## Weighting Cases in SPSS

#### Donald Stephen Institute of Borneo Studies, Universiti Malaysia Sarawak

Suppose your data are already in a frequency table and you want to use SPSS to analyze them (like exercise 2 below). You could enter the score "1" one time, the score "2" two times, the score "3" three times and so on, but there is a much easier way to enter the data.

1. Below are the exam scores of a group of students. Please construct a bar graph and pie chart based on the data given in the frequency table:

| Group | Count |
|-------|-------|
| 0-9   | 1     |
| 10-19 | 2     |
| 20-29 | 3     |
| 30-39 | 4     |
| 40-49 | 5     |
| 50-59 | 4     |
| 60-69 | 3     |
| 70-79 | 2     |
| 80-89 | 2     |
| 90-99 | 1     |

#### Frequency Table

|    | group | var |
|----|-------|-----|
| 1  | 1.00  |     |
| 2  | 2.00  | 1   |
| 3  | 2.00  | -   |
| 4  | 3.00  |     |
| 5  | 3.00  |     |
| 6  | 3.00  |     |
| 7  | 4.00  |     |
| 8  | 4.00  |     |
| 9  | 4.00  |     |
| 10 | 4.00  |     |
| 11 | 5.00  |     |
| 12 | 5.00  |     |
| 13 | 5.00  |     |
| 14 | 5.00  |     |
| 15 | 5.00  |     |
| 16 | 6.00  |     |
| 17 | 6.00  |     |
| 18 | 6.00  |     |
| 19 | 6.00  |     |
| 20 | 7.00  |     |
| 21 | 7.00  |     |
| 22 | 7.00  |     |
| 23 | 8.00  |     |
| 24 | 8.00  |     |
| 25 | 9.00  |     |
| 26 | 9.00  |     |
| 27 | 10.00 |     |
| 28 |       |     |

### Manually this is how you enter data

But you can also do this:

|    | group | count | var |
|----|-------|-------|-----|
| 1  | 1.00  | 1.00  |     |
| 2  | 2.00  | 2.00  | 2   |
| 3  | 3.00  | 3.00  |     |
| 4  | 4.00  | 4.00  |     |
| 5  | 5.00  | 5.00  |     |
| 6  | 6.00  | 4.00  |     |
| 7  | 7.00  | 3.00  |     |
| 8  | 8.00  | 2.00  |     |
| 9  | 9.00  | 2.00  |     |
| 10 | 10.00 | 1.00  |     |
| 11 |       |       |     |

Create two variables in SPSS, "group" and "count" and enter the data. You data should look like the table above. Of course in both cases you need to define value labels 0-9: value 1, 10-19 value 2 and so on.

If you are doing method #2, click on **Data**, select **Weight Cases**. Select **Weight cases by** and put in the "count" variable. Click OK. (Alternately, you can get to weight case option by clicking the weight case shortcut icon that looks like weight scale)

| <u>V</u> iew <u>D</u> ata | Transform | <u>A</u> nalyze D | Direct Marketing Graphs Utilities Add-ons Window Help |
|---------------------------|-----------|-------------------|-------------------------------------------------------|
|                           |           | ∽∎ 📱              | 🖺 📥 🛋 👪 🖾 🗰 🐴 🍳                                       |
| 8                         | .00       |                   | Weight Cases                                          |
| group                     | count     | var               | Weight Cases                                          |
| 1.0                       | 0 1.00    |                   |                                                       |
| 2.0                       | 0 2.00    |                   | ◎ <u>D</u> o not weight cases                         |
| 3.0                       | 0 3.00    |                   | © Weight cases by                                     |
| 4.0                       | 0 4.00    |                   | Erequency Variable:                                   |
| 5.0                       | 0 5.00    |                   | Count                                                 |
| 6.0                       | 0 4.00    |                   |                                                       |
| 7.0                       | 0 3.00    |                   |                                                       |
| 8.0                       | 0 2.00    |                   |                                                       |
| 9.0                       | 0 2.00    |                   | Current Status: Weight cases by count                 |
| 10.0                      | 0 1.00    |                   |                                                       |
|                           |           |                   | OK Paste Reset Cancel Help                            |
|                           |           |                   |                                                       |



To answer the question, go back to your data and you are ready to do histogram.

Regardless of whether you use method #1 or #2, you should get this



Cases weighted by count

# **QUESTION 3 EXERCISE 1**

| X1 = The<br>X2 = The<br>X3 = Mar<br>X4 = The<br>X5 = Man<br>X6 = Bool | collection of b<br>collection of b<br>by of the books<br>books are well<br>y of the books<br>as not found ca | ooks in CAIS is g<br>ooks in CAIS is u<br>are lost<br>arranged<br>are torn and diu<br>in be easily obta | ood<br>p to date<br>rty<br>iined through in | terlibrary loan                                                | we<br>easure.                          |              |
|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------|----------------------------------------|--------------|
| "PC"                                                                  | VS                                                                                                           | S                                                                                                       | N                                           | DS                                                             | VDS                                    | Total Sample |
| DC                                                                    | (1)                                                                                                          | (2)                                                                                                     | (3)                                         | (4)                                                            | (5)                                    |              |
| X1                                                                    | 4                                                                                                            | 5                                                                                                       | 3                                           | 3                                                              | 5                                      | 20           |
| X2                                                                    | 2                                                                                                            | 4                                                                                                       | 4                                           | 3                                                              | 7                                      | 20           |
| X3                                                                    | 1                                                                                                            | 2                                                                                                       | 5                                           | 2                                                              | 10                                     | 20           |
| X4                                                                    | 4                                                                                                            | 4                                                                                                       | 2                                           | 3                                                              | 7                                      | 20           |
|                                                                       | 2                                                                                                            | 5                                                                                                       | 3                                           | 5                                                              | 5                                      | 20           |
| K5                                                                    | Z                                                                                                            |                                                                                                         |                                             | CONCRETE REAL PROPERTY AND | International descention of the second |              |

# IMPORTANT: ANSWER 3(b) FIRST, THEN 3(a).

ans 3(a) :X3,X5

Typically, this is how we enter this data:

|    | X1   | X2   | Х3   | X4   | X5   | X6   | X3_recoded | X5_recoded |
|----|------|------|------|------|------|------|------------|------------|
| 1  | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 5.00       | 5.00       |
| 2  | 1.00 | 1.00 | 2.00 | 1.00 | 1.00 | 1.00 | 4.00       | 5.00       |
| 3  | 1.00 | 2.00 | 2.00 | 1.00 | 2.00 | 1.00 | 4.00       | 4.00       |
| 4  | 1.00 | 2.00 | 3.00 | 1.00 | 2.00 | 1.00 | 3.00       | 4.00       |
| 5  | 2.00 | 2.00 | 3.00 | 2.00 | 2.00 | 1.00 | 3.00       | 4.00       |
| 6  | 2.00 | 2.00 | 3.00 | 2.00 | 2.00 | 1.00 | 3.00       | 4.00       |
| 7  | 2.00 | 3.00 | 3.00 | 2.00 | 2.00 | 2.00 | 3.00       | 4.00       |
| 8  | 2.00 | 3.00 | 3.00 | 2.00 | 3.00 | 2.00 | 3.00       | 3.00       |
| 9  | 2.00 | 3.00 | 4.00 | 3.00 | 3.00 | 2.00 | 2.00       | 3.00       |
| 10 | 3.00 | 3.00 | 4.00 | 3.00 | 3.00 | 2.00 | 2.00       | 3.00       |
| 11 | 3.00 | 4.00 | 5.00 | 4.00 | 4.00 | 3.00 | 1.00       | 2.00       |
| 12 | 3.00 | 4.00 | 5.00 | 4.00 | 4.00 | 3.00 | 1.00       | 2.00       |
| 13 | 4.00 | 4.00 | 5.00 | 4.00 | 4.00 | 4.00 | 1.00       | 2.00       |
| 14 | 4.00 | 5.00 | 5.00 | 5.00 | 4.00 | 4.00 | 1.00       | 2.00       |
| 15 | 4.00 | 5.00 | 5.00 | 5.00 | 4.00 | 4.00 | 1.00       | 2.00       |
| 16 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 4.00 | 1.00       | 1.00       |
| 17 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 4.00 | 1.00       | 1.00       |
| 18 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 4.00 | 1.00       | 1.00       |
| 19 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 1.00       | 1.00       |
| 20 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 1.00       | 1.00       |

|    | BC | SCALE | COUNT |    | BC | SCALE | COUNT |
|----|----|-------|-------|----|----|-------|-------|
| 1  | X1 | VS    | 4.00  | 16 | X4 | VS    | 4.00  |
| 2  | X1 | S     | 5.00  | 17 | X4 | S     | 4.00  |
| 3  | X1 | N     | 3.00  | 18 | X4 | N     | 2.00  |
| 4  | X1 | DS    | 3.00  | 19 | X4 | DS    | 3.00  |
| 5  | X1 | VDS   | 5.00  | 20 | X4 | VDS   | 7.00  |
| 6  | X2 | VS    | 2.00  | 21 | X5 | VS    | 5.00  |
| 7  | X2 | S     | 4.00  | 22 | X5 | S     | 5.00  |
| 8  | X2 | N     | 4.00  | 23 | X5 | N     | 3.00  |
| 9  | X2 | DS    | 3.00  | 24 | X5 | DS    | 5.00  |
| 10 | X2 | VDS   | 7.00  | 25 | X5 | VDS   | 2.00  |
| 11 | Х3 | VS    | 10.00 | 26 | X6 | VS    | 6.00  |
| 12 | Х3 | S     | 2.00  | 27 | X6 | S     | 4.00  |
| 13 | Х3 | N     | 5.00  | 28 | X6 | N     | 2.00  |
| 14 | Х3 | DS    | 2.00  | 29 | X6 | DS    | 6.00  |
| 15 | Х3 | VDS   | 1.00  | 30 | X6 | VDS   | 2.00  |
|    |    |       |       |    |    |       |       |

However you can also use weight cases method. This is how you enter:

You can use value label for BC and SCALE. This one I activated the value label button so you don't see numbers for BC and SCALE

Important: note that I have already reverse the count for X3 and X5 so no need to recode variable.

Now we can run our crosstab and verify your data. Click **Analyze > Descriptive Statistics > Crosstabs**.

| ta Crosstabs   |                                                                                               | ×                                                            |          |
|----------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------|
| COUNT          | Row(s):<br>Column(s):<br>SCALE<br>Previous<br>Next<br>Display layer variables in table layers | Exact<br>Statistics<br>Cells<br>Format<br>Style<br>Bootstrap |          |
| <u>_ок</u> ] [ | Paste Reset Cancel Help                                                                       |                                                              | click ok |

| Count |    |    |       |    |    |     |       |  |  |  |
|-------|----|----|-------|----|----|-----|-------|--|--|--|
|       |    |    | SCALE |    |    |     |       |  |  |  |
|       |    | VS | S     | Ν  | DS | VDS | Total |  |  |  |
| BC    | X1 | 4  | 5     | 3  | 3  | 5   | 20    |  |  |  |
|       | X2 | 2  | 4     | 4  | 3  | 7   | 20    |  |  |  |
|       | X3 | 10 | 2     | 5  | 2  | 1   | 20    |  |  |  |
|       | X4 | 4  | 4     | 2  | 3  | 7   | 20    |  |  |  |
|       | X5 | 5  | 5     | 3  | 5  | 2   | 20    |  |  |  |
|       | X6 | 6  | 4     | 2  | 6  | 2   | 20    |  |  |  |
| Total |    | 31 | 24    | 19 | 22 | 24  | 120   |  |  |  |

### **BC \* SCALE Crosstabulation**

Compare with the original data you will notice the score for 3 and 5 is reversed. Others maintain. This step is

just to make sure you have the correct data.

To answer the question 3(a) [find mean and SD], just do mean for SCALE.

Analyze->descriptive statistics ->frequencies, then put in SCALE.

(You don't need to do any horizontal mean if you use this method, because the variable SCALE already include ALL questions X1-X6)

Cumulative

Percent

5.0

15.0

30.0

40.0

50.0

60.0

65.0

90.0

100.0

Regardless of your method, your M should be the same. Just that you will have different frequency table. Difference in SD is because you are computing horizontal mean in method 1, so your dispersion is based on the horizontal mean, not the scale 1-5. SD for method 2 is based on dispersion of likert scale.



Mean

Percent

5.0

10.0

15.0

10.0

10.0

10.0

5.0

25.0

10.0

100.0

Valid Percent

5.0

10.0

15.0

10.0

10.0

10.0

5.0

25.0

10.0

100.0

Frequency

1

2

3

2

2

2

1

5

2

20

Valid

2.00

2.17

2.33

2.50

2.67

2.83

317

3 50

3.67

Total

| Statistics |          |         |  |  |  |  |
|------------|----------|---------|--|--|--|--|
| SCALE      |          |         |  |  |  |  |
| Ν          | Valid    | 120     |  |  |  |  |
|            | Missing  | 0       |  |  |  |  |
| Mean       |          | 2.8667  |  |  |  |  |
| Std. D     | eviation | 1.48908 |  |  |  |  |

Method 2: weight

| SCALE |       |           |         |               |                       |  |  |  |  |
|-------|-------|-----------|---------|---------------|-----------------------|--|--|--|--|
|       |       | Frequency | Percent | Valid Percent | Cumulative<br>Percent |  |  |  |  |
| Valid | VS    | 31        | 25.8    | 25.8          | 25.8                  |  |  |  |  |
|       | S     | 24        | 20.0    | 20.0          | 45.8                  |  |  |  |  |
|       | Ν     | 19        | 15.8    | 15.8          | 61.7                  |  |  |  |  |
|       | DS    | 22        | 18.3    | 18.3          | 80.0                  |  |  |  |  |
|       | VDS   | 24        | 20.0    | 20.0          | 100.0                 |  |  |  |  |
|       | Total | 120       | 100.0   | 100.0         |                       |  |  |  |  |

### End

Disclaimer: This note is for educational purpose only and author does not make profit from this. SPSS statistics is a property of IBM. Support the software by purchasing legal copy of it.