Dynamics of Continuous, Discrete and Impulsive Systems Series B: Applications & Algorithms 24 (2017) 113-126 Copyright ©2017 Watam Press

SIMULATION OF UNDULAR BORES EVOLUTION WITH DAMPING

W.K. Tiong¹, K.G. Tay², C.T. Ong³ and K.L. Chiew⁴

 $^{1,4}{\rm Faculty}$ of Computer Science and Information Technology Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia

²Department of Communication Engineering Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Johor, Malaysia ³Department of Mathematical Sciences Universiti Teknologi Malaysia, 81300 Skudai, Johor, Malaysia

Abstract. Propagation of undular bores with damping is considered in the framework of perturbed extended Korteweg-de Vries (peKdV) equation. Two types of damping terms for the peKdV equation, namely linear and Chezy frictional terms, which describe the turbulent boundary layers in the fluid flow are considered. Solving the peKdV equation numerically using the method of lines shows that under the influence of damping, the leading solitary wave of the undular bores will split from the nonlinear wavetrain, propagates and behaves like an isolated solitary wave. The amplitude of the leading wave will remain the same for some times before it starts to decay again at a larger time. In general the amplitude of the leading wave and the mean level across the undular bore decreases due to the effect of damping.

Keywords. undular bores, damping, linear friction, Chezy friction, extended Kortewegde Vries equation.

AMS (MOS) subject classification: 35Q53

1 Introduction

The extended Korterweg-de Vries (eKdV) equation

$$u_t + \alpha u u_x + \beta u^2 u_x + u_{xxx} = 0 \tag{1}$$

is an appropriate model to describe nonlinear wave evolution in stratified fluid flows, for instance large-amplitude internal waves in ocean (see [5–6]). The sign of the coefficient β depends on the fluid stratification [4–6].

The solitary wave solution of the eKdV equation (1) depends on the signs of the coefficients α and β . When the coefficient $\beta < 0$, the solitary wave solution of (1) is given by [4]

$$u(x,t) = \frac{\alpha}{\beta} \frac{B^2 - 1}{1 + B \cosh[\gamma(x - \gamma^2 t)]},$$
(2)