

Design Refinement for Efficient Clustering of Objects in Embedded Systems

Waseem Ahmed
1
, Doug Myers

2

1
Curtin University of Technology, Sarawak Campus, Malaysia

2
Curtin University of Technology, Bentley Campus, Western Australia

Abstract
Hardware software co-design seeks to meet

performance objectives via a combination of hardware

and software modules. One difficulty in reaching these

objectives lies in lack of cohesion and increased

coupling amongst the implemented modules that results

in an increased inter module communication cost. While
most of the traditional partitioning approaches are

initiated in the post-coding phase, we suggest the design

stage may be a better focus of attention in addressing

this problem.

In this paper, we propose a novel approach that uses
information from sequence diagrams in UML designs to

help ease the partitioning problem.

1. Introduction

A key phase in the design of an embedded system is

hardware/software partitioning that refers to the

partitioning of the application into separate hardware and

software modules. Traditional approaches to this

problem as highlighted in [1][2] have been to initiate the

process after the system specifications have been

translated into code. The input to such partitioning

approaches is thus the source code of the application, a

binary implementation, or an internal format generated

from the source code during analysis as seen in Figure 1.

An exception to the above is a work based on UML

design specification [3] that uses function point analysis

and COCOMO to compare different design alternatives

at an early stage of analysis.

A major assumption in most of these approaches is

that the source code reflects the best possible design,

which may not be always true, as the designer of the

code might not have taken into consideration the mixed

nature of the final implementation. The limitations of the

design in terms of mixed implementation are thus carried

unchanged into the implementation phase.

In this paper we propose to analyze the design of an

application with a mixed hardware software

implementation, prior to subjecting it to the partitioning

process.

Figure 1. Traditional Partitioning ApproachesFigure 1. Traditional Partitioning ApproachesFigure 1. Traditional Partitioning ApproachesFigure 1. Traditional Partitioning Approaches

2. Cohesion, Coupling and Design Shuffle

An effective hardware software co-design is one that

maximizes cohesion (the degree to which

communication takes place among the module’s

elements) while minimizing coupling (the degree of

inter-modular communication) amongst modules [].

Modules that have been designed by not taking into

account the mixed nature of implementation may have

high coupling, resulting in a high inter module

communication cost (IMCC), that cannot be wholly

rectified by the current partitioning approaches.

Reducing coupling between components may involve

either minimizing the interaction between them by

shifting the onus of communication to another

component or by shifting the entire function (and/or any

interaction between them) to another object(s) if

possible. We choose to refer to this heuristic as the

design shuffle or just shuffle in this document.

3. Sequence diagram analysis

Sequence diagrams in UML are used for depicting the

scenarios of typical interactions and message passing

between objects that constitute the system. For a single

Code

Analysis

of Code

Compile, estimate

amd analyse

Compilation

to binary

hw

sw

Analysis

of Binary

hw

sw

hw

sw

D

e

s
i

g

n

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

