some side constraints. Redistricting process is not only relevant to election system, but is also needed in school, business, law enforcement and even forests related planning system. Redistricting is tremendously important as it determines the management of the space of a particular region. According to Agnew (1994), "The spaces within which political, social, cultural, and economic processes unfold are not simply static backdrops or locations reference for human events, but the products of distinct territorial structures, identities, and ambitions, and are deeply implicated in social and political changes". Therefore, in the process of redistricting, it is important to redraw the lines of a district based on the social and natural changes from time to time.

"Seeing relationships based on geography" is the selling point today for many practical oriented fields and 80 percent of decisions by state and local government involve a spatial component either directly or indirectly (Laurini and Thompson, 1992). Geographers are used to thinking spatially, and geography has some common intellectual roots related with spaces. Therefore, the study of spatial redistricting decision support system looks at a discipline that provides formalisms and theories fundamental to the management of space and automations of the land division process.
Redistricting can be classified as a location search problem, which involves the search for an appropriate location for an activity; and the spatial relationships between defined demand and facility (Church, 1999). Nevertheless, the coverage on redistricting in Geographical Information System (GIS) journals and magazines makes it clear that the attention of technical staff in redistricting area is very much taken up with the acquisition and preparation of data. For this purpose, a full ‘generic’ range of multiple objectives redistricting decision support model with the help of GIS functionality is quite appropriate (Horn, 1999).

In addition, redistricting process involves specialised requirements and it is normally carried out as a distinct activity (Alvanides and Openshaw, 2001; Fischer, 2000). Information uncertainty and conflict management are critical issues that may emerge in evaluating alternatives (Vreeker et al., 2002). Therefore, it is useful to have the multiple objectives redistricting decision support in GIS environment to provide assistance in making redistricting plans. It will help to investigate the performance in satisfying a set of relevant criteria for the “optimal solutions”, which aims at achieving a desired degree of balance between the competing objectives.

1.2 Background of the study

Throughout this thesis, the term redistricting is synonymous with and sometimes used interchangeably with classification, clustering, partitioning, segmentation, aggregation and the creation or generation of zones, territories, beats (as in police) or routes (as in vehicle). According to Helbig et al. (1972), redistricting and its consequences, should not be taken lightly. Redistricting is a problem on the aggregation of some physical phenomena such as human distribution into location or zonal pattern with respect to multiple natural or artificial criteria thereby allowing man to be served by existing limited facilities or for some human activities. It has two main tasks: spatial data aggregation; and functions to be optimised subject to certain constraints. The aggregation process is due to space constraints or scarce resources. The optimisation process helps to avoid transportation problem due to natural geography. It also helps to provide a fundamental platform for analysis and study of a more dynamic human behaviour.
or needs. In short, redistricting problem is both a spatial optimisation problem and a multiple criteria decision problem.

1.2.1 Redistricting a spatial decision problem

Redistricting is geographically related and it is certainly a spatial optimisation problem. Spatial is a term that refers to location data for objects positioned in any space that are not just geographical (Laurini and Thompson, 1992). This term will be used in this research to denote world space. Spatial data are special compared to data usually stored in databases because it has to deal with an infinite number of points in space, not a fixed number of entities. Therefore, analysis for spatial data is concerned with the distribution of spatial objects represented as points, lines and polygons (Sadahiro and Umemura, 2000). Spatial data are different compared to non-spatial data. They are special because of its continuity in space and multi-dimensionality. A significant amount of spatial information is being created, updated and manipulated on a daily basis (Murray, 1999). The analysis of spatial data is called spatial analysis. Spatial analysis has led to the view of a key area for geographical concerns on the analysis of the aggregation of spatial information into zones (Rustiadi and Kobayashi, 2001).

In a general perspective, redistricting is a normative spatial model for dividing land into territories for schools, sales or services, voting, and others for identifying sites or patterns of sites to provide service accessibility. As classified by Church and Sorensen (1996), it has to serve two main purposes: to describe the reason for the choice of the existing facility locations; and to prescribe the selection of a new location in a general location model. Redistricting is extremely important because all human activities involve choices of location, either explicitly or implicitly. It also gathers and records location data, or searches for optimal location for an economic function like warehousing and distribution. Therefore, polygon-redistricting problem is a capacity constrained 0/1 assignment problem. It is not a problem of locating facilities, but of dividing territory. Location-allocation cannot solve redistricting with capacity constraints,